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MULTIPLE ORTHOGONAL POLYNOMIALS ON THE
SEMICIRCLE∗

Gradimir V. Milovanović, Aleksandar S. Cvetković
and Marija P. Stanić

Abstract. In this paper multiple orthogonal polynomials on the semicircle, in-
vestigated by Milovanović and Stanić in [Math. Balkanica (N. S.) 18 (2004),
373–387] (complex polynomials orthogonal with respect to the complex-valued
inner products [f, g]m =

∫ π

0
f(eiθ)g(eiθ)wm(eiθ) dθ, for m = 1, 2, . . . , r) are con-

sidered. These polynomials satisfy a linear recurrence relation of order r + 1.
Under suitable assumption on the weight functions wm, m = 1, 2, . . . , r, we ex-
press multiple orthogonal polynomials on the semicircle in terms of the type
II multiple orthogonal (real) polynomials with respect to the weight function
wm(x), m = 1, 2, . . . , r. Specially, we consider the case r = 2 and express coeffi-
cients of corresponding recurrence relations in terms of coefficients of recurrence
relation for the type II multiple orthogonal (real) polynomials. In particular, we
obtain these type of polynomials associated with Jacobi weight functions.

1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal poly-
nomials in the sense that they satisfy r (∈ N) orthogonality conditions (see
[1], [2], [12]–[14], [15], [16]).

Let r ≥ 1 be an integer and let w1, w2, . . . , wr be r weight functions on
the real line so that the support of each wi is a subset of an interval Ei. Let
~n = (n1, n2, . . . , nr) be a vector of r nonnegative integers, which is called a
multi-index with length |~n| = n1 + n2 + · · ·+ nr.
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Type II multiple orthogonal polynomial is monic polynomial P~n of degree
|~n| such that it satisfies the following orthogonality conditions:





∫

E1

P~n (x) xkw1(x) dx = 0, k = 0, 1, . . . , n1 − 1,

∫

E2

P~n (x) xkw2(x) dx = 0, k = 0, 1, . . . , n2 − 1,

...
∫

Er

P~n (x) xkwr(x) dx = 0, k = 0, 1, . . . , nr − 1.

If the polynomial P~n (x) is unique, then we say that ~n is normal index
and if all indices are normal then we have a complete system.

For r = 1 we have the ordinary orthogonal polynomials.
For each of the weight functions wk, k = 1, 2, . . . , r,

(f, g)k =
∫

Ek

f(x)g(x)wk(x)dx(1.1)

denotes the corresponding inner product of f and g.
Type II multiple orthogonal polynomials with nearly diagonal multi-index

always satisfy a recurrence relation of order r + 1 . Let n ∈ N and write
it as n = kr + j, with 0 ≤ j < r. The nearly diagonal multi-index ~s(n)
corresponding to n is given by

~s(n) = (k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
j times

, k, k, . . . , k︸ ︷︷ ︸
r−j times

).

Denote the corresponding type II multiple orthogonal polynomials by
Pn(x) = P~s(n)(x).

The following recurrence relation

xPk(x) = Pk+1(x) +
r∑

i=0

ak,r−iPk−i(x) , k ≥ 0,(1.2)

holds with initial conditions P0(x) = 1 and Pi(x) = 0 for i = −1,−2, . . . ,−r
(see [15]).

For some classical weight functions (Jacobi, Laguerre, Hermite) one can
find explicit formulas for the recurrence coefficients (see [15], [16],[3]).
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In [12] an effective numerical method for construction of the type II mul-
tiple orthogonal polynomials has been presented. The recurrence coefficients
have been computed using the discretized Stieltjes-Gautschi procedure [5].1

At first, we express the recurrence coefficients in terms of the inner products
(1.1), and then we use the corresponding Gaussian formulas to discretize
these inner products.

