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SOME IDENTITIES FOR THE RIEMANN
ZETA-FUNCTION 11

Aleksandar Ivié

Abstract. Several identities for the Riemann zeta-function {(s) are proved. For

example, if 1 (¢) = {o} = o - ], en(@) = [ {ulpn—1(£) 9% (n > 2),
then

n +oo
= [ @ e =it 0<a <)

and

1 400 o+ it 2n +oo o
—00

Let as usual ((s) = Y72 n=° (Res > 1) denote the Riemann zeta-
function. This note is the continuation of the author’s work [6], where several
identities involving ((s) were obtained. The basic idea is to use properties
of the Mellin transform (f : [0,400) — R )

+oo
(1) F(s) = M[f(z); ] = / f@ztde  (s=o+it, o> 0),
0
in particular the analogue of the Parseval formula for Mellin transforms,
namely
1 o+100
) = F(s)|2ds = / ()2 da.
0

2mi o—100

For the conditions under which (2) holds, see e.g., [5] and [11]. If {z} denotes
the fractional part of  ({} = x — [z], where [z] is the greatest integer not
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exceeding x), we have the classical formula (see e.g., eq. (2.1.5) of E.C.
Titchmarsh [12])

(3) ) _ /O+Oo{a:}x_1_sdx _ /0+°O{1/x}xs—1 dz,

where s = o +it, 0 < o < 1. A quick proof is as follows. We have

C(s) = /1+O° e dz] = s /1+Oo[x]x_s_1 da

-0

+o0 +oo
= s/ ([x] —z)z™*"tda + s/ x” % dx
1 1

+oo
_ —s-1g .
3/1 {z}z x—i—s_l

This holds initially for ¢ > 1, but since the last integral is absolutely con-
vergent for ¢ > 0, it holds in this region as well by analytic continuation.
Since

1 1
s/ {r}z™*1da = s/ o de = — (0<o<1),
0 0 1-s

we obtain (3) on combining the preceding two formulae. We note that (3)
is a special case of the so-called Miintz’s formula (with f(z) = x[0,1(z), the
characteristic function of the unit interval)

+o0
(4) C(s)F(s) = /0 Pf(x)-z*!da,

where the Miintz operator P is the linear operator defined formally on func-
tions f : [0, +00) — C by

+o00 +o00
) Pia) =Yt~ 1 [ s

Besides the original proof of (4) by Miintz [8], proofs are given by E.C.
Titchmarsh [12, Chapter 1, Section 2.11] and recently by L. Bdez-Duarte
[2]. The identity (4) is valid for 0 < ¢ < 1 if f'(z) is continuous, bounded
in any finite interval and is O(x=?) for  — co where 3 > 1 is a constant.
The identity (3), which Béez-Duarte [2] calls the proto-Miintz identity, plays
an important role in the approach to the Riemann Hypothesis (RH, that
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all complex zeros of ((s) have real parts equal to 1/2) via methods from
functional analysis (see e.g., the works [1]-[4] and [9]).

Our first aim is to generalize (3). We introduce the convolution functions
on(x) by

oo z, du
©) @@= {ah ==l eal@) = [ beaa(DE @),

The asymptotic behaviour of the function ¢, (x) is contained in

Theorem 1. Ifn > 2 is a fized integer, then

(7)  nl(@) = % log"~!(1/z) + O(log" *(1/x)) (0 <z <1),

1)!
and

(8) pn(z) =O(log" Mz +1))  (z21).

Proof. Using the properties of {z}, namely {z} = z for 0 < < 1 and
{z} < z, one easily verifies (7) and (8) when n = 2. To prove the general
case we use induction, supposing that the theorem is true for some n. Then,
when 0 < x < 1,

x 1 —+o0
Ont1(x) :/ +/ —l—/ =0+ 1+ Is,
0 T 1

say. We have, by change of variable,

L e (D) = [ (D au=a [ o) 2 = o)
J e (5) 5= [ oD au=a [ )]

By the induction hypothesis
= [ (5) 5= [ (G
= [ e () vo (o (1)}

z Le n-1_dy n—1
= (n—l)‘/l log y? + O(x log (1/3:))

— % log"(1/z) + O(zlog" ' (1/x)).
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Finally, since {z} < z and (8) holds,

oo d +oe d 1
I3 :/ {u}en (—) X< :L'/ log"™* (E> —g < zlog" ! <> )
1 u 1 x/) u x

The proof of (8) is on similar lines, when we write

+oo
Ont1(x / / / =J1i+ o+ J;3 (x >1),

say, so that there is no need to repeat the details. By more elaborate analysis
(7) could be further sharpened. [

Theorem 2. Ifn > 1 is a fixed integer, and s = o +1it, 0 < g < 1, then

Cn(s) _ oo T LU_I_S T
) e [ e a

Clearly (9) reduces to (3) when n = 1. From Theorem 1 it transpires that
the integral in (9) is absolutely convergent for 0 < o < 1. By using (2) (with
—s in place of s) we obtain the following

Corollary 1. Forn € N we have

17 i(o +at) > e 12

Proof of Theorem 2. As already stated, (9) is true for n = 1. The general
case is proved then by induction. Suppose that (9) is true for some n, and
consider

