ON THE BEST APPROXIMATION IN SMOOTH AND UNIFORMLY CONVEX REAL BANACH SPACE

Pavle M. Miličić

Abstract

Let X be a smooth and uniformly convex real Banach space and g functional defined as (2). The best approximation, $a x$, the vector y with vectors from $[x]=\operatorname{span}\{x\}\left(P_{[x]} y=a x\right)$ is characterized with the equation $g(y-a x, x)=0$. In certain Banach space, this equation, is possibly resolve for a. The above idea applied for $P_{M} y$, where M is a n-dimensional subspace of X.

Let X be a real normed space and $S(X)$ unit sphere in X. It is well known that the functional

$$
\begin{equation*}
g(x, y):=\frac{\|x\|}{2}\left(\lim _{t \rightarrow-0} \frac{\|x+t y\|-\|x\|}{t}+\lim _{t \rightarrow+0} \frac{\|x+t y\|-\|x\|}{t}\right) \tag{1}
\end{equation*}
$$

always exists on X^{2}. If X is smooth then (1) reduces to

$$
\begin{equation*}
g(x, y)=\|x\| \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \quad(x, y \in X) \tag{2}
\end{equation*}
$$

In this case the functional g is linear in second argument and it has the properties:

$$
g(\alpha x, y)=\alpha g(x, y) \quad(\alpha \in \mathbb{R}), \quad g(x, x)=\|x\|^{2}, \quad|g(x, y)| \leq\|x\|\|y\|
$$

and $g(x, y)=0 \Leftrightarrow x \perp y \quad(x \perp y \Leftrightarrow\|x\| \leq\|x+t y\|$ for all $t \in \mathbb{R})$.
(More at the functional g see in [3] and [4]).
If X is an inner product space (i.p. space) with i.p. (\cdot, \cdot), we have

$$
g(x, y)=(x, y) \quad(x, y \in X)
$$

Received , 2004.
2000 Mathematics Subject Classification. Primary 46B20, 46C15, 51K05.

Lemma 1. Let X be smooth and $x, y \in X$. Then the following assertions are valid:

$$
\begin{aligned}
& 1^{\circ}\left(\forall \alpha, \alpha^{\prime} \in \mathbb{R} \backslash\{0\}\right) g\left(\alpha x+\beta y, \alpha^{\prime} x+\beta^{\prime} y\right)=0 \\
& \Leftrightarrow\|\alpha x+\beta y\|^{2}=\frac{\alpha^{\prime} \beta-\alpha \beta^{\prime}}{\alpha^{\prime}} g(\alpha x+\beta y, y), \\
& 2^{\circ} \quad\left(\forall \beta, \beta^{\prime} \in \mathbb{R} \backslash\{0\}\right) g\left(\alpha x+\beta y, \alpha^{\prime} x+\beta^{\prime} y\right)=0 \\
&
\end{aligned} \begin{aligned}
& \Leftrightarrow\|\alpha x+\beta y\|^{2}=\frac{\alpha \beta^{\prime}-\beta \alpha^{\prime}}{\beta^{\prime}} g(\alpha x+\beta y, x)
\end{aligned}
$$

Proof. 1° Using the properties of g we get equivalencies:

$$
\begin{aligned}
& g\left(\alpha x+\beta y, \alpha^{\prime} x+\beta^{\prime} y\right)=0 \\
\Leftrightarrow & \frac{\alpha^{\prime}}{\alpha} g\left(\alpha x+\beta y, \alpha x+\frac{\alpha \beta^{\prime}}{\alpha^{\prime}} y\right)=0 \\
\Leftrightarrow & g\left(\alpha x+\beta y, \alpha x+\beta y+\frac{\alpha \beta^{\prime}}{\alpha^{\prime}} y-\beta y\right)=0 \\
\Leftrightarrow & g(\alpha x+\beta y, \alpha x+\beta y)+g\left(\alpha x+\beta y,-\left(\beta-\frac{\alpha \beta^{\prime}}{\alpha^{\prime}}\right) y\right)=0 \\
\Leftrightarrow & \|\alpha x+\beta y\|^{2}=\frac{\alpha^{\prime} \beta-\alpha \beta^{\prime}}{\alpha^{\prime}} g(\alpha x+\beta y, y)
\end{aligned}
$$

Similarly we get the statement 2°.
Theorem 1. Let X be smooth and uniformly convex, and let $x, y \in X \backslash\{0\}$ linearly independent. The vector ax is unique the best approximation of vector y with vectors from $[x]$, i.e. $P_{[x]} y=a x$, if and only if

$$
\begin{equation*}
g(y-a x, x)=0 \vee\|y-a x\|^{2}=g(y-a x, y) \tag{3}
\end{equation*}
$$

