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ON THE BEST APPROXIMATION IN SMOOTH AND
UNIFORMLY CONVEX REAL BANACH SPACE

Pavle M. Miličić

Abstract. Let X be a smooth and uniformly convex real Banach space and
g functional defined as (2). The best approximation, ax, the vector y with
vectors from [x] = span{x} (P[x]y = ax) is characterized with the equation
g(y − ax, x) = 0. In certain Banach space, this equation, is possibly resolve for
a. The above idea applied for PMy, where M is a n−dimensional subspace of X.

Let X be a real normed space and S(X) unit sphere in X. It is well
known that the functional

g(x, y) :=
‖x‖
2

(
lim

t→−0

‖x + ty‖ − ‖x‖
t

+ lim
t→+0

‖x + ty‖ − ‖x‖
t

)
(1)

always exists on X2. If X is smooth then (1) reduces to

g(x, y) = ‖x‖ lim
t→0

‖x + ty‖ − ‖x‖
t

(x, y ∈ X).(2)

In this case the functional g is linear in second argument and it has the
properties:

g(αx, y) = αg(x, y) (α ∈ R), g(x, x) = ‖x‖2 , |g(x, y)| ≤ ‖x‖ ‖y‖
and g(x, y) = 0 ⇔ x ⊥ y (x ⊥ y ⇔ ‖x‖ ≤ ‖x + ty‖ for all t ∈ R).
(More at the functional g see in [3] and [4]).

If X is an inner product space (i.p. space) with i.p. (·, ·), we have

g(x, y) = (x, y) (x, y ∈ X).
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Lemma 1. Let X be smooth and x, y ∈ X. Then the following assertions
are valid:

1◦
(∀α, α′ ∈ R\ {0}) g

(
αx + βy, α′x + β′y

)
= 0

⇔ ‖αx + βy‖2 =
α′β − αβ′

α′
g (αx + βy, y) ,

2◦
(∀β, β′ ∈ R\ {0}) g

(
αx + βy, α′x + β′y

)
= 0

⇔ ‖αx + βy‖2 =
αβ′ − βα′

β′
g (αx + βy, x) .

Proof. 1◦ Using the properties of g we get equivalencies:

g
(
αx + βy, α′x + β′y

)
= 0

⇔ α′

α
g

(
αx + βy, αx +

αβ′

α′
y

)
= 0

⇔ g

(
αx + βy, αx + βy +

αβ′

α′
y − βy

)
= 0

⇔ g (αx + βy, αx + βy) + g

(
αx + βy,−

(
β − αβ′

α′

)
y

)
= 0

⇔ ‖αx + βy‖2 =
α′β − αβ′

α′
g (αx + βy, y) .

Similarly we get the statement 2◦.

Theorem 1. Let X be smooth and uniformly convex, and let x, y ∈ X\ {0}
linearly independent. The vector ax is unique the best approximation of
vector y with vectors from [x], i.e. P[x]y = ax, if and only if

g(y − ax, x) = 0 ∨ ‖y − ax‖2 = g(y − ax, y).(3)

Proof. Let be P[x]y = ax. Because X is uniformly convex, for fixed x, y ∈
X\ {0}, the real function f(t) = ‖y − tx‖ is continuous on R and it achieves
its unique minimum at t = a. Since X is smooth, using (2) we have

f ′(t) = lim
t→0

f(t + h)− f(t)
h

= lim
t→0

‖y − (t + h)‖ − ‖y − tx‖
h

= lim
t→0

‖y − tx− th‖ − ‖y − tx‖
h

= −g(y − tx, x)
‖y − tx‖ .

Since min f(t) = f(a) and f is differentiable, we obtain f ′(a) = 0. So,
g(y − ax, x) = 0.
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The second equation we get immediately from 1◦ of Lemma 1.
Conversely, if there exists a ∈ R sash that g(y − ax, x) = 0, it follows

that g(y−ax, λx) = 0 for all λ ∈ R. Then, using the properties of functional
g we have:

g(y − ax, y − ax + λx) = ‖y − ax‖2 ≤ ‖y − ax‖ ‖y − ax + λx‖ .

So,
‖y − ax‖ ≤ ‖y − (a− λ)x‖ ,

for all λ ∈ R, i.e. min f(t) = ‖y − ax‖ .

