ON THE BEST APPROXIMATION IN SMOOTH AND UNIFORMLY CONVEX REAL BANACH SPACE

Pavle M. Miličić

Abstract. Let X be a smooth and uniformly convex real Banach space and g functional defined as (2). The best approximation, ax, the vector y with vectors from $[x] = \operatorname{span}\{x\}$ $(P_{[x]}y = ax)$ is characterized with the equation g(y - ax, x) = 0. In certain Banach space, this equation, is possibly resolve for a. The above idea applied for $P_M y$, where M is a n-dimensional subspace of X.

Let X be a real normed space and S(X) unit sphere in X. It is well known that the functional

(1)
$$g(x,y) := \frac{\|x\|}{2} \left(\lim_{t \to -0} \frac{\|x+ty\| - \|x\|}{t} + \lim_{t \to +0} \frac{\|x+ty\| - \|x\|}{t} \right)$$

always exists on X^2 . If X is smooth then (1) reduces to

(2)
$$g(x,y) = \|x\| \lim_{t \to 0} \frac{\|x+ty\| - \|x\|}{t} \qquad (x,y \in X).$$

In this case the functional g is linear in second argument and it has the properties:

$$g(\alpha x, y) = \alpha g(x, y) \ (\alpha \in \mathbb{R}), \quad g(x, x) = ||x||^2, \quad |g(x, y)| \le ||x|| \ ||y||$$

and $g(x,y) = 0 \Leftrightarrow x \perp y$ $(x \perp y \Leftrightarrow ||x|| \leq ||x + ty||$ for all $t \in \mathbb{R}$). (More at the functional g see in [3] and [4]).

If X is an inner product space (i.p. space) with i.p. (\cdot, \cdot) , we have

$$g(x,y) = (x,y) \quad (x,y \in X).$$

Received , 2004.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B20, 46C15, 51K05.

Lemma 1. Let X be smooth and $x, y \in X$. Then the following assertions are valid:

1°
$$(\forall \alpha, \alpha' \in \mathbb{R} \setminus \{0\}) g(\alpha x + \beta y, \alpha' x + \beta' y) = 0$$

 $\Leftrightarrow ||\alpha x + \beta y||^2 = \frac{\alpha' \beta - \alpha \beta'}{\alpha'} g(\alpha x + \beta y, y),$
2° $(\forall \beta, \beta' \in \mathbb{R} \setminus \{0\}) g(\alpha x + \beta y, \alpha' x + \beta' y) = 0$
 $\Leftrightarrow ||\alpha x + \beta y||^2 = \frac{\alpha \beta' - \beta \alpha'}{\beta'} g(\alpha x + \beta y, x).$

Proof. 1° Using the properties of g we get equivalencies:

$$g\left(\alpha x + \beta y, \alpha' x + \beta' y\right) = 0$$

$$\Leftrightarrow \frac{\alpha'}{\alpha} g\left(\alpha x + \beta y, \alpha x + \frac{\alpha \beta'}{\alpha'} y\right) = 0$$

$$\Leftrightarrow g\left(\alpha x + \beta y, \alpha x + \beta y + \frac{\alpha \beta'}{\alpha'} y - \beta y\right) = 0$$

$$\Leftrightarrow g\left(\alpha x + \beta y, \alpha x + \beta y\right) + g\left(\alpha x + \beta y, -\left(\beta - \frac{\alpha \beta'}{\alpha'}\right) y\right) = 0$$

$$\Leftrightarrow \|\alpha x + \beta y\|^{2} = \frac{\alpha' \beta - \alpha \beta'}{\alpha'} g\left(\alpha x + \beta y, y\right).$$

Similarly we get the statement 2° . \Box

Theorem 1. Let X be smooth and uniformly convex, and let $x, y \in X \setminus \{0\}$ linearly independent. The vector ax is unique the best approximation of vector y with vectors from [x], i.e. $P_{[x]}y = ax$, if and only if

(3)
$$g(y - ax, x) = 0 \lor ||y - ax||^2 = g(y - ax, y).$$

Proof. Let be $P_{[x]}y = ax$. Because X is uniformly convex, for fixed $x, y \in X \setminus \{0\}$, the real function f(t) = ||y - tx|| is continuous on \mathbb{R} and it achieves its unique minimum at t = a. Since X is smooth, using (2) we have

$$f'(t) = \lim_{t \to 0} \frac{f(t+h) - f(t)}{h} = \lim_{t \to 0} \frac{\|y - (t+h)\| - \|y - tx\|}{h}$$
$$= \lim_{t \to 0} \frac{\|y - tx - th\| - \|y - tx\|}{h} = -\frac{g(y - tx, x)}{\|y - tx\|}.$$

Since min f(t) = f(a) and f is differentiable, we obtain f'(a) = 0. So, g(y - ax, x) = 0.

