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SOME GENERALIZATIONS OF THE FIRST FREDHOLM
THEOREM TO HAMMERSTEIN EQUATIONS AND THE

NUMBER OF SOLUTIONS

P. S. Milojević

Abstract. We prove some generalizations of the first Fredholm theorem for Ham-
merstein operator equations in Banach spaces and study the number of their
solutions using a projection like method.The linear part is assumed to be either
selfadjoint or nonseladjoint while the nonlinearities are such that the correspond-
ing map is (pseudo) A-proper. In particular, the nonlinearities can be either of
monotone type, or of type (S+), or condensing, or the sum of such maps.

1. Introduction

In this paper, we shall prove some generalizations of the first Fredholm
theorem to Hammerstein operator equations of the form

x−KFx = f,(1.1)

where K is linear and F is a nonlinear map. We shall consider (1.1) in a
general setting between two Banach spaces. To that end, we shall use two
approaches. One is based on applying the Brouwer degree theory directly to
the finite dimensional approximations of the map I−KF in conjunction with
the (pseudo) A-proper mapping approach. The other one is based on split-
ting first the map K as a product of two suitable maps and then using again
this degree theory. The linear part K is assumed to be either selfadjoint
or nonselfadjoint. In the second case, we assume that K is either positive
in the sense of Krasnoselskii, P-positive (i.e., angle-bounded) or that it is
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P-quasi-positive, that is that its selfadjoint part has at most a finite number
of negative eigenvalues of finite multiplicity. The nonlinear part is assumed
to be such that either I −KF is (pseudo) A-proper or that the correspond-
ing map in an equivalent reformulation of Eq. (1.1) is a k-ball contractive
or a quasimonotone perturbation of a strongly monotone map and is there-
fore A-proper. Applications of the abstract theory to Hammerstein integral
equations will be given elsewhere.

We begin by proving some generalized first Fredholm theorems for general
(pseudo) A-proper maps and their uniform limits. In the case of A-proper
maps, we also establish the number of solutions of these equations. Then we
use them to establish various results on the number of solutions of Eq. (1.1)
assuming different conditions on the nonlinearity F that imply a-priori es-
timates on the solution set. Unlike earlier studies, we also study Eq. (1.1)
with nonlinearities that are the sum of a strongly monotone and k-ball con-
densing maps. This work is a continuation of our study of these equations
in [19, 23]. There is an extensive literature on Hammerstein equations and
we refer to the books [9, 10, 29] as well as to [1, 3, 7, 6, 25, 26, 27, 28]. In
particular, for the unique (approximation) solvability of these equations we
refer to [29, 2, 19, 23].

2. Generalizations of the First Fredholm Theorem and the
Number of Solutions

We begin with some definitions.
Let {Xn} and {Yn} be finite dimensional subspaces of Banach spaces X

and Y respectively such that dimXn = dimYn for each n and

dist(x,Xn) → 0 as n → +∞ for each x ∈ X.

Let Pn : X → Yn and Qn : Y → Yn be linear projections onto Xn and Yn

respectively such that Pnx → x for each x ∈ X and δ = max ||Qn|| < +∞.
Then Γ = {Xn, Pn; Yn, Qn} is a projection scheme for (X,Y ).

A map T : D ⊂ X → Y is said to be approximation-proper (A-proper
for short) with respect to Γ if

(i) QnT : D ∩Xn → Yn is continuous for each n and
(ii) whenever {xnk

∈ D ∩Xnk
} is bounded and ||Qnk

Txnk
−Qnk

f || → 0
for some f ∈ Y , then a subsequence xnk(i)

→ x and Tx = f .
T is said to be pseudo A-proper w.r.t. Γ if in (ii) above we do not require

that a subsequence of {xnk
} converges to x for which Tx = f . If f is given

in advance, we say that T is (pseudo) A-proper at f .
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For the developments of the (pseudo) A-proper mapping theory and ap-
plications to differential equations, we refer to [15]–[22] and [26, 27]. To
demonstrate the generality and the unifying nature of the (pseudo) A-proper
mapping theory, we state now a number of examples of A-proper and pseudo
A-proper maps.

To look at φ-condensing maps, we recall that the set measure of noncom-
pactness of a bounded set D ⊂ X is defined as

γ(D) = inf{d > 0 : D has a finite covering by sets of diameter less than d}.

The ball-measure of noncompactness of D is defined as

χ(D) = inf

{
r > 0

∣∣∣D ⊂
n⋃

i=1

B(xi, r), xi ∈ X, n ∈ N
}

.

Let φ denote either the set or the ball-measure of noncompactness. Then
a map N : D ⊂ X → X is said to be k − φ contractive (φ-condensing) if
φ(N(Q)) ≤ kφ(Q) (respectively φ(N(Q)) < φ(Q)) whenever Q ⊂ D (with
φ(Q) 6= 0).

Recall that N : X → Y is K-monotone for some K : X → Y ∗ if

(Nx−Ny,K(x− y)) ≥ 0 for all x, y ∈ X.

It is said to be generalized pseudo-K-monotone (of type (KM)) if whenever
xn ⇀ x and lim sup(Nxn, K(xn − x)) ≤ 0 then (Nxn, K(xn − x)) → 0 and
Nxn ⇀ Nx (then Nxn ⇀ Nx). Recall that N is said to be of type (KS+)
if xn ⇀ x and lim sup(Nxn,K(xn − x)) ≤ 0 imply that xn → x. If xn ⇀ x
implies that lim sup(Nxn ,K(xn−x)) ≥ 0, N is said to be K-quasimonotone.
If Y = X∗ and K is the identity map, then these maps are called monotone,
generalized pseudo monotone, of type (M) and (S+) respectively. If Y = X
and K = J the duality map, then J-monotone maps are called accretive. It
is known that bounded monotone maps are of type (M). We say that N is
demicontinuous if xn → x in X implies that Nxn ⇀ Nx. It is well known
that I − N is A-proper if N is ball-condensing and that K-monotone like
maps are pseudo A-proper under some conditions on N and K. Moreover,
their perturbations by Fredholm or hyperbolic like maps are A-proper or
pseudo A-proper. (see [15]–[17], [20]–[22]). In [11] we have shown that ball-
condensing perturbations of stable A-proper maps are also A-proper. In
particular, a ball-condensing perturbation of a c-strongly K- monotone map
for a suitable K : X → Y ∗, i.e., (Tx − Ty, K(x − y)) ≥ c||x − y||2 for all
x, y ∈ X, is an A-proper map.
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3. General Equations

We begin with some extensions of the first Fredholm theorem to general
equations of the form Tx = f , where T is a nonlinear (pseudo) A-proper
map.