An importance of assertion of Theorem 1 is in therein why, in certain
spaces, the equation g(y − ax, x) = 0 is possibly resolve for a. For example,
if X is an i.p. space we have

g(y − ax, x) = 0 ⇔ (y − ax, x) = 0 ⇔ (x, y)− a ‖x‖2 = 0 ⇔ a =
(x, y)
‖x‖2 ,

i.e., P[x]y =
(x, y)
‖x‖2 .

One other example: The real Banach space X = `4 is smooth and uni-
formly convex. (The space `4 is so called a quasi inner product space [3]).
According to definition of the functional g we get

g(x, y) = ‖x‖−2
∑

k

x3
kyk

(x = (x1, x2, ...) ∈ `4\ {0} , y = (y1, y2, ...) ∈ `4\ {0}).
Hence, in this case, we have

g(y − ax, x) = 0 ⇔ ‖y − ax‖−2
∑

k

(yk − axk)3xk = 0

⇔
∑

k

y3
kxk − 3a

∑

k

y2
kx

2
k + 3a2

∑

k

ykx
3
k − a3

∑

k

x4
k = 0.

Since X is uniformly convex, this equation has uniquely solution for a. This
solution is possible determined as solution an algebraic equation of the third
degree.

Using the Theorem 1 it could be constitute the uniquely of solution
certain equations. Par example: The real Banach space Lp(X, S, µ) (1 < p <
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∞) is uniformly smooth and uniformly convex. As thought in it g(x, y) =
‖x‖2−p ∫

X y |x|p−1 sgnx dµ, ([2]), analogy as above, we conclude that the
equation

∫

X
|y − ax|p−1 x sgn (y − ax) dµ = 0 (x, y ∈ Lp, x 6= y; a ∈ R)

has uniquely solution for a. This is not simply immediately demonstrate.

Immediate corollary of Theorem 1 is the following assertion.

Corollary 1. Let X be smooth and uniformly convex, x, y ∈ X\ {0} lin-
early independent, and p = {tx + (1− t)y | t ∈ R} . Then, the vector ax +
(1− a)y is unique the best approximation of the vector z with the vectors of
p if and only if

g (z − y − a(x− y), x− y) = 0.(4)

Proof. f(t) = ‖z − (tx + (1− t)y‖ = ‖z − y − t(x− y)‖.

Let be z = 0, x, y ∈ S(X) and a = 1/2. In this case, the equation (4)
reduces on

g(x + y, x− y) = 0.(5)

Since in a smooth space we have g(x, y) = 0 ⇔ x ⊥ y, by the assertion 4.2
([1]) we get

Corollary 2. Let X is smooth and x, y ∈ S(X) linearly independent. Then
X is an i.p. space if and only if the equality (5) holds.

Remark 1. Let H := {t ∈ X | g(z − y − a(x − y), t) = 0}. H is a hyperplane in
X and x− y ∈ H. Then,

d(z,H) =
g(z − y − a(x− y), z − y)

‖z − y − a(x− y)‖ ,

i.e. d(z, p) = d(z, H) = ‖z − y − a(x− y)‖. Thus P[p]z = PHz.

What could say about a of the equation (3)?

Theorem 2. Let X be smooth and P[x]y = ax (x, y ∈ X\ {0} linearly
independent). Then the following assertions hold.

1◦ sgn a = sgn g(y, x),
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2◦ a ≥ g(x, y)− ‖x‖ ‖y‖
‖x‖2 ,

3◦ a =
g(x, y)
‖x‖2 if and only if X is an i.p. space,

4◦
∣∣∣∣a−

g(x, y)
‖x‖2

∣∣∣∣ ≤
‖y‖
‖x‖ .

Proof. 1◦ By (3) we have a = 0 ⇔ g(y, x) = 0. Let be g(y, x) 6= 0, then

g(y, y − ax) = ‖y‖2 − ag(y, x) ≤ ‖y‖ ‖y − ax‖ ≤ ‖y‖2 .

So, ag(y, x) > 0.
2◦ g(x, y−ax) = g(x, y)−a ‖x‖2 ≤ ‖x‖ ‖y − ax‖ ≤ ‖x‖ ‖y‖ ⇒ a ‖x‖2 ≥

g(x, y)− ‖x‖ ‖y‖ .

3◦ If X is an i.p. space, we have seen that a =
g(x, y)
‖x‖2 =

(x, y)
‖x‖2 . Inversely,

if
P[x]y = a(x, y) =

g(x, y)
‖x‖2 , for all x, y ∈ X\ {0} ,

we get

a(x, αy) =
g(x, αy)
‖x‖2 = αa(x, y) (α ∈ R)

and
a(x, y1 + y2) =

g(x, y1 + y2)
‖x‖2 =

g(x, y1)
‖x‖2 +

g(x, y2)
‖x‖2 ,

i.e. we have P[x]αy = αP[x]y and

P[x](y1 + y2) = P[x]y1 + P[x]y2 (x, y1,y2 ∈ X\ {0}) .(6)

By virtue of (6) and the assertion 13.2 in [1] we conclude that X is an i.p.
space.