In this paper we repeat some basic results on polynomials orthogonal on
the semicircle and multiple orthogonal polynomials on the semicircle. Multi-
ple orthogonal polynomials on the semicircle are considered in Section 2.. We
express them in terms of the type II multiple orthogonal (real) polynomials
and obtain a linear recurrence relation of order r + 1. Specially, we consider
case r = 2 and give formulas for the coefficients appearing in the represen-
tation of multiple orthogonal polynomials on the semicircle over the type
II (real) multiple orthogonal polynomials, and using them we express the
recurrence coefficients for polynomials orthogonal on the semicircle. Finally,
these coefficients for the multiple orthogonal polynomials on the semicircle
associated to the two Jacobi weights are analyzed.

2. Multiple Orthogonal Polynomials on the Semicircle

Multiple orthogonal polynomials on the semicircle are a generalization
of orthogonal polynomials on the semicircle in the sense that they satisfy
r (∈ N) orthogonality conditions (see [13]). Polynomials orthogonal on the
semicircle have been introduced by Gautschi and Milovanović in [7].

Let w be a weight function which is positive and integrable on the open
interval (−1, 1), though possibly singular at the endpoints, and which can
be extended to a function w(z) holomorphic in the half disc

D+ = {z ∈ C : |z| < 1, Im z > 0}.

Consider the following two inner products,

(f, g) =
∫ 1

−1
f(x)g(x)w(x) dx,(2.1)

[f, g] =
∫

Γ
f(z)g(z)w(z)(iz)−1 dz =

∫ π

0
f(eiθ)g(eiθ)w(eiθ) dθ,(2.2)

1A similar procedure was used in a numerical construction of orthogonal polynomials
on the radial rays in the complex plane (see [8]).
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where Γ is the circular part of ∂D+ and all integrals are assumed to exist,
possibly as appropriately defined improper integrals.

The inner product (2.1) is positive definite and therefore generates a
unique set of real orthogonal polynomials {pk} (pk is monic polynomial of
degree k). This inner product (2.2) is not Hermitian and the existence of
the corresponding orthogonal polynomials, therefore, is not guaranteed.

A system of complex polynomials {πk} (πk is monic of degree k) is called
orthogonal on the semicircle if [πk, π`] = 0 for k 6= ` and [πk, π`] 6= 0 for
k = `, k, ` = 0, 1, 2, . . ..

Gautschi, Landau and Milovanović in [6] have established the existence
of orthogonal polynomials {πk} assuming only that

Re [1, 1] = Re
∫ π

0
w(eiθ) dθ 6= 0.(2.3)

Let Cε, ε > 0, denotes the boundary of D+ with small circular parts of
radius ε and centers at ±1 spared out. Let cε,±1 are the circular parts of Cε

with centers at ±1 and radii ε. We assume that w is such that

lim
ε↓0

∫

cε,±1

g(z)w(z) dz = 0, for all g ∈ P.(2.4)

It is easy to prove that the following equations hold

0 =
∫

Γ
g(z)w(z) dz +

∫ 1

−1
g(x)w(x) dx, g ∈ P.(2.5)

It is well known that the real (monic) polynomials {pk(z)}, orthogonal
with respect to the inner product (2.1), as well as the associated polynomials
of the second kind,

qk(z) =
∫ 1

−1

pk(z)− pk(x)
z − x

w(x) dx, k = 0, 1, 2, . . . ,

satisfy a three-term recurrence relation of the form

yk+1 = (z − ak)yk − bkyk−1, k = 0, 1, 2, . . . ,

whit initial conditions y−1 = 0, y0 = 1 for {pk}, and y−1 = −1, y0 = 0 for
{qk}.
Definition 3.1. For a positive integer r, a set W = {w1, . . . , wr} is admissi-
ble set of weight functions if for the set W there exist a unique system of the
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(real) type II multiple orthogonal polynomials and for all wj , j = 1, . . . , r,
there exist a unique system of (monic, complex) orthogonal polynomials
relative to the inner product (2.2).