We say that a map T : X → Y satisfies condition (+) if whenever Txn →
f in Y then {xn} is bounded in X. It satisfies condition (∗) if whenever
Txn → f in Y then Tx = f for some f ∈ Y . T is locally injective at x0 ∈ X
if there is a neighborhood U(x0) of x0 such that T is injective on U(x0). T
is locally injective on X if it is locally injective at each point x0 ∈ X. A
continuous map T : X → Y is said to be locally invertible at x0 ∈ X if there
are a neighborhood U(x0) and a neighborhood U(T (x0)) of T (x0) such that
T is a homeomorphism of U(x0) onto U(T (x0)). It is locally invertible on X
if it is locally invertible at each point x0 ∈ X.

Let Σ be the set of all points x ∈ X where T is not locally invertible and
let cardT−1({f}) be the cardinal number of the set T−1({f}).

We need the following basic theorem on the number of solutions of non-
linear equations for A-proper maps (see [21]).

Theorem 3.1. Let T : X → Y be a continuous A-proper map that satisfies
condition (+). Then
(a) The set T−1({f}) is compact (possibly empty) for each f ∈ Y .
(b) The range R(T ) of T is closed and connected.
(c) Σ and T (Σ) are closed subsets of X and Y , respectively, and T (X \ Σ)
is open in Y .
(d) cardT−1({f}) is constant and finite (it may be 0) on each connected
component of the open set Y \ T (Σ).

Theorem 3.2. Let A, T : X → Y be nonlinear maps such that
(i) A is odd on X \B(0, R) for some R > 0, and there are an n0 ≥ 1 and a
function c : R+ → R+ such that c(r) → +∞ as r → +∞ and

||QnAx|| ≥ c(||x||) for all x ∈ Xn \B(0, R), n ≥ n0

(ii) T is asymptotically close to A, i.e.,

|T −A| = lim sup
||x||→+∞

||Tx−Ax||/c(||x||) < 1/δ,

where δ = max ||Qn||.
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Then
(a) If T is A-proper w.r.t. Γ, then Eq. Tx = f is approximation solvable for
each f ∈ Y . Moreover, if

Σ = {x ∈ X | T is not invertible at x} ,

and T is continuous, then (T )−1({f}) is compact for each f ∈ Y and the
cardinal number card (T )−1({f})) is constant, finite and positive on each
connected component of the set Y \ T (Σ).
(b) If T is pseudo A-proper w.r.t. Γ, then T (X) = Y .
(c) If T + µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with some small
µ0 and a bounded map G : X → Y , and T satisfies condition (∗), then
T (X) = Y .

Proof. The solvability of Eq. Tx = f has been proven in [12, 14] using
the finite dimensional antipodes theorem of Borsuk. Here we shall give a
more direct proof. Let ε > 0 be such that |T − A| + 2ε < 1/δ. Then
there is β > 0 such that |T − A| + 2ε < (1 − β)/δ. Let r ≥ R be such
that c(r) ≥ max{1, 2δ||f ||/β} and ||Tx− Ax|| ≤ (|T − A|+ ε)c(||x||) for all
||x|| ≥ r. Define a homotopy

H(t, x) = (1− t)Ax + tTx− tf for t ∈ [0, 1] and x ∈ B(0, r).

We claim that QnH(t, x) 6= 0 for all t ∈ [0, 1] and x ∈ Xn ∩ ∂B(0, r) for all
n ≥ n0. If not, then there would exist infinitely many xn ∈ Xn ∩ ∂B(0, r)
and tn ∈ [0, 1] such that QnH(tn, xn) = 0 for these n′s. Then

c(||xn||) ≤ ||QnAxn|| = t||Qn(T −A)xn −Qnf ||
≤ δ[||Txn −Axn||+ ||f ||] ≤ δ[(|T −A|+ ε)c(||xn||) + ||f ||]
< δ[(1− β)c(||x||)/δ + ||f ||] = (1− β)c(||xn||) + δ||f ||.

But, δ||f || ≤ βc(||xn||)/2 and therefore

c(||xn||) ≤ (1− β)c(||xn||) + βc(||xn||)/2 = (1− β/2)c(||xn||).

Dividing by c(||xn||), we get a contradiction 1 ≤ 1− β/2. Hence, our claim
is valid. Thus, deg(QnT, Xn∩B(0, r), Qnf) = deg(QnA,Xn∩B(0, r), 0) 6= 0
for all large n. Thus, by the pseudo A-properness of T , the equation Tx = f
is solvable.

Next, we shall show that T satisfies condition (+). Indeed, let Txn → f
in Y as n → +∞. Then there is a constant M > 0 such that ||Txn|| ≤ M for
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all n. As above, select ε > 0 and β > 0 such that |T − A|+ 2ε < (1− β)/δ.
Suppose that ||xn|| → +∞ and, as above, let r ≥ R be large such that
c(r) ≥ max{1, 2δM/β} and ||Tx−Ax|| ≤ (|T−A|+ε)c(||x||) for all ||x|| ≥ r.
Then for ||xn|| ≥ r, we get

c(||xn||) ≤ ||QnAxn|| ≤ ||Qn(Axn − Txn) + QnTxn||
≤ δ(||Axn − Txn||+ M) ≤ δ(|T −A|c(||xn||) + M)
< (1− β)c(||xn||) + δM ≤ (1− β)c(||xn||) + βc(||xn||)/2.

This leads to a contradiction as above. Hence, T satisfies condition (+).
Now, the theorem follows from Theorem 3.1. The proofs of (b)–(c) can be
found in [12]–[14].

The following result gives some conditions for (i) in Theorem 3.2 to hold.