58

The second equation we get immediately from 1° of Lemma 1.

Conversely, if there exists $a \in \mathbb{R}$ sash that g(y - ax, x) = 0, it follows that $g(y - ax, \lambda x) = 0$ for all $\lambda \in \mathbb{R}$. Then, using the properties of functional g we have:

$$g(y - ax, y - ax + \lambda x) = ||y - ax||^2 \le ||y - ax|| ||y - ax + \lambda x||.$$

So,

$$||y - ax|| \le ||y - (a - \lambda)x||,$$

for all $\lambda \in \mathbb{R}$, i.e. $\min f(t) = ||y - ax||$. \Box

An importance of assertion of Theorem 1 is in therein why, in certain spaces, the equation g(y - ax, x) = 0 is possibly resolve for a. For example, if X is an i.p. space we have

$$g(y - ax, x) = 0 \Leftrightarrow (y - ax, x) = 0 \Leftrightarrow (x, y) - a ||x||^2 = 0 \Leftrightarrow a = \frac{(x, y)}{||x||^2},$$

i.e., $P_{[x]}y = \frac{(x,y)}{\|x\|^2}$.

One other example: The real Banach space $X = \ell^4$ is smooth and uniformly convex. (The space ℓ^4 is so called a quasi inner product space [3]). According to definition of the functional g we get

$$g(x,y) = ||x||^{-2} \sum_{k} x_k^3 y_k$$

 $(x = (x_1, x_2, ...) \in \ell^4 \setminus \{0\}, \ y = (y_1, y_2, ...) \in \ell^4 \setminus \{0\}).$

Hence, in this case, we have

$$g(y - ax, x) = 0 \quad \Leftrightarrow \quad \|y - ax\|^{-2} \sum_{k} (y_k - ax_k)^3 x_k = 0$$
$$\Leftrightarrow \quad \sum_{k} y_k^3 x_k - 3a \sum_{k} y_k^2 x_k^2 + 3a^2 \sum_{k} y_k x_k^3 - a^3 \sum_{k} x_k^4 = 0$$

Since X is uniformly convex, this equation has uniquely solution for *a*. This solution is possible determined as solution an algebraic equation of the third degree.

Using the Theorem 1 it could be constitute the uniquely of solution certain equations. Par example: The real Banach space $L_p(X, S, \mu)$ (1 ∞) is uniformly smooth and uniformly convex. As thought in it $g(x, y) = ||x||^{2-p} \int_X y |x|^{p-1} \operatorname{sgn} x d\mu$, ([2]), analogy as above, we conclude that the equation

$$\int_X |y - ax|^{p-1} x \operatorname{sgn} (y - ax) d\mu = 0 \quad (x, y \in L_p, x \neq y; \ a \in \mathbb{R})$$

has uniquely solution for a. This is not simply immediately demonstrate.

Immediate corollary of Theorem 1 is the following assertion.

Corollary 1. Let X be smooth and uniformly convex, $x, y \in X \setminus \{0\}$ linearly independent, and $p = \{tx + (1 - t)y \mid t \in \mathbb{R}\}$. Then, the vector ax + (1 - a)y is unique the best approximation of the vector z with the vectors of p if and only if

(4)
$$g(z-y-a(x-y), x-y) = 0.$$

Proof. f(t) = ||z - (tx + (1 - t)y)|| = ||z - y - t(x - y)||. \Box

Let be $z = 0, x, y \in S(X)$ and a = 1/2. In this case, the equation (4) reduces on

(5)
$$g(x+y, x-y) = 0.$$

Since in a smooth space we have $g(x, y) = 0 \Leftrightarrow x \perp y$, by the assertion 4.2 ([1]) we get

Corollary 2. Let X is smooth and $x, y \in S(X)$ linearly independent. Then X is an *i.p.* space if and only if the equality (5) holds.