Let r ≥ 1 be an integer and let W = {w1, w2, . . . , wr} be admissible set
of weight functions. Let ~n = (n1, n2, . . . , nr) be the multi-index with length
|~n| = n1 + n2 + · · · + nr. Multiple orthogonal polynomial on the semicircle
is monic polynomial Π~n(z) of degree |~n| such that it satisfies the following
orthogonality conditions:





∫

Γ
Π~n (z) zk w1(z)(iz)−1 dz = 0, k = 0, 1, . . . , n1 − 1,

∫

Γ
Π~n (z) zk w2(z)(iz)−1 dz = 0, k = 0, 1, . . . , n2 − 1,

...
∫

Γ
Π~n (z) zk wr(z)(iz)−1 dz = 0, k = 0, 1, . . . , nr − 1.

(2.6)

For r = 1 we have the ordinary orthogonal polynomials on the semicircle.
Let denote for m = 1, 2, . . . , r

[f, g]m =
∫

Γ
f(z)g(z)wm(z)(iz)−1 dz =

∫ π

0
f(eiθ)g(eiθ)wm(eiθ) dθ(2.7)

corresponding complex inner products.
For any polynomial g the following equations hold

0 =
∫

Γ
g(z)wm(z) dz +

∫ 1

−1
g(x)wm(x) dx(2.8)

and ∫

Γ

g(z)wm(z)
iz

dz = πg(0)wm(0) + i

∫
−

1

−1

g(x)wm(x)
x

dx(2.9)

for m = 1, 2, . . . , r.
We consider only the nearly diagonal multi-indices.
The corresponding type II multiple orthogonal polynomials (real) {Pn}

satisfy recurrence relation (1.2).
It is easy to see that for m = 1, 2, . . . , r associated polynomials of the

second kind

Q(m)
n (z) =

∫ 1

−1

Pn(z)− Pn(x)
z − x

wm(x) dx, n = 0, 1, . . . ,(2.10)
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satisfy the same recurrence relation (but with different initial conditions).
The multiple orthogonal polynomials on the semicircle satisfy the follow-

ing recurrence relation of order r + 1:

zΠk(z) = Πk+1(z) +
r∑

i=0

αk,r−iΠk−i(z) , k ≥ 1,

with initial conditions Π0(z) = 1, and Π−1(z) = Π−2(z) = · · · = Π−r(z) = 0
(see [13]).

Let denote moments for the inner products given in (2.7) with µ
(m)
k ,

m = 1, 2, . . . , r, k ∈ N0, i.e.,

µ
(m)
k = [zk, 1]m =

∫

Γ
zkwm(z)(iz)−1 dz, m = 1, 2, . . . , r, k ∈ N0.

For zero moments we have

µ
(m)
0 =

∫

Γ

wm(z)
iz

dz = πwm(0) + i

∫
−

1

−1

wm(x)
x

dx, m = 1, 2, . . . , r .

Denote also

Dn =




Q
(1)
n−1(0)− iµ

(1)
0 Pn−1(0) · · · Q

(1)
n−r(0)− iµ

(1)
0 Pn−r(0)

Q
(2)
n−1(0)− iµ

(2)
0 Pn−1(0) · · · Q

(2)
n−r(0)− iµ

(2)
0 Pn−r(0)

...
...

Q
(r)
n−1(0)− iµ

(r)
0 Pn−1(0) · · · Q

(r)
n−r(0)− iµ

(r)
0 Pn−r(0)




.(2.11)

Using equations (2.8), (2.9) for appropriately chosen polynomials g and
orthogonality conditions (2.6), one can prove existence and uniqueness of
multiple orthogonal polynomials on the semicircle with additional conditions
that all matrices Dn are regular.