Lemma 3.1. Let A : X → Y be A-proper w.r.t. Γ and k-positively homo-
geneous outside of some ball in X, i.e., A(αx) = αkAx for all ||x|| ≥ R, all
α ≥ 1 and some k ≥ 1. Suppose that there is an M > 0 such that if Ax = 0,
then ||x|| ≤ M . Then there are c > 0 and n0 ≥ 1 such that for r ≥ M + 1
and each n ≥ n0

||QnAx|| ≥ c||x||k for all x ∈ Xn \B(0, r).

Proof. If this is not the case, then there are xnj ∈ Xnj \B(0, r) such that

||QnjAxnj || ≤ 1/j||xnj ||k for all j ≥ 1.

Set vnj = rxnj/||xnj ||. Then ||vnj || = r, xnj = r−1||xnj ||vnj , and

QnjAxnj = Qnj

(
r−1||xnj ||vnj

)
= r−k||xnj ||kQnjAvnj

since r−1||xnj || ≥ 1. Hence,

||QnjAxnj || = r−k||xk
nj
|| ||QnjAvnj || ≤ 1/j||xnj ||k

and therefore
||QnjAvnj || ≤ rk/j → 0 as j → +∞.

Since A is A-proper (at 0), we may assume that xnj → v and Av = 0 with
||v|| = r. This contradicts the choice of r. Hence, the lemma is valid.
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Remark 3.1. The condition that ||x|| ≤ M if Tx = 0 is implied in particular
if x = 0 when Tx = 0. This particular condition has been used in all earlier
generalizations of the first Fredholm theorem.

In view of Lemma 3.1, we have the following generalized first Fredholm
theorem.

Theorem 3.3. Let A : X → Y be A-proper w.r.t. Γ, odd and k-positively
homogeneous outside of some ball in X for some k ≥ 1 and T : X → Y be
such that

(i) There is an M > 0 such that if Ax = 0, then ||x|| ≤ M .

(ii) T is asymptotically close to A, i.e.,

|T −A| = lim sup
||x||→+∞

||Tx−Ax||/c||x||k < 1/δ

where c is as in Lemma 3.1 and δ = max ||Qn||.
Then

(a) Eq. Tx = f is approximation solvable for each f ∈ Y if T is A-proper
w.r.t. Γ. Moreover, if

Σ = {x ∈ X | T is not invertible at x}

and T is continuous, then (T )−1({f}) is compact for each f ∈ Y and the
cardinal number card (T )−1({f})) is constant, finite and positive on each
connected component of the set Y \ T (Σ).

(b) Eq. Tx = f is solvable for each f ∈ Y if T is pseudo A-proper w.r.t. Γ.

(c) If T + µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with some small
µ0 and a bounded map G : X → Y , and T satisfies condition (∗), then
T (X) = Y .

Proof. By Lemma 3.1, there are c > 0 and n0 ≥ 1 such that for r ≥ M + 1
and each n ≥ n0

||QnAx|| ≥ c||x||k for all x ∈ Xn \B(0, r).

Hence, the theorem follows by Theorem 3.2.
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4. Applications to Hammerstein Equations

In this section, we shall apply Theorem 3.3 to Hammerstein equations.

Theorem 4.1. Let K : X∗ → X be linear and F = F1 + F2 : X → X∗ be
nonlinear such that I −KF1 is an A-proper map w.r.t. Γ and

(i) F1 is odd and positively homogeneous outside some ball in X.

(ii) There is an M > 0 such that if x−KF1x = 0, then ||x|| ≤ M .

(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.

Then

(a) Eq. (1.1) is approximation solvable w.r.t. Γ for each f ∈ X if I −KF is
A-proper w.r.t. Γ. Moreover, if

Σ = {x ∈ X | I −KF is not invertible at x}

and I −KF is continuous, then (I −KF )−1({f}) is compact for each f ∈
X and the cardinal number card (I − KF )−1({f})) is constant, finite and
positive on each connected component of the set X \ (I −KF )(Σ).

(b) Eq. (1.1) is solvable for each f ∈ Y if I −KF is pseudo A-proper w.r.t.
Γ.

(c) If I−KF +µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with some small
µ0 and a bounded map G : X → X, and I−KF satisfies condition (∗), then
(I −KF )(X) = X.

Proof. Set A = I −KF1 and T = A−KF2. Then T is asymptotically close
to A and

|T −A| = |KF2| = lim sup
||x||→+∞

||KF2x||/||x|| < |F | ||K||.

Hence, A and T satisfy all the conditions of Theorem 3.3.

Next, we shall look at some special classes of nonlinearities.
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Corollary 4.1. Let K : X∗ → X be linear and F = F1 + F2 : X → X∗ be
nonlinear such that
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M > 0 such that if x−KF1x = 0, then ||x|| ≤ M .
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Assume that either K is compact and F1 and F2 are demicontinuous, or K
is continuous and F and F1 are k-ball contractive and k1-ball contractive,
respectively with k||K|| < 1 and k1||K|| < 1. Then Eq. (1.1) is approximation
solvable w.r.t. Γ for each f ∈ X. Moreover, if

Σ = {x ∈ X | I −KF is not invertible at x}

and I −KF is continuous, then (I −KF )−1({f}) is compact for each f ∈
X and the cardinal number card (I − KF )−1({f})) is constant, finite and
positive on each connected component of the set X \ (I −KF )(Σ).

Proof. Set A = I −KF1 and T = A−KF2. Then I −KF1 and I −KF are
A-proper maps w.r.t. Γ and Theorem 4.1 applies.

Next, we shall discuss other sets of conditions on K and F that imply the
A-properness of an operator in an equivalent formulation of our equation.
Recall that a map K acting in a Hilbert space H is called positive in the
sense of Krasnoselski if there exists a number µ > 0 for which

(Kx, Kx) ≤ µ(Kx, x), x ∈ H.