Remark 1. Let $H := \{t \in X \mid g(z - y - a(x - y), t) = 0\}$. H is a hyperplane in X and $x - y \in H$. Then,

$$d(z,H) = \frac{g(z-y-a(x-y), z-y)}{\|z-y-a(x-y)\|},$$

i.e. d(z,p) = d(z,H) = ||z - y - a(x - y)||. Thus $P_{[p]}z = P_H z$.

What could say about a of the equation (3)?

Theorem 2. Let X be smooth and $P_{[x]}y = ax$ $(x, y \in X \setminus \{0\}$ linearly independent). Then the following assertions hold.

 1° sgn $a = \operatorname{sgn} g(y, x),$

60

On the Best Approximation ...

$$\begin{array}{ll} 2^{\circ} & a \geq \frac{g(x,y) - \|x\| \|y\|}{\|x\|^2},\\ 3^{\circ} & a = \frac{g(x,y)}{\|x\|^2} \text{ if and only if } X \text{ is an i.p. space,}\\ 4^{\circ} & \left|a - \frac{g(x,y)}{\|x\|^2}\right| \leq \frac{\|y\|}{\|x\|}. \end{array}$$

Proof. 1° By (3) we have $a = 0 \Leftrightarrow g(y, x) = 0$. Let be $g(y, x) \neq 0$, then

$$g(y, y - ax) = ||y||^2 - ag(y, x) \le ||y|| ||y - ax|| \le ||y||^2$$

So, ag(y, x) > 0.

 $2^{\circ} g(x, y - ax) = g(x, y) - a ||x||^{2} \le ||x|| ||y - ax|| \le ||x|| ||y|| \Rightarrow a ||x||^{2} \ge g(x, y) - ||x|| ||y||.$

3° If X is an i.p. space, we have seen that $a = \frac{g(x,y)}{\|x\|^2} = \frac{(x,y)}{\|x\|^2}$. Inversely,

$$P_{[x]}y = a(x,y) = \frac{g(x,y)}{\|x\|^2}, \text{ for all } x, y \in X \setminus \{0\},$$

we get

$$a(x, \alpha y) = \frac{g(x, \alpha y)}{\|x\|^2} = \alpha a(x, y) \qquad (\alpha \in \mathbb{R})$$

and

$$a(x, y_1 + y_2) = \frac{g(x, y_1 + y_2)}{\|x\|^2} = \frac{g(x, y_1)}{\|x\|^2} + \frac{g(x, y_2)}{\|x\|^2}$$

i.e. we have $P_{[x]}\alpha y = \alpha P_{[x]}y$ and

(6)
$$P_{[x]}(y_1 + y_2) = P_{[x]}y_1 + P_{[x]}y_2 \qquad (x, y_1, y_2 \in X \setminus \{0\})$$

By virtue of (6) and the assertion 13.2 in [1] we conclude that X is an i.p. space.

4° Let $H := \{z \in X \mid g(y - ax, z) = 0\}$. H is a hyperplane. Thus there exists $h \in H$ and $\lambda \in \mathbb{R}$ such that

$$y - \frac{g(x,y)}{\|x\|^2} = \lambda(y - ax) + h.$$

Therefore we have

$$g\left(y - ax, y - \frac{g(x, y)}{\|x\|^2}x\right) = \lambda \|y - ax\|^2,$$

P. M. Miličić

i.e.

$$g(y - ax, y) - \frac{g(x, y)}{\|x\|^2}g(y - ax, x) = \lambda \|y - ax\|^2$$

or $||y - ax||^2 = \lambda ||y - ax||^2$. So, $\lambda = 1$. Hence $h = \left(a - \frac{g(x, y)}{||x||^2}\right) x$ and

(7)
$$y - \frac{g(x,y)}{\|x\|^2} = y - ax + h.$$

Since $g\left(x, y - \frac{g(x, y)}{\|x\|^2}x\right) = 0$, by (7), we get $g(h, y - ax) - \|h\|^2 = 0$. Thus

$$\left|a - \frac{g(x,y)}{\|x\|^2}\right|^2 \|x\|^2 \le \left|a - \frac{g(x,y)}{\|x\|^2}\right| \|x\| \|y - ax\| \le \left|a - \frac{g(x,y)}{\|x\|^2}\right| \|x\| \|y\|$$

Hence 4° is valid. \square

Corollary 3. Let X be smooth and $z = y - \frac{g(x,y)}{\|x\|^2}x$, then $P_{[z]}y = 1$.