Theorem 2.1. Let r be positive integer and W = {w1, . . . , wr} be admis-
sible set of weight functions. Assume in additional that all matrices Dn in
(2.11) are regular. Denoting by {Pk} the (real) type II multiple orthogonal
polynomials, relative to the set W , we have the following representation

Πk(z) = Pk(z) + θk,1Pk−1(z) + θk,2Pk−2(z) + · · ·+ θk,rPk−r(z).(2.12)

The coefficients θk,j, j = 1, 2, . . . , r, are solution of the following system of
linear equations

r∑

j=1

θk,j

(
Q

(m)
k−j(0)− iµ

(m)
0 Pk−j(0)

)
= iµ

(m)
0 Pk(0)−Q

(m)
k (0),(2.13)

m = 1, 2, . . . , r.
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Proof. Assume first that the orthogonal polynomials {Πk} exist. Putting

g(z) =
1
i
Πk(z)z`m−1, 1 6 `m < km

(for k ∈ N, (k1, . . . , kr) is the corresponding nearly diagonal multi–index) in
(2.8) for m = 1, 2, . . . , r, we find

0 =
∫

Γ
Πk(z)z`m(iz)−1wm(z) dz − i

∫ 1

−1
Πk(x)x`m−1w(x) dx

=
[
Πk, z

`m

]
m
− i

(
Πk, x

`m−1
)

m
,

so we have the representation (2.12).
To determine the constants θk,j , j = 1, 2, . . . , r, we put

g(z) =
Πk(z)−Πk(0)

iz

=
1
i

[
Pk(z)− Pk(0)

z
+ θk,1

Pk−1(z)− Pk−1(0)
z

+ · · ·+ θk,r
Pk−r(z)− Pk−r(0)

z

]

in (2.8) for m = 1, 2, . . . , r, and use the first expression for g to evaluate the
first integral, and the second one to evaluate the second integral in (2.8).
This gives the system of equations (2.13) for k ≥ r. From (2.8) and (2.9),
putting for the polynomial g Π0, Π1, . . . , Πr−1 successively, using (2.12), (1.2)
and (2.10), we obtain θk,j for k < r, i.e., a system of equations of the same
form as in the case k ≥ r. The system of equations (2.13) has a regular
matrix, so it has the unique solution.

Conversely, defining Πk with (2.12), where θk,j , j = 1, . . . , r is a solution
of the system of equations (2.13), it is easy to see that

[Πk, z
`m ]m = 0, 0 ≤ `m < km,

for m = 1, . . . , r.

2.1. Case r = 2

Let W = {w1, w2} be admissible set of weight functions.
The type II (real) multiple orthogonal polynomials satisfy the following

recurrence relations

Pk+1(x) = (x− bk)Pk(x)− ckPk−1(x)− dkPk−2(x), k ≥ 0,(2.14)
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with initial conditions P0(x) = 1, P−1(x) = P−2 = 0.
Multiple orthogonal polynomials on the semicircle satisfy the following

recurrence relations

Πk+1(z) = (z − βk)Πk(z)− γkΠk−1(z)− δkΠk−2(z), k ≥ 0,(2.15)

with initial conditions Π0(z) = 1, Π−1(z) = Π−2(z) = 0.
Using theorem 2.1 we have for k ≥ 2 the following equation

Πk(z) = Pk(z) + θk,1Pk−1(z) + θk,2Pk−2(z),(2.16)

where θk,1 and θk,2 are solution of the following system of linear equations

θk,1

(
Q

(1)
k−1(0)− iµ

(1)
0 Pk−1(0)

)
+ θk,2

(
Q

(1)
k−2(0)− iµ

(1)
0 Pk−2(0)

)

= iµ
(1)
0 Pk(0)−Q

(1)
k (0),

θk,1

(
Q

(2)
k−1(0)− iµ

(2)
0 Pk−1(0)

)
+ θk,2

(
Q

(2)
k−2(0)− iµ

(2)
0 Pk−2(0)

)

= iµ
(2)
0 Pk(0)−Q

(2)
k (0).

