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ON THE BEST APPROXIMATION IN SMOOTH AND
UNIFORMLY CONVEX REAL BANACH SPACE

Pavle M. Milicié¢

Abstract. Let X be a smooth and uniformly convex real Banach space and
¢ functional defined as (2). The best approximation, ax, the vector y with
vectors from [z] = span{z} (P_y = ax) is characterized with the equation
g(y —ax,x) = 0. In certain Banach space, this equation, is possibly resolve for
a. The above idea applied for Py;y, where M is a n—dimensional subspace of X.

Let X be a real normed space and S(X) unit sphere in X. It is well
known that the functional

Clall (o Nty =Dzl ety = el
(D) glay) =50 |\ fimy ————— + lim T ——

always exists on X 2. If X is smooth then (1) reduces to

[z + tyll — =]

" (z,y € X).

) 9(x,y) = o] lim

In this case the functional ¢ is linear in second argument and it has the
properties:

glaz,y) = ag(z,y) (a €R), glz,z)=z|*, |g(z,y)| <[] |yl

and g(z,y) =0z ly (xLy<|z| <|z+ty| foralteR).
(More at the functional g see in [3] and [4]).

If X is an inner product space (i.p. space) with i.p. (-,-), we have

g(z,y) = (z,y) (v,y € X).
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Lemma 1. Let X be smooth and z,y € X. Then the following assertions
are valid:

1° (Va, o € R\ {O}) g (ozx + By, o'z + ﬁ’y) =0

& [laz + By|* = @g (azx + By, y),
2° (V8,8 € R\{0}) g (az+ By,d/z+By) =0
& llaa + 8yl = 277 g (e + By,

Proof. 1° Using the properties of g we get equivalencies:
g (az+ By, d'z+ f'y) =0

o af
& g(am+ﬁy,am+ﬂ,y>:0
(6% (6%
af
& g aw+ﬂy,aﬂf+ﬂy+7y—ﬁy =0

& g(aar+ﬁy,ax+ﬂy)+g<ax+ﬂy,— (ﬂ—aaﬁ,/> y) =0

O/ﬁ— 04,3/

& low+ Byl = ————g oz + By, v).

Similarly we get the statement 2°. O

Theorem 1. Let X be smooth and uniformly convezx, and let x,y € X\ {0}
linearly independent. The vector ax is unique the best approximation of
vector y with vectors from [z], i.e. P,y = ax, if and only if

(3) gy —azx,z) =0 V |y —az||* = g(y — az,y).

Proof. Let be Py = ax. Because X is uniformly convex, for fixed z,y €
X\ {0}, the real function f(t) = ||y — tz|| is continuous on R and it achieves
its unique minimum at ¢t = a. Since X is smooth, using (2) we have

Fle+m) = 1) = (R =y — o]

/ T
_ gy Nyt thll =y — el gy —ta,x)
o h ly—tall

Since min f(t) = f(a) and f is differentiable, we obtain f’(a) = 0. So,
9(y — az,z) = 0.
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The second equation we get immediately from 1° of Lemma 1.

Conversely, if there exists a € R sash that g(y — az,z) = 0, it follows
that g(y —ax, Ax) = 0 for all A € R. Then, using the properties of functional
g we have:

9y —az,y — az + Az) = |y — azl|* < |ly — az| |ly — az + rz]].

So,
ly — az|| < [ly — (a = M|,

for all A € R, i.e. min f(t) = |ly —azx|. O

An importance of assertion of Theorem 1 is in therein why, in certain
spaces, the equation g(y — ax,z) = 0 is possibly resolve for a. For example,
if X is an i.p. space we have

(z,y)
2 )
[l

9y —az,2) = 0 (y—ar,2) =0 (,9) —afa)* =0 & a =

(z,y)
)

i.e., P[cc]y =

One other example: The real Banach space X = ¢* is smooth and uni-
formly convex. (The space ¢* is so called a quasi inner product space [3]).
According to definition of the functional g we get

glx,y) = =172 2iue
k

(:C = (1"17'1:27 ) € 64\ {0}7 y= (yluyZa ) € 64\ {0})
Hence, in this case, we have

gy —az,x) =0 & |ly—az| "> (ys — azz)’wr =0

k
& Zy,?;mk —3a2y§xi+3a22ykx%—agzxﬁ =0.
k k k k

Since X is uniformly convex, this equation has uniquely solution for a. This
solution is possible determined as solution an algebraic equation of the third
degree.

Using the Theorem 1 it could be constitute the uniquely of solution
certain equations. Par example: The real Banach space L, (X, S, ) (1 <p <
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00) is uniformly smooth and uniformly convex. As thought in it g(z,y) =
[ ny|x]p_1 sgnx du, ([2]), analogy as above, we conclude that the
equation

/Qy—mw*m%My—mmmzo (2,5 € Lpw#y; a €R)

has uniquely solution for a. This is not simply immediately demonstrate.

Immediate corollary of Theorem 1 is the following assertion.

Corollary 1. Let X be smooth and uniformly convez, z,y € X\ {0} lin-
early independent, and p = {tx + (1 —t)y | t € R}. Then, the vector ax +
(1 — a)y is unique the best approximation of the vector z with the vectors of
p if and only if

(4) g(z—y—alz—y),z—y) =0.