Proof. Let be $P_{[x]} y=a x$. Because X is uniformly convex, for fixed $x, y \in$ $X \backslash\{0\}$, the real function $f(t)=\|y-t x\|$ is continuous on \mathbb{R} and it achieves its unique minimum at $t=a$. Since X is smooth, using (2) we have

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{t \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\lim _{t \rightarrow 0} \frac{\|y-(t+h)\|-\|y-t x\|}{h} \\
& =\lim _{t \rightarrow 0} \frac{\|y-t x-t h\|-\|y-t x\|}{h}=-\frac{g(y-t x, x)}{\|y-t x\|}
\end{aligned}
$$

Since $\min f(t)=f(a)$ and f is differentiable, we obtain $f^{\prime}(a)=0$. So, $g(y-a x, x)=0$.

The second equation we get immediately from 1° of Lemma 1.
Conversely, if there exists $a \in \mathbb{R}$ sash that $g(y-a x, x)=0$, it follows that $g(y-a x, \lambda x)=0$ for all $\lambda \in \mathbb{R}$. Then, using the properties of functional g we have:

$$
g(y-a x, y-a x+\lambda x)=\|y-a x\|^{2} \leq\|y-a x\|\|y-a x+\lambda x\|
$$

So,

$$
\|y-a x\| \leq\|y-(a-\lambda) x\|
$$

for all $\lambda \in \mathbb{R}$, i.e. $\min f(t)=\|y-a x\|$.

An importance of assertion of Theorem 1 is in therein why, in certain spaces, the equation $g(y-a x, x)=0$ is possibly resolve for a. For example, if X is an i.p. space we have

$$
g(y-a x, x)=0 \Leftrightarrow(y-a x, x)=0 \Leftrightarrow(x, y)-a\|x\|^{2}=0 \Leftrightarrow a=\frac{(x, y)}{\|x\|^{2}}
$$

i.e., $P_{[x]} y=\frac{(x, y)}{\|x\|^{2}}$.

One other example: The real Banach space $X=\ell^{4}$ is smooth and uniformly convex. (The space ℓ^{4} is so called a quasi inner product space [3]). According to definition of the functional g we get

$$
\begin{gathered}
g(x, y)=\|x\|^{-2} \sum_{k} x_{k}^{3} y_{k} \\
\left(x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{4} \backslash\{0\}, y=\left(y_{1}, y_{2}, \ldots\right) \in \ell^{4} \backslash\{0\}\right)
\end{gathered}
$$

Hence, in this case, we have

$$
\begin{aligned}
g(y-a x, x)=0 & \Leftrightarrow\|y-a x\|^{-2} \sum_{k}\left(y_{k}-a x_{k}\right)^{3} x_{k}=0 \\
& \Leftrightarrow \sum_{k} y_{k}^{3} x_{k}-3 a \sum_{k} y_{k}^{2} x_{k}^{2}+3 a^{2} \sum_{k} y_{k} x_{k}^{3}-a^{3} \sum_{k} x_{k}^{4}=0 .
\end{aligned}
$$

Since X is uniformly convex, this equation has uniquely solution for a. This solution is possible determined as solution an algebraic equation of the third degree.

Using the Theorem 1 it could be constitute the uniquely of solution certain equations. Par example: The real Banach space $L_{p}(X, S, \mu)(1<p<$
$\infty)$ is uniformly smooth and uniformly convex. As thought in it $g(x, y)=$ $\|x\|^{2-p} \int_{X} y|x|^{p-1} \operatorname{sgn} x d \mu$, ([2]), analogy as above, we conclude that the equation

$$
\int_{X}|y-a x|^{p-1} x \operatorname{sgn}(y-a x) d \mu=0 \quad\left(x, y \in L_{p}, x \neq y ; a \in \mathbb{R}\right)
$$

has uniquely solution for a. This is not simply immediately demonstrate.
Immediate corollary of Theorem 1 is the following assertion.
Corollary 1. Let X be smooth and uniformly convex, $x, y \in X \backslash\{0\}$ linearly independent, and $p=\{t x+(1-t) y \mid t \in \mathbb{R}\}$. Then, the vector ax + $(1-a) y$ is unique the best approximation of the vector z with the vectors of p if and only if

$$
\begin{equation*}
g(z-y-a(x-y), x-y)=0 \tag{4}
\end{equation*}
$$

Proof. $f(t)=\| z-(t x+(1-t) y\|=\| z-y-t(x-y) \|$.
Let be $z=0, x, y \in S(X)$ and $a=1 / 2$. In this case, the equation (4) reduces on

$$
\begin{equation*}
g(x+y, x-y)=0 \tag{5}
\end{equation*}
$$

Since in a smooth space we have $g(x, y)=0 \Leftrightarrow x \perp y$, by the assertion 4.2 ([1]) we get

Corollary 2. Let X is smooth and $x, y \in S(X)$ linearly independent. Then X is an i.p. space if and only if the equality (5) holds.