€n+1

oo pHoo
n+1 / / {x}on(y)(zy)~ 1=s dz dy 0<o<1)

as a double integral. We make the change of variables z = v,y = u/v, noting
that the absolute value of the Jacobian of the transformation is 1/v. The
above integral becomes then

/;oo Om{v}@n (%)u‘l_sv_ldudv :/O+OO< 0 ke (7) d“) “1=s gy

+oo
= / Pn1(z)z % da,
0
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as asserted. The change of integration is valid by absolute convergence,
which is guaranteed by Theorem 1. [

Remark 1. L. Baez-Duarte kindly pointed out to me that the above procedure
leads in fact formally to a convolution theorem for Mellin transforms, namely (cf.

(1)

1) M

usu

Foo z. du
/O Fa)g(E) 2 s = Mf(e);s) Mlg(a):s) = F(s)G(s),

which is eq. (4.2.22) of I. Sneddon [10]. An alternative proof of (9) follows from
the second formula in (3) and (11), but we need again a result like Theorem 1 to
ensure the validity of the repeated use of (11). A similar approach via (modified)
Mellin transforms and convolutions was carried out by the author in [7].

There is another possibility for the use of the identity (3). Namely, one
can evaluate the Laplace transform of {x}/x for real values of the variable.
This is given by

Theorem 3. If M > 1 is a fixed integer and v denotes Euler’s constant,
then for T — 400

+o0
(12) / ﬁe_z/T dz = logT — 17 + § log(2n)
0 T

- 1—2m . e
+mzz:1 (2m<—( (1 —)Qm)T +O0u(T My,

Proof. We multiply (3) by T°T'(s), where I'(s) is the gamma-function,
integrate over s and use the well-known identity (e.g., see the Appendix of

[5])

1 c+1i00
e = —— 27°T'(s)ds (Rez >0, c>0).
2mi c—100
We obtain
1 c+i00 C(S) +o0 {.Z'}
1 — =TT = — 2L gme/T 1).
(13) 2m‘/c_m D or(s) ds /O Ui (0<e<)

In the integral on the left-hand side of (13) we shift the line of integra-
tion to Res = =N —1/2, N = 2M + 1 (i.e., taking ¢ = —N — 1/2) and
then apply the residue theorem. The gamma-function has simple poles at
s = —m,m = 0,1,2,... with residues (—1)"/m!. The zeta-function has
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simple (so-called “trivial zeros”) at s = —2m, m € N, which cancel with the
corresponding poles of I'(s). Thus there remains a pole of order two at s = 0,
plus simple poles at s = —1, —3, —5,.... The former produces the main term

in (12), when we take into account that ((0) = —31, ¢/(0) = —1 log(2n) (see
[5, Chapter 1]) and I'(1) = —y. The simple poles at s = —1,—3,—5,...
produce the sum over m in (12), and the proof is complete. [

Remark 2. The method of proof clearly yields also, as T' — 400,

T on(®) _oyr M 1—2m —1-2M
/ me dz = Py(logT) + > cmnT + O (T ),
0

xr
m=1

where Py, (z) is a polynomial in z of degree n whose coefficients may be explicitly
evaluated, and cm,n are suitable constants which also may be explicitly evaluated.

For our last result we turn to Miintz’s identity (4)—(5) and choose f(z) =
e*”2, which is a fast converging kernel function. Then

= 1 [T R |
Pfa) =3 fna) =1 [ gy =3 e - o
n=1 n=1

+o0
F(S) = / e_ﬂ'a:zms_l dzx = %F_S/ZF(%S).
0

From (2) and (4) it follows then that, for 0 < o < 1,

+o0
(14) /_ [((o+it)D(3o + Lit)[>dt
2

140 oo (IR —mn?z? 1 20—1
=87 ; nz::le % T dz.

The series on the right-hand side of (14) is connected to Jacobi’s theta func-
tion

—+oo
(15) 0(z) ==Y e ™%  (Rez>0),

which satisfies the functional equation (proved easily by e.g., Poisson sum-
mation formula)

(16) o(t) — \2 6 (1) (t>0).
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From (15)—(16) we infer that

+oo
a7 Y et = %(e(ﬁ) )=ty (1) - % (x> 0).

20 \ x2

By using (17) it is seen that the right-hand side of (14) equals

teo g /1 /1 1\2
e [ (1o(L) 1Y
0 4 \z \z T

(18)

The (absolute) convergence of the last integral at infinity follows from
= 2,2
uf(u?) —u = 2u Z e T
n=1
while the convergence at zero follows from
) 1 -
uf(u”) =0 ( — :1—|-O<e ) (u— 0+).
u

Now we note that (14) remains unchanged when o is replaced by 1 — o, and
then we use the functional equation (see e.g., [5, Chapter 1]) for {(s) in the
form

752 (s)T(s) = 7= (=9/2¢(1 = $)P(3(1 — 5))

to transform the resulting left-hand side of (14). Then (14) and (18) yield
the following

Theorem 4. For 0 < o <1 we have

+o0 +oo
0

— 00
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