SOME IDENTITIES FOR THE RIEMANN
 ZETA-FUNCTION II

Aleksandar Ivić

Abstract. Several identities for the Riemann zeta-function $\zeta(s)$ are proved. For example, if $\varphi_{1}(x):=\{x\}=x-[x], \quad \varphi_{n}(x):=\int_{0}^{+\infty}\{u\} \varphi_{n-1}\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u}(n \geq 2)$, then

$$
\frac{\zeta^{n}(s)}{(-s)^{n}}=\int_{0}^{+\infty} \varphi_{n}(x) x^{-1-s} \mathrm{~d} x \quad(s=\sigma+i t, 0<\sigma<1)
$$

and

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{|\zeta(\sigma+i t)|^{2 n}}{\left(\sigma^{2}+t^{2}\right)^{n}} \mathrm{~d} t=\int_{0}^{+\infty} \varphi_{n}^{2}(x) x^{-1-2 \sigma} \mathrm{~d} x \quad(0<\sigma<1)
$$

Let as usual $\zeta(s)=\sum_{n=1}^{+\infty} n^{-s}(\operatorname{Re} s>1)$ denote the Riemann zetafunction. This note is the continuation of the author's work [6], where several identities involving $\zeta(s)$ were obtained. The basic idea is to use properties of the Mellin transform $(f:[0,+\infty) \rightarrow \mathbb{R})$

$$
\begin{equation*}
F(s)=\mathcal{M}[f(x) ; s]:=\int_{0}^{+\infty} f(x) x^{s-1} \mathrm{~d} x \quad(s=\sigma+i t, \sigma>0), \tag{1}
\end{equation*}
$$

in particular the analogue of the Parseval formula for Mellin transforms, namely

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty}|F(s)|^{2} \mathrm{~d} s=\int_{0}^{+\infty} f^{2}(x) x^{2 \sigma-1} \mathrm{~d} x \tag{2}
\end{equation*}
$$

For the conditions under which (2) holds, see e.g., [5] and [11]. If $\{x\}$ denotes the fractional part of $x(\{x\}=x-[x]$, where $[x]$ is the greatest integer not
exceeding x), we have the classical formula (see e.g., eq. (2.1.5) of E.C. Titchmarsh [12])

$$
\begin{equation*}
\frac{\zeta(s)}{s}=-\int_{0}^{+\infty}\{x\} x^{-1-s} \mathrm{~d} x=-\int_{0}^{+\infty}\{1 / x\} x^{s-1} \mathrm{~d} x \tag{3}
\end{equation*}
$$

where $s=\sigma+i t, 0<\sigma<1$. A quick proof is as follows. We have

$$
\begin{aligned}
\zeta(s) & =\int_{1-0}^{+\infty} x^{-s} \mathrm{~d}[x]=s \int_{1}^{+\infty}[x] x^{-s-1} \mathrm{~d} x \\
& =s \int_{1}^{+\infty}([x]-x) x^{-s-1} \mathrm{~d} x+s \int_{1}^{+\infty} x^{-s} \mathrm{~d} x \\
& =-s \int_{1}^{+\infty}\{x\} x^{-s-1} \mathrm{~d} x+\frac{s}{s-1}
\end{aligned}
$$

This holds initially for $\sigma>1$, but since the last integral is absolutely convergent for $\sigma>0$, it holds in this region as well by analytic continuation. Since

$$
s \int_{0}^{1}\{x\} x^{-s-1} \mathrm{~d} x=s \int_{0}^{1} x^{-s} \mathrm{~d} x=\frac{s}{1-s} \quad(0<\sigma<1)
$$

we obtain (3) on combining the preceding two formulae. We note that (3) is a special case of the so-called Müntz's formula (with $f(x)=\chi_{[0,1]}(x)$, the characteristic function of the unit interval)

$$
\begin{equation*}
\zeta(s) F(s)=\int_{0}^{+\infty} P f(x) \cdot x^{s-1} \mathrm{~d} x \tag{4}
\end{equation*}
$$

where the Müntz operator P is the linear operator defined formally on functions $f:[0,+\infty) \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
P f(x):=\sum_{n=1}^{+\infty} f(n x)-\frac{1}{x} \int_{0}^{+\infty} f(t) \mathrm{d} t \tag{5}
\end{equation*}
$$

Besides the original proof of (4) by Müntz [8], proofs are given by E.C. Titchmarsh [12, Chapter 1, Section 2.11] and recently by L. Báez-Duarte [2]. The identity (4) is valid for $0<\sigma<1$ if $f^{\prime}(x)$ is continuous, bounded in any finite interval and is $O\left(x^{-\beta}\right)$ for $x \rightarrow \infty$ where $\beta>1$ is a constant. The identity (3), which Báez-Duarte [2] calls the proto-Müntz identity, plays an important rôle in the approach to the Riemann Hypothesis (RH , that
all complex zeros of $\zeta(s)$ have real parts equal to $1 / 2)$ via methods from functional analysis (see e.g., the works [1]-[4] and [9]).

