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APPROXIMATION OF BIVARIATE FUNCTIONS BY
OPERATORS OF STANCU–HURWITZ TYPE

Ioana Taşcu

Abstract. The aim of this paper is to introduce and study a linear positive
approximation operator of Stancu-Hurwitz type [1], depending on several non-
negative parameters, useful in the approximation of functions of two variables.

The corresponding approximation formula (3.1) has the degree of exactness
(1, 1). For the remainder of this formula we give several representations, by
starting from a method of T. Popoviciu [7] for representation of the remainder
term in linear approximation formulas, by using the divided differences.

1. Introduction

In a paper published in 2002 by D. D. Stancu [11] there has been con-
structed an approximation linear positive operator, denoted by S

(β1,...,βm)
m ,

which was defined, for any function f ∈ C[0, 1], by the following formula

(
S(β1,...,βm)

m f
)

(x) =
m∑

k=0

w
(β1,...,βm)
m,k (x)f

(
k

m

)
,(1.1)

where

(1 + β1 + · · ·+ βm)m−1w
(β1,...,βm)
m,k (x)(1.2)

=
∑

x(x + β1 + · · ·+ βik)k−1(1− x)(1− x + βj1 + · · ·+ βjm−k
)m−k−1.

On the other hand, β1, . . . , βm are m nonnegative parameters.
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These basis polynomials were constructed in [11] by starting from an
identity of Hurwitz [3], generalizing the classical identity of Abel-Jensen,
namely

(u + v)(u + v + β1 + · · ·+ βm)m−1

=
∑

u(u + βi1 + · · ·+ βik)k−1v(v + βj1 + · · ·+ βjm−k
)m−k−1,

which in the special case β1 = β2 = · · · = βm = β reduces to the identity of
Abel-Jensen [4]:

(u + v)(u + v + mβ)m−1 =
m∑

k=0

(
m

k

)
u(u + kβ)k−1v(v + (m− k)β)m−k−1.

2. The Bivariate Polynomial Operator of Stancu-Hurwitz Type

In this paper we consider the space of real-valued bivariate functions
C(D), continuous on the unit square D = [0, 1]× [0, 1], and we associate the
Stancu-Hurwitz type bivariate polynomials

(
S(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y)(2.1)

=
m∑

k=0

n∑

ν=0

w
(β1,...,βm)
m,k (x)v(γ1,...,γn)

n,ν (y)f
(

k

m
,
ν

n

)
,

where w
(β1,...,βm)
m,k (x) is defined by formula (1.2) and v

(γ1,...,γn)
n,ν (y) is given by

a similar formula

(1 + γ1 + · · ·+ γn)v(γ1,...,γn)
n,ν (y)

=
∑

y (y + γ1 + · · ·+ γsν )ν−1 (1− y)(1− y + γt1 + · · ·+ γn−γ−1
tn−ν

),

γ1, γ2, . . . , γn being nonnegative parameters.
In the special cases β1 = · · ·= βm = β and γ1 = · · ·= γn = γ, we obtain

the Cheney-Sharma-Stancu type bivariate linear positive operator defined
by the following formula

(
S(β;γ)

m,n f
)

(x, y) =
m∑

k=0

n∑

ν=0

w
(β)
m,k(x)v(γ)

n,ν(y)f
(

k

m
,
ν

n

)
,

where

(1 + mβ)m−1w
(β)
m,k(x) =

(
m

k

)
x(x + kβ)k−1(1− x)(1− x + (m− k)β)m−k−1
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and

(1 + nγ)n−1v(γ)
n,ν(y) =

(
n

γ

)
y(y + νγ)ν−1(1− y + (n− ν)γ)n−ν−1.

The operator S
(β;γ)
m,n represents an extension to two variables of the second

operator of Cheney-Sharma [1].

3. Approximation of Bivariate Functions by Means of a
Polynomial Operator of Stancu-Hurwitz Type

It is easy to see that the polynomial defined at (2.1) is interpolatory in
the corners of the square D, that is it reproduces de values of the function
f ∈ C(D) in the four points: (0, 0), (1, 0), (1, 1), (0, 1).

Consequently, the approximation formula

f(x, y) =
(
S(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y) +
(
R(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y)(3.1)

has the degree of exactness (1, 1).
Now if we use a theorem of Peano-Milne-Stancu type, given in D. D.

Stancu [9], we can give an integral representation for the remainder term of
the approximation formula (3.1).

Theorem 3.1. If the function f has continuous second-order partial deri-
vatives on the square D, then the remainder of the approximation formula
(3.1) can be represented under the following integral form

(
R(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y)(3.2)

=

1∫

0

G(β1,...,βm)
m (t, x)f (2,0)(t, y)dt +

1∫

0

H(γ1,...,γn)
n (z, y)f (0,2)(x, z)dz

−
1∫

0

1∫

0

G(β1,...,βm)
m (t, x)H(γ1,...,γn)

n (z, y)f (2,2)(t, z)dtdz

where the Peano kernels are

G(β1,...,βm)
m (t, x) =

(
R(β1,...,βm)

m ϕx

)
(t),

with
ϕx(t) =

x− t + |x− t|
2

= (x− t)+,
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and
H(γ1,...,γn)

n (z, y) =
(
R(γ1,...,γn)

n ψy

)
(z),

with

ψy(z) =
y − z + |y − z|

2
= (y − z)+ .

We have used above the notation

f (r,s)(u, v) =
∂r+sf(u, v)

∂ur∂vs
.