The infimum of all such numbers µ is called the positivity constant of K and
is denoted by µ(K). The simplest example of a positive map is provided by
any bounded selfadjoint positive definite map K on H. Then µ(K) = ||K||
for such maps. A compact normal map K in a Hilbert space is positive on
H if and only if (cf. [8]) the number

[
inf

λ∈σ(K)
λ6=0

Re
(
λ−1

)
]−1

is well defined and positive. In that case, it is equal to µ(K).
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Let X be a reflexive embeddable Banach space, that is, there is a Hilbert
space H such that X ⊂ H ⊂ X∗ so that 〈y, x〉 = (y, x) for each y ∈ H,x ∈ X,
where 〈, 〉 is the duality pairing of X and X∗. Let K : X∗ → X be a positive
semidefinite bounded selfadjoint map in the sense that 〈Kx, y〉 = 〈x,Ky〉
for all x, y ∈ X∗. Then the positive semidefinite square root K

1/2
H of the

restriction KH of K to H can be extended to a bounded linear map T :
X∗ → H such that K = T ∗T , where the adjoint map T ∗ = K

1/2
H of T is a

bounded map from H to X (see [29]).
We shall look at the following equivalent formulation of Eq.(1.1)

y − TFCy = h, h ∈ H.(4.1)

We need the following lemma (cf. [29, 24]).

Lemma 4.1. Equations (1.1) and (4.1) are equivalent with f restricted to
C(H); each solution y of (4.1) determines a solution x = Cy of (1.1) and
each solution x of (1.1) with f ∈ C(H) determines a solution y = TFx + h
of (4.1) with f = Ch and x = Cy. Moreover, the map

C : S(h) = (I − TFC)−1({h}) → S = (I −KF )−1({Ch})

is bijective.

Proof. Let y1 and y2 be distinct solutions of (4.1). Applying C to yi −
TFCyi = h and using the fact that K = CT , we get that x1 = Cy1 and
x2 = Cy2 are solutions of (1.1). They are distinct since

0 < ||y1 − y2||2 = (TFCy1 − TFCy2, y1 − y2)
= (FCy1 − FCy2, C(y1 − y2)) = (Fx1 − Fx2, x1 − x2).

Conversely, let f ∈ C(H) and x1 and x2 be distinct solutions of (1.1). Let
f = Ch for some h ∈ H. Set yi = TFxi + h. Then Cyi = CTFxi + h =
KFxi + f and so xi = Cyi. Hence, yi = TFCyi + h, i.e., yi are solutions of
(4.1). They are distinct since y1 = y2 implies that x1 = Cy1 = Cy2 = x2.
These arguments show that C : S(h) → S is a bijection.

Theorem 4.2. Let K : X∗ → X be linear and F = F1 + F2 : X → X∗ be
nonlinear such that I − TF1C is an A-proper map w.r.t. Γ and
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M .
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(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Then

(a) If I − KF is A-proper w.r.t. Γ, Eq. (1.1) is approximation solvable in
X for each f ∈ C(H) ⊂ X w.r.t. a projection scheme Γ = {Xn, Pn} for X,
δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | I − TFC is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (I − TFC)(ΣH) intersected by C(H).
(b) Eq. (1.1) is solvable for each f ∈ C(H) if I − KF is pseudo A-proper
w.r.t. Γ.
(c) If I−KF +µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with some small
µ0 and a bounded map G : X → X, and I−KF satisfies condition (∗), then
Eq. x−KFx = f is solvable for each f ∈ C(H).

Proof. Set A = I − TF1C and B = A− TFC. Then A and B satisfy all the
conditions of Theorem 3.3. Hence, we have that the equation y−TFCy = h
is solvable for each h ∈ H, S(h) = (I−TFC)−1({h}) 6= ∅ and compact, and
cardS(h) is constant and finite on each connected component of the open
set H \ (I − TFC)(ΣH), where

ΣH = {h ∈ H | I − TFC is not locally invertible at h} .

Next, applying C to y− TFCy = h and using the fact that K = CT , we
get that x−KFx = f with x = Cy ∈ X. By Lemma 4.1, we get that

cardS = (I −KF )−1({Ch}) = cardS(h).

Hence, card (I − KF )−1({f}) is constant, finite and positive on each con-
nected component of H \ (I − TFC)(ΣH) intersected by C(H).

Corollary 4.2. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a positive semidefinite bounded selfadjoint map, and
C = K

1/2
H , where KH is the restriction of K to H, µ(K) = ||C||2 and T :
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X∗ → H be a bounded linear extension of K
1/2
H . Let F = F1 + F2 : X → X∗

be a nonlinear map such that
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M .
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Assume that TFC and TF1C are k-ball contractive and k1-ball contractive,
respectively with k < 1 and k1 < 1. Then Eq. (1.1) is approximation solvable
in X for each f ∈ C(H) ⊂ X w.r.t. a projection scheme Γ = {Xn, Pn} for
X, δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | I − TFC is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (I − TFC)(ΣH) intersected by C(H).

Proof. Set A = I − TF1C and B = A− TFC. Then A and B are A-proper
w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1. Hence,
Theorem 4.2 applies.

Corollary 4.3. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a positive semidefinite bounded selfadjoint map, and
C = K

1/2
H , where KH is the restriction of K to H, µ(K) = ||C||2 and T :

X∗ → H be a bounded linear extension of K
1/2
H . Let F = F1 + F2 : X → X∗

be a nonlinear map, such that either −F2 is quasimonotone or TF2C is k
ball contractive with k < 1− cµ(K) where c is the smallest number such that
(i) (F1x− F1y, x− y) ≤ c||x− y||2 for all x, y ∈ X.
(ii) F1 is odd and positively homogeneous outside some ball in X.
(iii) There is an M > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M .
(iv) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
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Then Eq. (1.1) is approximation solvable in X for each f ∈ C(H) ⊂
X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Moreover, if

ΣH = {h ∈ H | I − TFC is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (I − TFC)(ΣH) intersected by C(H).

Proof. We claim that the map I − TF1C : H → H is 1 − cµ(K)-strongly
monotone. Indeed, for x, y ∈ H, we have

(x− TF1Cx− y + TF1Cy, x− y) = ||x− y||2 − (TF1Cx− TF1Cy, x− y)
= ||x− y||2 − (F1Cx− F1Cy,Cx− Cy)
≥ (1− cµ(K))||x− y||2.

Hence, I − TF1C is A-proper w.r.t. Γ = {Hn, Pn} for H. Since TF2C is
k-ball condensing with k < 1 − cµ(K) , we see that I − tTFC is A-proper
w.r.t. Γ (cf. [11]). If −F2 is quasimonotone, then I − TFC is of type (S+)
as a sum of a strongly monotone map and a quasimonotone map. Hence,
Theorem 4.2 applies.