4◦ Let H := {z ∈ X | g(y − ax, z) = 0}. H is a hyperplane. Thus there
exists h ∈ H and λ ∈ R such that

y − g(x, y)
‖x‖2 = λ(y − ax) + h.

Therefore we have

g

(
y − ax, y − g(x, y)

‖x‖2 x

)
= λ ‖y − ax‖2 ,
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i.e.
g(y − ax, y)− g(x, y)

‖x‖2 g(y − ax, x) = λ ‖y − ax‖2

or ‖y − ax‖2 = λ ‖y − ax‖2 . So, λ = 1. Hence h =
(

a− g(x, y)
‖x‖2

)
x and

y − g(x, y)
‖x‖2 = y − ax + h.(7)

Since g

(
x, y − g(x, y)

‖x‖2 x

)
= 0, by (7), we get g(h, y − ax)− ‖h‖2 = 0. Thus

∣∣∣∣a−
g(x, y)
‖x‖2

∣∣∣∣
2

‖x‖2 ≤
∣∣∣∣a−

g(x, y)
‖x‖2

∣∣∣∣ ‖x‖ ‖y − ax‖ ≤
∣∣∣∣a−

g(x, y)
‖x‖2

∣∣∣∣ ‖x‖ ‖y‖ .

Hence 4◦ is valid.

Corollary 3. Let X be smooth and z = y − g(x, y)
‖x‖2 x, then P[z]y = 1.

Proof. If g(x, y) = 0, then z = y and P[y]y = 1. Suppose g(x, y) 6= 0. Then

we get x =
y − z

g(x, y)
. Since

g

(
x, y − g(x, y)

‖x‖2

)
= 0,

we obtain g(y − z, z) = 0. So, by Theorem 1 we get P[z]y = 1.

For some additional results we consider a linearly independent vectors
e1, e2, . . . , en ∈ S(X). Let M := span {e1, e2, . . . , en} and y ∈ X\M.

Theorem 3. Let X be a smooth and uniformly convex Banach space. Then

PMy =
n∑

k=1

akek

if and only if for all i ∈ {1, 2, . . . , n} ,

g

(
y −

n∑

k=1

akek, ei

)
= 0.(8)

This system of equations has unique solution a = (a1, a2, . . . , an).
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Proof. Since X is smooth and uniformly convex Banach space, the real func-
tion

f(t1, t2, . . . , tn) =

∥∥∥∥∥y −
n∑

k=1

tkek

∥∥∥∥∥

achieves its minimum at unique point a = (a1,a2, . . . , an) and there exists
∂f

∂ti
(a1, a2, . . . , an) such that, for all i ∈ {1, 2, . . . , n}, we have

∂f

∂ti
(a1, a2, ..., an) = 0.

The other side we have

∂f

∂ti
(t1, t2, . . . , tn) = lim

hi→0

∥∥∥∥y −
n∑

k=1

tkek − hiei

∥∥∥∥−
∥∥∥∥y −

n∑
k=1

tkek

∥∥∥∥
hi

= −
g

(
y −

n∑
k=1

tkek, ei

)

∥∥∥∥y −
n∑

k=1

tkek

∥∥∥∥
.

So,

g

(
y −

n∑

k=1

akek, ei

)
= 0,(9)

and, this system has the unique solution.

Conversely, let (9) holds. Then, for all λi ∈ R, we have

g

(
y −

n∑

k=1

akek, λiei

)
= 0.

Using this, we obtain

g

(
y −

n∑

k=1

akek,

n∑

i=1

λiei

)
= 0 (λi ∈ R).

Since x0 =
n∑

k=1

akek ∈ M and x =
n∑

i=1

λiei ∈ M , we conclude that, for all

x ∈ M , we have g(y − x0, x) = 0. Thus, it implies that PMy = x0.
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R EF E RE N CE S

1. D. Amir: Characterizations of Inner Product Spaces. Birkhauser–Verlag,
Basel–Boston, 1986.

2. J.R. Giles: Classes of semi-inner product space. Trans. Amer. Math. Soc.
v. 129 (1967), 436–446.
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