Remark 1. Let $H:=\{t \in X \mid g(z-y-a(x-y), t)=0\}$. H is a hyperplane in X and $x-y \in H$. Then,

$$
d(z, H)=\frac{g(z-y-a(x-y), z-y)}{\|z-y-a(x-y)\|}
$$

i.e. $d(z, p)=d(z, H)=\|z-y-a(x-y)\|$. Thus $P_{[p]} z=P_{H} z$.

What could say about a of the equation (3)?

Theorem 2. Let X be smooth and $P_{[x]} y=a x \quad(x, y \in X \backslash\{0\}$ linearly independent). Then the following assertions hold.

$$
1^{\circ} \operatorname{sgn} a=\operatorname{sgn} g(y, x),
$$

$2^{\circ} \quad a \geq \frac{g(x, y)-\|x\|\|y\|}{\|x\|^{2}}$,
$3^{\circ} a=\frac{g(x, y)}{\|x\|^{2}}$ if and only if X is an i.p. space,
$4^{\circ}\left|a-\frac{g(x, y)}{\|x\|^{2}}\right| \leq \frac{\|y\|}{\|x\|}$.
Proof. 1° By (3) we have $a=0 \Leftrightarrow g(y, x)=0$. Let be $g(y, x) \neq 0$, then

$$
g(y, y-a x)=\|y\|^{2}-a g(y, x) \leq\|y\|\|y-a x\| \leq\|y\|^{2} .
$$

So, $a g(y, x)>0$.
$2^{\circ} g(x, y-a x)=g(x, y)-a\|x\|^{2} \leq\|x\|\|y-a x\| \leq\|x\|\|y\| \Rightarrow a\|x\|^{2} \geq$ $g(x, y)-\|x\|\|y\|$.
3° If X is an i.p. space, we have seen that $a=\frac{g(x, y)}{\|x\|^{2}}=\frac{(x, y)}{\|x\|^{2}}$. Inversely, if

$$
P_{[x]} y=a(x, y)=\frac{g(x, y)}{\|x\|^{2}}, \text { for all } x, y \in X \backslash\{0\}
$$

we get

$$
a(x, \alpha y)=\frac{g(x, \alpha y)}{\|x\|^{2}}=\alpha a(x, y) \quad(\alpha \in \mathbb{R})
$$

and

$$
a\left(x, y_{1}+y_{2}\right)=\frac{g\left(x, y_{1}+y_{2}\right)}{\|x\|^{2}}=\frac{g\left(x, y_{1}\right)}{\|x\|^{2}}+\frac{g\left(x, y_{2}\right)}{\|x\|^{2}}
$$

i.e. we have $P_{[x]} \alpha y=\alpha P_{[x]} y$ and

$$
\begin{equation*}
P_{[x]}\left(y_{1}+y_{2}\right)=P_{[x]} y_{1}+P_{[x]} y_{2} \quad\left(x, y_{1}, y_{2} \in X \backslash\{0\}\right) . \tag{6}
\end{equation*}
$$

By virtue of (6) and the assertion 13.2 in [1] we conclude that X is an i.p. space.
4° Let $H:=\{z \in X \mid g(y-a x, z)=0\} . H$ is a hyperplane. Thus there exists $h \in H$ and $\lambda \in \mathbb{R}$ such that

$$
y-\frac{g(x, y)}{\|x\|^{2}}=\lambda(y-a x)+h .
$$

Therefore we have

$$
g\left(y-a x, y-\frac{g(x, y)}{\|x\|^{2}} x\right)=\lambda\|y-a x\|^{2},
$$

i.e.

$$
g(y-a x, y)-\frac{g(x, y)}{\|x\|^{2}} g(y-a x, x)=\lambda\|y-a x\|^{2}
$$

or $\|y-a x\|^{2}=\lambda\|y-a x\|^{2}$. So, $\lambda=1$. Hence $h=\left(a-\frac{g(x, y)}{\|x\|^{2}}\right) x$ and

$$
\begin{equation*}
y-\frac{g(x, y)}{\|x\|^{2}}=y-a x+h \tag{7}
\end{equation*}
$$