Remark 4.1. Corollary is also valid if we assume that TF1C is k-ball contractive
and F2 satisfies condition (i).

Corollary 4.4. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a positive semidefinite bounded selfadjoint map, and
C = K

1/2
H , where KH is the restriction of K to H, µ(K) = ||C||2 and T :

X∗ → H be a bounded linear extension of K
1/2
H . Let F = F1 + F2 : X → X∗

be a nonlinear map, such that −F1 and −F2 are quasibounded and either
pseudomonotone, or bounded generalized pseudomonotone, or quasimono-
tone and
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M .
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
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Then Eq. (1.1) is approximation solvable in X for each f ∈ C(H) ⊂
X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Moreover, if

ΣH = {h ∈ H | I − TFC is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (I − TFC)(ΣH) intersected by C(H).

Proof. Set A = I − TF1C and B = A − TF2C. We shall show that A and
B are of type (S+) in either case. Suppose first that F1 is quasimonotone.
Let xn ⇀ x and lim sup(Axn, xn − x) ≤ 0. Since

(Axn, xn − x) = (xn, xn − x)− (F1Cxn, Cxn − Cx)

and Cxn ⇀ Cx, the quasimonotonicity of −F1 implies that

lim sup(xn, xn − x) ≤ 0.

Since ||xn − x||2 = (xn, xn − x) + (x, x− xn), we get that xn → x. Hence, A
is of type (S+).

Next, we shall show that B is also of type (S+). Let xn ⇀ x and
lim sup(Bxn, xn − x) ≤ 0. Since

(Bxn, xn − x) = (Axn, xn − x)− (F2Cxn, Cxn − Cx)

and Cxn ⇀ Cx, the quasimonotonicity of −F2 implies that

lim sup(Axn, xn − x) ≤ 0.

Hence, by the (S+) property of A, we get that xn → x and so B is of type
(S+).

Next, we shall show that a bounded generalized pseudomonotone map
−F1 is quasimonotone. If not, then for some xn ⇀ x we have that

lim sup(−F1xn, xn − x) < 0.

Since −F1 is bounded, we may assume that −F1xn ⇀ y. By the general-
ized pseudomonotonicity of −F1, it follows that lim(−F1xn, xn − x) = 0, a
contradiction. Hence, −F1 is quasimonotone. Similarly, we get that −F1 is
quasimonotone if it is pseudomonotone (see [5]). Thus, A and B are of type
(S+) in all cases and are therefore A-proper w.r.t. Γ. Hence, the theorem
follows from Theorem 4.2.
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Next, let us look at the case when K is not selfadjoint. We begin by
describing the setting of the problem. Let X be an embeddable Banach
space, X ⊂ H ⊂ X∗. Let K : X∗ → X be a linear map and KH be the
restriction of K to H such that KH : H → H. Let A = (K + K∗)/2 denote
the selfadjoint part of K and B = (K −K∗)/2 be the skew-adjoint part of
K. Assume that A is positive definite. Under our assumptions on K, both
A and B map X∗ into X. We know that A can be represented in the form
A = CC∗, where C = A1/2 is the square root of A, C : H → X, and the
adjoint map C∗ : X∗ → H.

As in [2] and [23], we say that K is P-positive if C−1K(C∗)−1 exists and
is bounded in H. It is S-positive if K(C∗)−1 exists and is bounded in H.
Clearly, the P -positivity implies the S-positivity but not conversely. It is
easy to see that K is P -positive if and only if C−1B(C∗)−1 is bounded in
H, and is S-positive if and only if B(C∗)−1 is bounded in H. Moreover, K
is P -positive if and only if K is angle-bounded, i.e.,

|(Kx, y)− (y, Kx)| ≤ a(Kx, x)1/2(Ky, y)1/2, x, y ∈ H.

Denote by M and N the closure of the maps C−1K(C∗)−1 and K(C∗)−1,
respectively, in H. Note that M and N are defined on the closure (in H) of
the range of C = A1/2 and suppose that their domains coincide with H. We
require that the following decompositions hold

K = CMC∗, K = NC∗.

Note that K, M and N are related as: N = CM, N∗ = M∗C∗ and we
have (Mx, x) = ||x||2 for all x ∈ H. Hence, both M and M∗ have trivial
nullspaces. Denote by µ(K) = ||N ||2, which is the positivity constant of K
in the sense of Krasnoselski.

Let F : X → X∗ be a nonlinear map and consider the Hammerstein
equation

x−KFx = f.(4.2)

For f ∈ N(H), let h ∈ H be a solution of

M∗h−N∗FNh = M∗k,(4.3)

where f = Nk for some k ∈ H. Then M∗(h − C∗FNh − k) = 0 since
N = CM and N∗ = M∗C∗. Hence, h = C∗FNh + k since M∗ is injective
and therefore

Nh = NC∗FNh + Nk = KFNh + f
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since K = NC∗. Thus x = Nh is a solution of (4.2). So the solvability of
(4.2) is reduced to the solvability of (4.3). Actually these two equations are
equivalent. Namely, we have (cf. [24])

Lemma 4.2. Equations (4.2) and (4.3) are equivalent with f restricted to
N(H); each solution h of (4.3) determines a solution x = Nh of (4.2) and
each solution x of (4.2) with f ∈ N(H) determines a solution h = C∗Fx+k
of (4.3) with f = Nk and x = Nh. Moreover, the map

N : S(M∗k) = (M∗ −N∗FN)−1(M∗k) → S = (I −KF )−1(Nk)

is bijective.

Proof. Let h1 and h2 be distinct solutions of (4.3). We have seen above that
x1 = Nh1 and x2 = Nh2 are solutions of (4.2). They are distinct since

0 < ||h1 − h2||2 = (M(h1 − h2), h1 − h2) = (N∗FNh1 −N∗FNh2, h1 − h2)
= (FNh1 − FNh2, N(h1 − h2)) = (Fx1 − Fx2, x1 − x2).