At first, we will find relations between θk,1, θk,2 and recurrence coefficients
bk, ck, dk, and then we will express the recurrence coefficients βk, γk and δk

as functions of bk, ck, dk, θk,1 and θk,2.
If we denote

R
(j)
k = Q

(j)
k (0)− iµ

(j)
0 Pk(0), j = 1, 2,(2.17)

the previous system of equations can be written in form

θk,1R
(j)
k−1 + θk,2R

(j)
k−2 = −R

(j)
k , j = 1, 2,

and the solution is

θk,1 =
R

(1)
k−2R

(2)
k −R

(1)
k R

(2)
k−2

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

, θk,2 =
R

(1)
k R

(2)
k−1 −R

(1)
k−1R

(2)
k

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

.(2.18)

According to (2.14), for k ≥ 3 we have

Pk(0) = −bk−1Pk−1(0)− ck−1Pk−2(0)− dk−1Pk−3(0),

and

Q
(j)
k (0) = −bk−1Q

(j)
k−1(0)− ck−1Q

(j)
k−2(0)− dk−1Q

(j)
k−3(0), j = 1, 2.
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Then

R
(j)
k = −bk−1Q

(j)
k−1(0)− ck−1Q

(j)
k−2(0)− dk−1Q

(j)
k−3(0)

−iµ
(j)
0 (−bk−1Pk−1(0)− ck−1Pk−2(0)− dk−1Pk−3(0))

= −bk−1R
(j)
k−1 − ck−1R

(j)
k−2 − dk−1R

(j)
k−3.

Now we apply some elementary transformations to obtain

θk,1 =

(
−bk−1R

(2)
k−1 − ck−1R

(2)
k−2 − dk−1R

(2)
k−3

)
R

(1)
k−2

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

−

(
−bk−1R

(1)
k−1 − ck−1R

(1)
k−2 − dk−1R

(1)
k−3

)
R

(2)
k−2

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

= bk−1 + dk−1

R
(1)
k−3R

(2)
k−2 −R

(1)
k−2R

(2)
k−3

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

,

i.e.,

θk,1 = bk−1 − dk−1

θk−1,2
, k ≥ 3,(2.19)

and

θk,2 =

(
−bk−1R

(1)
k−1 − ck−1R

(1)
k−2 − dk−1R

(1)
k−3

)
R

(2)
k−1

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

−

(
−bk−1R

(2)
k−1 − ck−1R

(2)
k−2 − dk−1R

(2)
k−3

)
R

(1)
k−1

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

= ck−1 + dk−1

R
(1)
k−1R

(2)
k−3 −R

(1)
k−3R

(2)
k−1

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

= ck−1 − dk−1

R
(1)
k−3R

(2)
k−1 −R

(1)
k−1R

(2)
k−3

R
(1)
k−2R

(2)
k−3 −R

(1)
k−3R

(2)
k−2

· R
(1)
k−2R

(2)
k−3 −R

(1)
k−3R

(2)
k−2

R
(1)
k−1R

(2)
k−2 −R

(1)
k−2R

(2)
k−1

,

i.e.,

θk,2 = ck−1 − dk−1
θk−1,1

θk−1,2
, k ≥ 3.(2.20)
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Using (2.18) we can calculate θ2,1 and θ2,2 directly. For this purpose we
need R