Proof. f(t) =z =tz + (1 -t)yll =z -y -tz —y)l. O

Let be z =0, z,y € S(X) and a = 1/2. In this case, the equation (4)
reduces on

(5) gl +y,x—y)=0.

Since in a smooth space we have g(x,y) = 0 < x L y, by the assertion 4.2
([1]) we get

Corollary 2. Let X is smooth and x,y € S(X) linearly independent. Then
X is an i.p. space if and only if the equality (5) holds.

Remark 1. Let H:={t€ X | g(z —y — a(x — y),t) = 0}. H is a hyperplane in
X and x —y € H. Then,

gz—y—alr—y),z—y)
e ) = oy a9l

ie. d(z,p) =d(z,H) = |z —y—a(x —y)|. Thus Pz = Pyz.
What could say about a of the equation (3)7

Theorem 2. Let X be smooth and Py = ax (v,y € X\{0} linearly
independent). Then the following assertions hold.

1° sgna =sgng(y, ),
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oo o> 9@y — |zl Iyl

- 2 )
[z
30 = gf‘xhg) if and only if X is an i.p. space,
x
10 ’ 9@y vl
)| |~ [zl

Proof. 1° By (3) we have a =0 < g(y,z) = 0. Let be g(y,x) # 0, then

2 2
9,y —ax) = |ylI” — ag(y, =) < [lyll lly — az|| < y[”.

So, ag(y,x) > 0.
o 2 2
2° g(z,y —ax) = g(x,y) —allz|” < |zl ly — azxl| < |lz[ lyll = all=]" =
g9(x,y) — =l [lyll -
g(z,y) _ (z,y)

3° If X is an i.p. space, we have seen that a = || H2 = H ||2 . Inversely,
x x
if
Py = a(z,y) = 9’(’””’”3;), for all z,y € X\ {0},
x
we get
a(z, ay) = W =aa(z,y)  (@€R)
x
. @+ 1) _ gom) . gl
f,U, + "B7 ‘CU’
a(l',yl + y2) _ g Y1 Yy2) g Y1 g Y2

2 - 2 2
=] [Ed] [E4]

L.e. we have P jay = aP;y and

(6) Pa(y1 +y2) = Pay1 + P2 (z,y1,y2 € X\ {0}).

By virtue of (6) and the assertion 13.2 in [1] we conclude that X is an i.p.
space.

4° Let H :={z¢€ X | g(y —ax,z) = 0}. H is a hyperplane. Thus there
exists h € H and A € R such that

- g|(|x,||g;) = ANy — az) + h.
x

Therefore we have

9(z,y) 2
g(y—ax,y— T w) = Ay — az|”,
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l.e.

g\r,y
oy~ @) = Ay - asf?

9(y —ax,y) —

OHW—GW2=AW—GW?SmAzllhmeh:(w—%ﬂ?)xmm
xr

. _9(=z,y)
" Bl

Since g (x,y _9@y) a:) =0, by (7), we get g(h,y — ax) — ||h||* = 0. Thus

=y —ax+ h.

2
|||
2
g(z,y) 9 g(x,y) g(z,y)
‘a— 5| llz)I” < ‘a— 5|zl ly — az]| < |a— 5| ]l Hlyll -
||| [Eal |||
Hence 4° is valid. [
g(z,y)

Corollary 3. Let X be smooth and z =y — x, then Py = 1.

|||
Proof. 1f g(z,y) = 0, then z = y and Py = 1. Suppose g(z,y) # 0. Then

9\&,y
g(l',y_ ( 2)):07
]

we obtain g(y — 2,2) = 0. So, by Theorem 1 we get Pjy =1. O

—Z .
. Since

9(z,y)

we get x =

For some additional results we consider a linearly independent vectors
e1,6e2,...,en € S(X). Let M :=span{e,ea,...,e,} and y € X\ M.

Theorem 3. Let X be a smooth and uniformly convexr Banach space. Then

n
Pyy = axex
k=1

if and only if for alli € {1,2,...,n},

(8) g (y — Z ar€k, 6Z‘> = 0.
k=1

This system of equations has unique solution a = (a1,az,...,an).
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Proof. Since X is smooth and uniformly convex Banach space, the real func-

tion
n
f(t17t27"')tn) = |y — Ztkek
k=1
achieves its minimum at unique point a = (aj,a2,...,a,) and there exists
of

5 (a1, a2, ...,a,) such that, for all i € {1,2,...,n}, we have
i

0
a‘t}:(al, ag, ..., an) = 0.

The other side we have

n n
af Hy — D trex — hiei|| — Hy — > tkex
(tl, to,... ,tn) = lim k=1 ke1
ati h;—0 hi
n
g <y - Z tkek‘7€l>
k=1
n
Hy — > trek
k=1

So,
(9) g (y — > aker, 6i> =0,
k=1

and, this system has the unique solution.
Conversely, let (9) holds. Then, for all A; € R, we have

n
g <y - Z ageg, )\iei> =0.
k=1

Using this, we obtain

g (y—iak:@k,zn:/\i@i> =0 (N € R).
k=1 i=1

n n
Since zg = Z arer € M and x = Z Aie; € M, we conclude that, for all
k=1 i=1
x € M, we have g(y — xg,x) = 0. Thus, it implies that Pyy = xg. O
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