Conversely, let f ∈ N(H) and x1 and x2 be distinct solutions of (4.2). Let
f = Nk for some k ∈ H. Set hi = C∗Fxi +k. Then Nhi = NC∗Fxi +Nk =
KFxi + f and so xi = Nhi. Hence,

M∗hi = M∗C∗FNhi + M∗k = N∗FNhi + M∗k,

i.e., hi are solutions of (4.3). They are distinct since h1 = h2 implies that
x1 = Nh1 = Nh2 = x2. These arguments show that N : S(M∗k) → S is
bijective.

Theorem 4.3. Let K : X∗ → X be linear P-positive and F = F1 + F2 :
X → X∗ be nonlinear such that M∗ + N∗F1N is an A-proper map w.r.t. Γ
and
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M1 > 0 such that if M∗ −N∗F1Nx = 0, then ||x|| ≤ M1.
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Then
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(a) If M∗−N∗FN is A-proper w.r.t. Γ, Eq. (1.1) is approximation solvable
in X for each f ∈ N(H) ⊂ X w.r.t. a projection scheme Γ = {Xn, Pn} for
X, δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).
(b) Eq. (1.1) is solvable for each f ∈ N(H) if M∗ − N∗FN is pseudo A-
proper w.r.t. Γ.
(c) If M∗ − N∗FN + µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with
some small µ0 and a bounded map G : X → X, and M∗ −N∗KN satisfies
condition (∗), then Eq. x−KFx = f is solvable for each f ∈ N(H).

Proof. Set A = M∗−N∗F1N and B = A−N∗FN . Then A and B satisfy all
the conditions of Theorem 3.3. Hence, we have that M∗h−N∗FNh = M∗k
for some h ∈ H by Theorem 3.3. As before, we get that

Nh = NC∗FNh + Nk = KFNh + f

since K = NC∗. Thus, x − KFx = f with x = Nh ∈ X. Next, we have
that Y = N(H) is a Banach subspace of X and I − KF : Y → Y , since
N : H → X is continuous and therefore it is closed. Moreover, S(M∗k)
is nonempty and compact, and cardS(M∗k) is constant and finite on each
connected component of the open set H\(M∗−N∗FN)(ΣH) by Theorem 3.1
By Lemma 4.2, we get cardS = (I − KF )−1(f) = cardS(M∗k) with f =
Nk. Hence, card (I − KF )−1(f) is constant and finite on each connected
component of H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Corollary 4.5. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a linear P-positive map and F = F1 + F2 : X → X∗

be a nonlinear map such that
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M1 > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M1.
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
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Assume that N∗FN and N∗F1N are k-ball contractive and k1-ball con-
tractive, respectively with k < 1 and k1 < 1. Then Eq. (1.1) is approxi-
mation solvable in X for each f ∈ N(H) ⊂ X w.r.t. a projection scheme
Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h}
then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. Set A = M∗ −N∗F1N and B = A−N∗FN . Then A and B are A-
proper w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Hence, Theorem 4.3 applies.

Corollary 4.6. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a linear P-positive map and F = F1 + F2 : X → X∗

be a nonlinear map, such that either −F2 is quasomonotone or N∗F2N is k
ball contractive with k < 1− cµ(K) where c is the smallest number such that
(i) (F1x− F1y, x− y) ≤ c||x− y||2 for all x, y ∈ X;
(ii) F1 is odd and positively homogeneous outside some ball in X;
(iii) There is an M1 > 0 such that if M∗x−N∗F1Nx = 0, then ||x|| ≤ M1.
(iv) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Then Eq. (1.1) is approximation solvable in X for each f ∈ N(H) ⊂

X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h}
then (I−KF )−1({f}) is compact for each f ∈ N(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. We claim that the map M∗−N∗F1N : H → H is 1− cµ(K)-strongly
monotone. Indeed, for x, y ∈ H, we have

(M∗(x− y)− (N∗(F1Nx− F1Ny), x− y)
= ||x− y||2 − (F1Nx− F1Ny,Nx−Ny)
≥ (1− cµ(K))||x− y||2.
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Since N∗F2N is k-ball contraction, M∗ − N∗FN is A-proper w.r.t. Γ (cf.
[11]). As before, M∗ −N∗FN is A-proper if −F2 is quasimonotone.

Next, let f ∈ N(H) ⊂ X, f = Nk, be fixed. The A-properness of M∗ −
N∗FN imply that M∗h−N∗FNh = M∗k for some h ∈ H by Theorem 3.1.
As before, we get that Nh = NC∗FNh+Nk = KFNh+f since K = NC∗.
Thus, x−KFx = f with x = Nh ∈ X. Next, we have that Y = N(H) is a
Banach subspace of X and I−KF : Y → Y , since N : H → X is continuous
and therefore it is closed. Moreover, S(M∗k) is nonempty and compact,
and cardS(M∗k) is constant and finite on each connected component of
the open set H \ (M∗ − N∗FN)(ΣH) by Theorem 3.1. By Lemma 4.2,
we get cardS = (I − KF )−1(f) = cardS(M∗k) with f = Nk. Hence,
card (I −KF )−1(f) is constant and finite on each connected component of
H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Corollary 4.7. Let K : X∗ → X be linear P-positive and F = F1 + F2 :
X → X∗ be nonlinear such that −F1 and −F2 are quasibounded and either
pseudomonotone, or bounded generalized pseudomonotone, or quasimono-
tone and

(i) F1 is odd and positively homogeneous outside some ball in X.

(ii) There is an M1 > 0 such that if M∗ −N∗F1Nx = 0, then ||x|| ≤ M1.

(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small. Then Eq. (1.1) is approximation solvable in X for each
f ∈ N(H) ⊂ X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ =
max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. Set A = M∗ −N∗F1N and B = A−M∗F2N . We shall show that A
and B are of type (S+) in either case. Suppose first that F1 is quasimonotone.
Let xn ⇀ x and lim sup(Axn, xn − x) ≤ 0. Since

(Axn, xn − x) = (M∗xn, xn − x)− (F1Nxn, Nxn −Nx)
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and Nxn ⇀ Nx, the quasimonotonicity of −F1 implies that

lim sup(M∗xn, xn − x) ≤ 0.

Since ||xn − x||2 = (M∗xn, xn − x) + (M∗x, x − xn), we get that xn → x.
Hence, A is of type (S+).