(j)
0 , R

(j)
1 and R

(j)
2 , j = 1, 2. From (2.14) (for k = 0, 1) we get

P0(0) = 1, P1(0) = −b0, P2(0) = b0b1 − c1,

and from (2.10), using (2.8), we obtain

Q
(j)
0 (0) =

∫ 1

−1

P0(0)− P0(x)
−x

wj(x) dx = 0,

Q
(j)
1 (0) =

∫ 1

−1

P1(0)− P1(x)
−x

wj(x) dx =
∫ 1

−1
wj(x) dx

= −
∫

Γ
wj(z) dz = −i

∫

Γ
zwj(z)(iz)−1 dz = −iµ

(j)
1 ,

Q
(j)
2 (0) =

∫ 1

−1

P2(0)− P2(x)
−x

wj(x) dx =
∫ 1

−1
(x− (b0 + b1))wj(x) dx

= −i

∫

Γ
(z2 − (b0 + b1)z)wj(z)(iz)−1 dz = −iµ

(j)
2 + i(b0 + b1)µ

(j)
1 ,

j = 1, 2. Substituting these expressions for Pk(0) and Q
(j)
k (0), k = 0, 1, 2,

j = 1, 2, in (2.17) we get

R
(j)
0 = −µ

(j)
0 , R

(j)
1 = −iµ

(j)
1 + iµ

(j)
0 b0,

R
(j)
2 = −iµ

(j)
2 + iµ

(j)
1 (b0 + b1) + iµ

(j)
0 (c1 − b0b1), j = 1, 2.

Finally, from (2.18) we obtain

θ2,1 = b0 + b1 − µ
(1)
0 µ

(2)
2 − µ

(1)
2 µ

(2)
0

µ
(1)
0 µ

(2)
1 − µ

(1)
1 µ

(2)
0

,

θ2,2 = c1 + b2
0 − b0

µ
(1)
0 µ

(2)
2 − µ

(1)
2 µ

(2)
0

µ
(1)
0 µ

(2)
1 − µ

(1)
1 µ

(2)
0

+
µ

(1)
1 µ

(2)
2 − µ

(1)
2 µ

(2)
1

µ
(1)
0 µ

(2)
1 − µ

(1)
1 µ

(2)
0

.

For k = 1 we have P1(x) = x− b0 and

Π1(z) = P1(z) + θ1,1P0(z) = z − b0 + θ1,1.

Using the orthogonality condition

0 = [Π1, 1]1 =
∫

Γ
Π1(z)w1(z)(iz)−1 dz

=
∫

Γ
zw1(z)(iz)−1 dz + (θ1,1 − b0)

∫

Γ
w1(z)(iz)−1 dz,
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we obtain

θ1,1 = b0 − µ
(1)
1

µ
(1)
0

.

Now, we are ready to obtain formulas for the coefficients βk, γk and δk

in recurrence relation (2.15). Using (2.16) in (2.15) for k ≥ 4 we get

Pk+1(z) + θk+1,1Pk(z) + θk+1,2Pk−1(z)
= (z − βk)(Pk(z) + θk,1Pk−1(z) + θk,2Pk−2(z))

−γk(Pk−1(z) + θk−1,1Pk−2(z) + θk−1,2Pk−3(z))
−δk(Pk−2(z) + θk−2,1Pk−3(z) + θk−2,2Pk−4(z))

and substituting here for zPk(z), zPk−1(z) and zPk−2(z) the expressions
obtained from the recurrence relation (2.14) yields

(θk+1,1 − bk − θk,1 + βk)Pk(z)
+(θk+1,2 − ck − bk−1θk,1 − θk,2 + βkθk,1 + γk)Pk−1(z)

+(δk + γkθk−1,1 + βkθk,2 − bk−2θk,2 − ck−1θk,1 − dk)Pk−2(z)
+(δkθk−2,1 + γkθk−1,2 − ck−2θk,2 − dk−1θk,1)Pk−3(z)

+(δkθk−2,2 − dk−2θk,2)Pk−4(z) ≡ 0.