It follows that we can write explicitly

G(β1,...,βm)
m (t, x) = (x− t)+ −

m∑

k=0

w
(β1,...,βm)
m,k (x)

(
k

m
− t

)

+

,

H(γ1,...,γn)
n (z, y) = (y − z)+ −

n∑

ν=0

v(γ1,...,γn)
n,ν (y)

(ν

n
− z

)
+

.

Using these explicit expressions for the partial Peano kernels, we can see
that they represent polygonal lines situated beneath the t-axis, respectively
the z-axis, which joins the points (0, 0) and (0, 1), respectively the points
(0, 0) and (1, 0).

If we assume that x ∈
[
r − 1
m

,
r

m

]
, we can give for the first Peano kernel

the following expression:

G(β1,...,βm)
m (t, x) =

−
i−1∑

k=0

w
(β1,...,βm)
m,k (x)

(
t− k

m

)
if t ∈

[
i− 1
m

,
i

m

]
(1 ≤ i ≤ r − 1),

−
r−1∑

k=0

w
(β1,...,βm)
m,k (x)

(
t− k

m

)
if t ∈

[
r − 1
m

,x

]
,

−
m∑

k=r

w
(β1,...,βm)
m,k (x)

(
k

m
− t

)
if t ∈

[
x,

r

m

]
,

−
m∑

k=i

w
(β1,...,βm)
m,k (x)

(
k

m
− t

)
if t ∈

[
i− 1
m

,
i

m

]
(r ≤ i ≤ m).

The dual Peano kernel H
(γ1,...,γn)
n (z, y) has a similar expression.
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Now if we take into account that on the square D, we have
G

(β1,...,βm)
m (t, x) ≤ 0 and H

(γ1,...,γn)
n (z, y) ≤ 0, then we can apply the first

law of the mean to the integrals and we can find that

(
R(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y) = f (2,0)(ξ, y)

1∫

0

G(β1,...,βm)
n (t, x)dt

+f (0,2)(x, η)

1∫

0

H(γ1,...,γn)
n (z, y)dz

−f (2,2)(ξ, η)
[ 1∫

0

G(β1,...,βm)
m (t, x)dt

][ 1∫

0

H(γ1,...,γn)
n (z, y)dz

]
,

where ξ and η are certain points from the interval (0, 1).

It is easy to see that we have

1∫

0

G(β1,...,βm)
m (t, x)dt =

1
2

(
R(β1,...,βm)

m e2,0

)
(x)

and
1∫

0

H(γ1,...,γn)
n (z, y)dz =

1
2

(
R(γ1,...,γn)

n e0,2

)
(y),

where we have considered the univariate remainders

R(β1,...,βm)
m = I − S(β1,...,βm)

m , R(γ1,...,γn)
n = I − S(γ1,...,γn)

n .

Now we can state the following result:

Theorem 3.2. If f ∈ C2,2(D), then the remainder of the approximation
formula (3.1) can be represented under the following Cauchy form:

(
R(β1,...,βm;γ1,...,γn)

m,n f
)

(x, y) =
1
2

(
R(β1,...,βm)

m e2,0

)
(x)f (2,0)(ξ, y)(3.3)

+
1
2

(
R(γ1,...,γn)

n e0,2

)
(y)f (0,2)(x, η)

−1
4

(
R(β1,...,βm)

m e2,0

)
(x)

(
R(γ1,...,γn)

n e0,2

)
(y)f (2,2)(ξ, η).
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Because
(
S

(β1,...,βm)
m f

)
(x) and

(
S

(γ1,...,γn)
n f

)
(y) are interpolatory at both

sides of the interval [0, 1], we can conclude that
(
R

(β1,...,βm)
m e2,0

)
(x) contains

the factor x(x− 1), while
(
R

(γ1,...,γn)
n e0,2

)
(y) has the factor y(y − 1).

Since
(
R

(β1,...,βm;γ1,...,γn)
m,n e0,0

)
(x, y) = 0 and the remainder is different

from zero for any convex function f of the first order, we can apply a criterion
of T. Popoviciu [7] and we find that the remainder of the approximation
formula (3.1) is of simple form.

Consequently, we can state:

Theorem 3.3. If the second-order divided differences of the function
f ∈ C(D) are bounded on the square D, then we can give an expression
of the remainder of the formula (3.1) in terms of divided differences under
the following form

(R(β1,...,βm;γ1,...,γn)
m,n f)(x, y)(3.4)

= (R(β1,...,βm)
m e2,0)(x) [xm,1, xm,2, xm,3; f(t, y)]

+(R(γ1,...,γn)
n e0,2)(y) [yn,1, yn,2, yn,3; f(x, z)]

−(R(β1,...,βm)
m e2,0)(x)(R(γ1,...,γn)

n e0,2)(y)
[

xm,1, xm,2, xm,3

yn,1, yn,2, yn,3
; f(t, z)

]
,

where xm,1, xm,2, xm,3, respectively yn,1, yn,2, yn,3 are certain points in the
interval [0, 1].

Now if we consider that f ∈ C2,2(D), then we can apply the mean value
theorems to the divided differences and we arrive at the expression (3.3) for
the remainder of approximation formula (3.1).

Finally, we mention that formulas (3.2), (3.3) and (3.4) can be extended
to functions more than two variables without any difficulty.
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4. L.W. Jensen: Sur une identité d’Abel et sur d’autres formules analogues.
Acta Math. 26 (1902), 307–318.

5. W.E. Milne: The remainder in linear methods of approximation. J. Res.
Mat. Bur. Standards 43 (1949), 501–511.

6. G. Peano: Resto nelle formule di quadratura expresso con un integrale
definito. Atti Acad. Naz. Lincei Rend. 22 (1913), 562–569.

7. T. Popoviciu: Sur le reste dans certaines formules linéaires
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