Next, we shall show that B is also of type (S+). Let xn ⇀ x and
lim sup(Bxn, xn − x) ≤ 0. Since

(Bxn, xn − x) = (Axn, xn − x)− (F2Nxn, Nxn −Nx)

and Nxn ⇀ Nx, the quasimonotonicity of −F2 implies that

lim sup(Axn, xn − x) ≤ 0.

Hence, by the (S+) property of A, we get that xn → x and so B is of type
(S+).

Next, we shall show that a bounded generalized pseudomonotone map
−F1 is quasimonotone. If not, then for some xn ⇀ x we have that

lim sup(−F1xn, xn − x) < 0.

Since −F1 is bounded, we may assume that −F1xn ⇀ y. By the general-
ized pseudomonotonicity of −F1, it follows that lim(−F1xn, xn − x) = 0, a
contradiction. Hence, −F1 is quasimonotone. Similarly, we get that −F1 is
quasimonotone if it is pseudomonotone (see [5]). Thus, A and B are of type
(S+) in all cases and are therefore A-proper w.r.t. Γ. Hence, the theorem
follows from Theorem 4.3.

Next, we shall look at the case when the selfadjoint part A of K is not
positive definite. Suppose that A is quasi-positive definite in H, i.e., it has
at most a finite number of negative eigenvalues of finite multiplicity. Let
U be the subspace spanned by the eigenvectors of A corresponding to these
negative eigenvalues of A and P : H → U be the orthogonal projection
onto U . Then P commutes with A, but not necessarily with B, and acts
both in X and X∗. Then the operator |A| = (I − 2P )A is easily seen to
be positive definite. Hence,we have the decomposition |A| = DD∗, where
D = |A|1/2 : H → X and D∗ : X∗ → H.

Following [2] and [23], we call the map K P -quasi-positive if the map
D−1K(D∗)−1 exists and is bounded in H, and S-quasi-positive if the map
K(D∗)−1 exists and is bounded in H. Let M and N denote the closure in H
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of the the bounded maps D−1K(D∗)−1 and K(D∗)−1 respectively. Assume
that they are both defined on the whole space H. We assume that we have
the following decompositions

K = DMD∗, K = ND∗.

Then we have N = DM , N∗ = M∗D∗, and 〈Mh, h〉 = ||h||2 − 2||Ph||2 for
all h ∈ H. Define the number

ν(K) = sup
{

ν : ν > 0, ||Nh|| ≥ (ν)1/2||Ph||, h ∈ H
}

.

Note that for a selfadjoint map K, ν(K) is the absolute value of the largest
negative eigenvalue of K. We need (cf. [24])

Lemma 4.3. Equations (4.2) and (4.3) are equivalent with f restricted to
N(H); each solution h of (4.3) determines a solution x = Nh of (4.2) and
each solution x of (4.2) with f ∈ N(H) determines a solution h = D∗Fx+k
of (4.3) with f = Nk and x = Nh. Moreover, the map N : S(M∗k) → S =
(I −KF )−1(Nk) is bijective.

Proof. Let h1 and h2 be distinct solutions of (4.3). Since N = DM and and
K = ND∗, we get as before that x1 = Nh1 and x2 = Nh2 are solutions of
(4.2). They are distinct since

0 6= ||h1 − h2||2 − 2||P (h1 − h2)||2 = (M(h1 − h2), h1 − h2)
= (N∗FNh1 −N∗FNh2, h1 − h2) = (FNh1 − FNh2, N(h1 − h2))
= (Fx1 − Fx2, x1 − x2).

Conversely, let f ∈ N(H) and x1 and x2 be distinct solutions of (4.2). Let
f = Nk for some k ∈ H. Set hi = D∗Fxi + k. Then

Nhi = ND∗Fxi + Nk = KFxi + f

and so xi = Nhi. Hence,

M∗hi = M∗D∗FNhi + M∗k = N∗FNhi + M∗k,

i.e., hi are solutions of (4.3). They are distinct since h1 = h2 implies that
x1 = Nh1 = Nh2 = x2. These arguments show that N : S(M∗k) → S is
bijective.

We have the following result when K is P -quasi-positive.
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Theorem 4.4. Let K : X∗ → X be linear P-quasi-positive and F = F1 +
F2 : X → X∗ be nonlinear such that M∗−N∗F1N is an A-proper map w.r.t.
Γ and
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M1 > 0 such that if M∗ −N∗F1Nx = 0, then ||x|| ≤ M1.
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Then

(a) If M∗−N∗FN is A-proper w.r.t. Γ, Eq. (1.1) is approximation solvable
in X for each f ∈ N(H) ⊂ X w.r.t. a projection scheme Γ = {Xn, Pn} for
X, δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).
(b) Eq. (1.1) is solvable for each f ∈ N(H) if M∗−N∗FN is pseudo A-pro-
per w.r.t. Γ.
(c) If M∗ − N∗FN + µG is A-proper w.r.t. Γ for each µ ∈ (0, µ0) with
some small µ0 and a bounded map G : X → X, and M∗ −N∗KN satisfies
condition (∗), then Eq. x−KFx = f is solvable for each f ∈ N(H).

Proof. Set A = M∗ −N∗F1N and B = A−N∗FN . Then A and B satisfy
all conditions of Theorem 3.3. Hence, we have that M∗h−N∗FNh = M∗k
for some h ∈ H by Theorem 3.3. As before, we get that

Nh = NC∗FNh + Nk = KFNh + f

since K = NC∗. Thus, x − KFx = f with x = Nh ∈ X. Next, we have
that Y = N(H) is a Banach subspace of X and I − KF : Y → Y , since
N : H → X is continuous and therefore it is closed. Moreover, S(M∗k)
is nonempty and compact, and cardS(M∗k) is constant and finite on each
connected component of the open set H\(M∗−N∗FN)(ΣH) by Theorem 3.1.
By Lemma 4.3, we get

cardS = (I −KF )−1(f) = cardS(M∗k) with f = Nk.