Since $g\left(x, y-\frac{g(x, y)}{\|x\|^{2}} x\right)=0$, by (7), we get $g(h, y-a x)-\|h\|^{2}=0$. Thus

$$
\left|a-\frac{g(x, y)}{\|x\|^{2}}\right|^{2}\|x\|^{2} \leq\left|a-\frac{g(x, y)}{\|x\|^{2}}\right|\|x\|\|y-a x\| \leq\left|a-\frac{g(x, y)}{\|x\|^{2}}\right|\|x\|\|y\|
$$

Hence 4° is valid.
Corollary 3. Let X be smooth and $z=y-\frac{g(x, y)}{\|x\|^{2}} x$, then $P_{[z]} y=1$.
Proof. If $g(x, y)=0$, then $z=y$ and $P_{[y]} y=1$. Suppose $g(x, y) \neq 0$. Then we get $x=\frac{y-z}{g(x, y)}$. Since

$$
g\left(x, y-\frac{g(x, y)}{\|x\|^{2}}\right)=0
$$

we obtain $g(y-z, z)=0$. So, by Theorem 1 we get $P_{[z]} y=1$.
For some additional results we consider a linearly independent vectors $e_{1}, e_{2}, \ldots, e_{n} \in S(X)$. Let $M:=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $y \in X \backslash M$.

Theorem 3. Let X be a smooth and uniformly convex Banach space. Then

$$
P_{M} y=\sum_{k=1}^{n} a_{k} e_{k}
$$

if and only if for all $i \in\{1,2, \ldots, n\}$,

$$
\begin{equation*}
g\left(y-\sum_{k=1}^{n} a_{k} e_{k}, e_{i}\right)=0 \tag{8}
\end{equation*}
$$

This system of equations has unique solution $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Proof. Since X is smooth and uniformly convex Banach space, the real function

$$
f\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left\|y-\sum_{k=1}^{n} t_{k} e_{k}\right\|
$$

achieves its minimum at unique point $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and there exists $\frac{\partial f}{\partial t_{i}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that, for all $i \in\{1,2, \ldots, n\}$, we have

$$
\frac{\partial f}{\partial t_{i}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0
$$

The other side we have

$$
\begin{aligned}
\frac{\partial f}{\partial t_{i}}\left(t_{1}, t_{2}, \ldots, t_{n}\right) & =\lim _{h_{i} \rightarrow 0} \frac{\left\|y-\sum_{k=1}^{n} t_{k} e_{k}-h_{i} e_{i}\right\|-\left\|y-\sum_{k=1}^{n} t_{k} e_{k}\right\|}{h_{i}} \\
& =-\frac{g\left(y-\sum_{k=1}^{n} t_{k} e_{k}, e_{i}\right)}{\left\|y-\sum_{k=1}^{n} t_{k} e_{k}\right\|}
\end{aligned}
$$

So,

$$
\begin{equation*}
g\left(y-\sum_{k=1}^{n} a_{k} e_{k}, e_{i}\right)=0 \tag{9}
\end{equation*}
$$

and, this system has the unique solution.
Conversely, let (9) holds. Then, for all $\lambda_{i} \in \mathbb{R}$, we have

$$
g\left(y-\sum_{k=1}^{n} a_{k} e_{k}, \lambda_{i} e_{i}\right)=0
$$

Using this, we obtain

$$
g\left(y-\sum_{k=1}^{n} a_{k} e_{k}, \sum_{i=1}^{n} \lambda_{i} e_{i}\right)=0 \quad\left(\lambda_{i} \in \mathbb{R}\right)
$$

Since $x_{0}=\sum_{k=1}^{n} a_{k} e_{k} \in M$ and $x=\sum_{i=1}^{n} \lambda_{i} e_{i} \in M$, we conclude that, for all $x \in M$, we have $g\left(y-x_{0}, x\right)=0$. Thus, it implies that $P_{M} y=x_{0}$.

REFERENCES

1. D. Amir: Characterizations of Inner Product Spaces. Birkhauser-Verlag, Basel-Boston, 1986.
2. J.R. Giles: Classes of semi-inner product space. Trans. Amer. Math. Soc. v. 129 (1967), 436-446.
3. P.M. Miličıć: A generalization of the parallelogram equality in normed space. Jour. Math. Kyoto Univ. (JMKYAZ) 38-1 (1998), 71-75.
4. P.M. Miličıć: On the g-orthogonal projection and the best approximation of vector in a semi-inner product space. to appear in Sciantiae Mathematicae Japonicae vol. 54, No3 (2001).

Faculty of Mathematics
University of Belgrade
11000 Belgrade, Serbia