Proof. If g(x, y) = 0, then z = y and $P_{[y]}y = 1$. Suppose $g(x, y) \neq 0$. Then we get $x = \frac{y - z}{g(x, y)}$. Since

$$g\left(x, y - \frac{g(x, y)}{\|x\|^2}\right) = 0,$$

we obtain g(y - z, z) = 0. So, by Theorem 1 we get $P_{[z]}y = 1$. \Box

For some additional results we consider a linearly independent vectors $e_1, e_2, \ldots, e_n \in S(X)$. Let $M := \text{span} \{e_1, e_2, \ldots, e_n\}$ and $y \in X \setminus M$.

Theorem 3. Let X be a smooth and uniformly convex Banach space. Then

$$P_M y = \sum_{k=1}^n a_k e_k$$

if and only if for all $i \in \{1, 2, \ldots, n\}$,

(8)
$$g\left(y - \sum_{k=1}^{n} a_k e_k, e_i\right) = 0.$$

This system of equations has unique solution $a = (a_1, a_2, \ldots, a_n)$.

62

Proof. Since X is smooth and uniformly convex Banach space, the real function

$$f(t_1, t_2, \dots, t_n) = \left\| y - \sum_{k=1}^n t_k e_k \right\|$$

achieves its minimum at unique point $a = (a_1, a_2, \ldots, a_n)$ and there exists $\frac{\partial f}{\partial t_i}(a_1, a_2, \ldots, a_n)$ such that, for all $i \in \{1, 2, \ldots, n\}$, we have

$$\frac{\partial f}{\partial t_i}(a_1, a_2, ..., a_n) = 0.$$

The other side we have

$$\frac{\partial f}{\partial t_i}(t_1, t_2, \dots, t_n) = \lim_{h_i \to 0} \frac{\left\| y - \sum_{k=1}^n t_k e_k - h_i e_i \right\| - \left\| y - \sum_{k=1}^n t_k e_k \right\|}{h_i}$$
$$= -\frac{g\left(y - \sum_{k=1}^n t_k e_k, e_i \right)}{\left\| y - \sum_{k=1}^n t_k e_k \right\|}.$$

So,

(9)
$$g\left(y - \sum_{k=1}^{n} a_k e_k, e_i\right) = 0,$$

and, this system has the unique solution.

Conversely, let (9) holds. Then, for all $\lambda_i \in \mathbb{R}$, we have

$$g\left(y - \sum_{k=1}^{n} a_k e_k, \lambda_i e_i\right) = 0.$$

Using this, we obtain

$$g\left(y - \sum_{k=1}^{n} a_k e_k, \sum_{i=1}^{n} \lambda_i e_i\right) = 0 \qquad (\lambda_i \in \mathbb{R}).$$

Since $x_0 = \sum_{k=1}^n a_k e_k \in M$ and $x = \sum_{i=1}^n \lambda_i e_i \in M$, we conclude that, for all $x \in M$, we have $g(y - x_0, x) = 0$. Thus, it implies that $P_M y = x_0$. \Box

P. M. Miličić

REFERENCES

- 1. D. AMIR: Characterizations of Inner Product Spaces. Birkhauser-Verlag, Basel-Boston, 1986.
- J.R. GILES: Classes of semi-inner product space. Trans. Amer. Math. Soc. v. 129 (1967), 436–446.
- 3. P.M. MILIČIĆ: A generalization of the parallelogram equality in normed space. Jour. Math. Kyoto Univ. (JMKYAZ) **38-1** (1998), 71–75.
- 4. P.M. MILIČIĆ: On the g-orthogonal projection and the best approximation of vector in a semi-inner product space. to appear in Sciantiae Mathematicae Japonicae vol. 54, No3 (2001).

Faculty of Mathematics University of Belgrade 11000 Belgrade, Serbia