Hence, card (I −KF )−1(f) is constant and finite on each connected compo-
nent of H \ (M∗ −N∗FN)(ΣH) intersected by N(H).
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Corollary 4.8. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a linear P -quasi-positive map and F = F1 + F2 : X →
X∗ be a nonlinear map such that
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M1 > 0 such that if x− TF1Cx = 0, then ||x|| ≤ M1.
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Assume that N∗FN and N∗F1N are k-ball contractive and k1-ball contrac-
tive, respectively with k < 1 and k1 < 1. Then Eq. (1.1) is approxima-
tion solvable in X for each f ∈ N(H) ⊂ X w.r.t. a projection scheme
Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1. Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h} ,

then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. Set A = M∗ −N∗F1N and B = A−N∗FN . Then A and B are A-
proper w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Hence, Theorem 4.4 applies.

Corollary 4.9. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂
X∗), K : X∗ → X be a linear continuous P-quasi-positive map with
cν(K) < −1. and F = F1 + F2 : X → X∗ be a nonlinear map, such
that either −F2 is quasomonotone or N∗F2N is k ball contractive with
k < −(1 + cν(K)) where c is the smallest number such that
(i) (F1x− F1y, x− y) ≤ c||x− y||2 for all x, y ∈ X

(i) F1 is odd and positively homogeneous outside some ball in X

(iii) There is an M1 > 0 such that if M∗x−N∗F1Nx = 0, then ||x|| ≤ M1.
(iv) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
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Then Eq. (1.1) is approximation solvable in X for each f ∈ N(H) ⊂
X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h}

then (I−KF )−1({f}) is compact for each f ∈ N(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. We claim that the map M∗ − P −N∗F1N : H → H is −(1 + cν(K)-
strongly monotone. Indeed, for x, y ∈ H, we have

(M∗(x− y)− (N∗(F1Nx− F1Ny), x− y)
= ||x− y||2 − 2||P (x− y)||2 − (F1Nx− F1Ny, Nx−Ny)
≥ ||x− y||2 − 2||P (x− y)||2 − c||Nx−Ny||2)
≥ ||x− y||2 − 2||P (x− y)||2 − cν(K)||P (x− y)||2)
≥ −(1 + cν(K))||x− y||2.

Since N∗F2N is k-ball contraction, M∗ − N∗FN is A-proper w.r.t. Γ (cf.
[11]). As before, we get that M∗ − N∗FN is A-proper when −F2 is quasi-
monotone. Hence, Theorem 4.4 applies.

Corollary 4.10. Let K : X∗ → X be linear P-quasi-positive and F =
F1+F2 : X → X∗ be nonlinear such that −F1 and −F2 are quasibounded and
either pseudomonotone, or bounded generalized pseudomonotone, or quasi-
monotone and
(i) F1 is odd and positively homogeneous outside some ball in X.
(ii) There is an M1 > 0 such that if M∗ −N∗F1Nx = 0, then ||x|| ≤ M1.
(iii) The quasinorm of F2

|F2| = lim sup
||x||→+∞

||F2x||/||x||

is sufficiently small.
Then Eq. (1.1) is approximation solvable in X for each f ∈ N(H) ⊂

X w.r.t. a projection scheme Γ = {Xn, Pn} for X, δ = max ||Pn|| = 1.
Moreover, if

ΣH = {h ∈ H | M∗ −N∗FN is not locally invertible at h} ,
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then (I−KF )−1({f}) is compact for each f ∈ C(H), and the cardinal num-
ber card (I −KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (M∗ −N∗FN)(ΣH) intersected by N(H).

Proof. Set A = M∗ − N∗F1N and B = A − N∗F2N . We shall show that
A + 2P and B + 2P are of type (S+) in either case. Suppose first that F1 is
quasimonotone. Let xn ⇀ x and lim sup(Axn + 2Pxn, xn − x) ≤ 0. Since

(Axn + 2Pxn, xn − x) = (M∗xn, xn − x)− (F1Nxn, Nxn −Nx)

and Nxn ⇀ Nx, the quasimonotonicity of −F1 implies that

lim sup(M∗xn, xn − x) ≤ 0.

Since ||xn − x||2 = (M∗xn, xn − x) + (M∗x, x − xn), we get that xn → x.
Hence, A + 2P is of type (S+).

Next, we shall show that B + 2P is also of type (S+). Let xn ⇀ x and
lim sup(Bxn + 2Pxn, xn − x) ≤ 0. Since

(Bxn + 2Pxn, xn − x) = (Axn + 2Pxn, xn − x)− (F2Nxn, Nxn −Nx)

and Nxn ⇀ Nx, the quasimonotonicity of −F2 implies that

lim sup(Axn + 2Pxn, xn − x) ≤ 0.

Hence, by the (S+) property of A + 2P , we get that xn → x and so B + 2P
is of type (S+).

Next, as we have shown above, a bounded generalized pseudomonotone
map −F1 is quasimonotone, as is a pseudomonotone map. Thus, A + 2P
and B + 2P are of type (S+) in all cases and are therefore A-proper w.r.t.
Γ. Since P is compact, we have that A and B are also A-proper w.r.t. Γ.
Hence, the theorem follows from Theorem 4.4.
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3. F.E. Browder: Nonlinear functional analysis and nonlinear integral
equations of Hammerstein and Urisohn type. In Zarantonello, E. [ed.]
(1971), 425–500.

4. C. Dolph: Nonlinear integral equations of Hammerstein type. Trans.
Amer. Math. Soc. 66 (1949), 289–307.

5. P.M. Fitzpatrick: Surjectivity results for nonlinear mappings from a
Banach space to its dual. Math. Ann. 204 (1973), 177–188.

6. P. Hess: On nonlinear mappings of monotone type homotopic to odd op-
erators. J. Funct. Anal. 11 (1972), 138–167.

7. R.I. Kachurovskii: On the Fredholm theory for nonlinear operator equa-
tions. Dokl. Akad. Nauk SSSR 192 (1970), 969–972.

8. A.M. Krasnosel’skii: Asymptotics of Nonlinearities and Operator Equa-
tions. Birkhauser, 1995.

9. M.A. Krasnosel’skii: Topological Methods in the Theory of Nonlinear
Integral Equations. MacMillan, N.Y., 1964.

10. M.A. Krasnoselskii and P.O. Zabreiko: Geometrical Methods of Non-
linear Analysis. Springer-Verlag, 1984.
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17. P.S. Milojević: Approximation-solvability of nonlinear equations and ap-
plications. In: Fourier Analysis (W. Bray, P.S. Milojević, C.V. Stanojević,
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