By the linear independence of the polynomials {Pk} we conclude that

θk+1,1 − bk − θk,1 + βk = 0,(2.21)
θk+1,2 − ck − bk−1θk,1 − θk,2 + βkθk,1 + γk = 0,(2.22)

δk + γkθk−1,1 + βkθk,2 − bk−2θk,2 − ck−1θk,1 − dk = 0,(2.23)
δkθk−2,1 + γkθk−1,2 − ck−2θk,2 − dk−1θk,1 = 0,(2.24)

δkθk−2,2 − dk−2θk,2 = 0.(2.25)

Using (2.21) and (2.19), we get for k ≥ 4

βk = θk,1 +
dk

θk,2
;(2.26)

from (2.22), (2.20), (2.26) and (2.19) we get

γk = θk,2 + dk−1
θk,1

θk−1,2
;(2.27)

and, finally, from (2.25) we get

δk = dk−2
θk,2

θk−2,2
.(2.28)
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Substituting βk, γk and δk given by (2.26), (2.27) and (2.28) in (2.23) and
(2.24), using (2.19) and (2.20) it is easy to see that equations (2.23) and
(2.24) are satisfied.

For k = 0 using the same procedure, instead of equations (2.21)–(2.25)
we have only one equation θ1,1 − b0 + β0 = 0, and easily obtain

β0 = b0 − θ1,1.

Using the same procedure (with k = 1, 2, 3) we get:
1◦ For k = 1

β1 = b1 + θ1,1 − θ2,1, γ1 = c1 + θ1,1b0 − θ2,2 − β1θ1,1;

2◦ For k = 2 that (2.26) holds also for k = 2, and

γ2 = θ2,2 + θ2,1(b1 − θ2,1),

δ2 = d2 − γ2θ1,1 − β2θ2,2 + c1θ2,1 + b0θ2,2;

3◦ For k = 3 that (2.26) and (2.27) hold also for k = 3, and

δ3 = θ3,2(b1 − θ2,1).

2.2. Jacobi weight functions

In this subsection the multiple orthogonal polynomials on the semicircle
associated with an AT system consisting of two Jacobi weight functions on
[−1, 1] with different singularities at −1 and the same singularity at 1 are
considered.

The weight functions are

wm(x) = (1− x)α(1 + x)βm , m = 1, 2,

where α, βm > −1, m = 1, 2 and βi − βj /∈ Z whenever i 6= j.
The recursion coefficients bn, cn, dn in (2.14) (see [16]) for Jacobi weights

satisfy2

lim
n→+∞ bn = −1

9
, lim

n→+∞ cn = 3
(

8
27

)2

, lim
n→+∞ dn =

(
8
27

)3

.

Based on the numerous numerical experiments we can state the following
conjecture:

2Notice that in [16] the recurrence coefficients for the type II multiple orthogonal poly-
nomials (real) associated with an AT system consisting of Jacobi weights on [0, 1] with
different singularities at 0 and the same singularity at 1 have been given.
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Conjecture 2.1. The sequences {θk,1}+∞
k=1 and {θk,2}+∞

k=2 are convergent,
with

θ1 = lim
k→+∞

θk,1

= − 2
27

+
7

(
1− i

√
3
)

18
(−13 + 16

√
2
)1/3

− 1
18

(−13 + 16
√

2
)1/3(

1 + i
√

3
)

∼= −0.009454178427325359− 0.5213314224171121 i

and

θ2 = lim
k→+∞

θk,2

=
8

729

(
8 +

(
2
(
2 +

√
2
))1/3 (−3− 3i

√
3
)

+ 3i
(
4− 2

√
2
)1/3(

i +
√

3
))

∼= −0.009373049182708634− 0.04806819302729593 i.

Namely, θ1 and θ2 are the solutions, lying in the IV quadrant, of the
equations

c(b− θ1)− θ1(b− θ1)2 = d, θ3
2 − cθ2

2 + bdθ2 = d2,

respectively, where b = limn→+∞ bn, c = limn→+∞ cn, d = limn→+∞ dn.
In Table 2.1 numerical values for θk,1 and θk,2 (for some values of k ≤ 70)

in case of AT system consisting of two Jacobi weight functions:

w1(x) = (1− x2)−1/2, w2(x) = (1− x)−1/2

are given. Numbers in parentheses denote decimal exponents.

Theorem 2.2. The sequences of recurrence coefficients βn, γn and δn in
(2.15) are convergent and

lim
n→+∞βn = lim

n→+∞ bn, lim
n→+∞ γn = lim

n→+∞ cn, lim
n→+∞ δn = lim

n→+∞ dn.

Proof. If we take limk→+∞ in (2.26) and (2.19), according to previ-
ous conjecture, we immediately get the first assertion, i.e., limk→+∞ βk =
limk→+∞ bk. In similar way, from (2.27) and (2.20) one can obtain the second
assertion, and finally, the third assertion follows from (2.28).
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Table 2.1: Numerical values for θk,1 and θk,2 for two Jacobi weight functions
with α = −1/2, β1 = −1/2, β2 = 0
k θk,1 θk,2

2 −0.788673023(−2)− 0.5184874803 i −0.184874803(−1)− 0.9211326977(−1)i
3 −0.956026150(−2)− 0.5217911640 i −0.993955584(−2)− 0.5018361000(−1)i
4 −0.964558273(−2)− 0.5217583278 i −0.963141412(−2)− 0.4893449913(−1)i
5 −0.961680868(−2)− 0.5216419087 i −0.952284796(−2)− 0.4853785880(−1)i
10 −0.951057947(−2)− 0.5214183834 i −0.940492376(−2)− 0.4815528993(−1)i
15 −0.948111084(−2)− 0.5213706104 i −0.938656887(−2)− 0.4810346785(−1)i
20 −0.946980988(−2)− 0.5213535513 i −0.938048469(−2)− 0.4808715112(−1)i
25 −0.946435934(−2)− 0.5213456057 i −0.937774509(−2)− 0.4808000184(−1)i
30 −0.946132802(−2)− 0.5213412783 i −0.937628173(−2)− 0.4807624754(−1)i
35 −0.945947210(−2)− 0.5213386657 i −0.937540935(−2)− 0.4807403541(−1)i
40 −0.945825454(−2)− 0.5213369688 i −0.937484779(−2)− 0.4807262350(−1)i
45 −0.945741313(−2)− 0.5213358051 i −0.937446518(−2)− 0.4807166773(−1)i
50 −0.945680757(−2)− 0.5213349724 i −0.937419284(−2)− 0.4807099088(−1)i
55 −0.945635734(−2)− 0.5213343563 i −0.937399213(−2)− 0.4807049411(−1)i
60 −0.945601354(−2)− 0.5213338877 i −0.937383997(−2)− 0.4807011879(−1)i
61 −0.945595460(−2)− 0.5213338075 i −0.937381398(−2)− 0.4807005481(−1)i
62 −0.945589845(−2)− 0.5213337312 i −0.937378926(−2)− 0.4806999397(−1)i
63 −0.945584493(−2)− 0.5213336584 i −0.937376571(−2)− 0.4806993606(−1)i
64 −0.945579386(−2)− 0.5213335891 i −0.937374328(−2)− 0.4806988090(−1)i
65 −0.945574510(−2)− 0.5213335230 i −0.937372187(−2)− 0.4806982832(−1)i
66 −0.945569852(−2)− 0.5213334598 i −0.937370145(−2)− 0.4806977815(−1)i
67 −0.945565398(−2)− 0.5213333994 i −0.937368194(−2)− 0.4806973026(−1)i
68 −0.945561138(−2)− 0.5213333417 i −0.937366329(−2)− 0.4806968451(−1)i
69 −0.945557059(−2)− 0.5213332864 i −0.937364545(−2)− 0.4806964077(−1)i
70 −0.945553152(−2)− 0.5213332335 i −0.937362839(−2)− 0.4806959893(−1)i
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7. W. Gautschi, G.V. Milovanović: Polynomials orthogonal on the semi-
circle. J. Approx. Theory 46 (1986), 230–250.
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