Our first aim is to generalize (3). We introduce the convolution functions $\varphi_{n}(x)$ by
(6) $\varphi_{1}(x):=\{x\}=x-[x], \varphi_{n}(x):=\int_{0}^{+\infty}\{u\} \varphi_{n-1}\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u} \quad(n \geq 2)$.

The asymptotic behaviour of the function $\varphi_{n}(x)$ is contained in
Theorem 1. If $n \geq 2$ is a fixed integer, then

$$
\begin{equation*}
\varphi_{n}(x)=\frac{x}{(n-1)!} \log ^{n-1}(1 / x)+O\left(x \log ^{n-2}(1 / x)\right) \quad(0<x<1) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{n}(x)=O\left(\log ^{n-1}(x+1)\right) \quad(x \geq 1) \tag{8}
\end{equation*}
$$

Proof. Using the properties of $\{x\}$, namely $\{x\}=x$ for $0<x<1$ and $\{x\} \leq x$, one easily verifies (7) and (8) when $n=2$. To prove the general case we use induction, supposing that the theorem is true for some n. Then, when $0<x<1$,

$$
\varphi_{n+1}(x)=\int_{0}^{x}+\int_{x}^{1}+\int_{1}^{+\infty}=I_{1}+I_{2}+I_{3}
$$

say. We have, by change of variable,

$$
I_{1}=\int_{0}^{x}\{u\} \varphi_{n}\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u}=\int_{0}^{x} \varphi_{n}\left(\frac{x}{u}\right) \mathrm{d} u=x \int_{1}^{+\infty} \varphi_{n}(v) \frac{\mathrm{d} v}{v^{2}}=O(x)
$$

By the induction hypothesis

$$
\begin{aligned}
I_{2} & =\int_{x}^{1}\{u\} \varphi_{n}\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u}=\int_{x}^{1} \varphi_{n}\left(\frac{x}{u}\right) \mathrm{d} u \\
& =\int_{x}^{1}\left\{\frac{x}{(n-1)!u} \log ^{n-1}\left(\frac{u}{x}\right)+O\left(\frac{x}{u} \log ^{n-2}\left(\frac{u}{x}\right)\right)\right\} \mathrm{d} u \\
& =\frac{x}{(n-1)!} \int_{1}^{1 / x} \log ^{n-1} y \frac{\mathrm{~d} y}{y}+O\left(x \log ^{n-1}(1 / x)\right) \\
& =\frac{x}{n!} \log ^{n}(1 / x)+O\left(x \log ^{n-1}(1 / x)\right)
\end{aligned}
$$

Finally, since $\{x\} \leq x$ and (8) holds,

$$
I_{3}=\int_{1}^{+\infty}\{u\} \varphi_{n}\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u} \ll x \int_{1}^{+\infty} \log ^{n-1}\left(\frac{u}{x}\right) \frac{\mathrm{d} u}{u^{2}} \ll x \log ^{n-1}\left(\frac{1}{x}\right) .
$$

The proof of (8) is on similar lines, when we write

$$
\varphi_{n+1}(x)=\int_{0}^{1}+\int_{1}^{x}+\int_{x}^{+\infty}=J_{1}+J_{2}+J_{3} \quad(x \geq 1)
$$

say, so that there is no need to repeat the details. By more elaborate analysis (7) could be further sharpened.

Theorem 2. If $n \geq 1$ is a fixed integer, and $s=\sigma+i t, 0<\sigma<1$, then

$$
\begin{equation*}
\frac{\zeta^{n}(s)}{(-s)^{n}}=\int_{0}^{+\infty} \varphi_{n}(x) x^{-1-s} \mathrm{~d} x \tag{9}
\end{equation*}
$$

Clearly (9) reduces to (3) when $n=1$. From Theorem 1 it transpires that the integral in (9) is absolutely convergent for $0<\sigma<1$. By using (2) (with $-s$ in place of s) we obtain the following
Corollary 1. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{|\zeta(\sigma+i t)|^{2 n}}{\left(\sigma^{2}+t^{2}\right)^{n}} \mathrm{~d} t=\int_{0}^{+\infty} \varphi_{n}^{2}(x) x^{-1-2 \sigma} \mathrm{~d} x \quad(0<\sigma<1) \tag{10}
\end{equation*}
$$

Proof of Theorem 2. As already stated, (9) is true for $n=1$. The general case is proved then by induction. Suppose that (9) is true for some n, and consider

$$
\frac{\zeta^{n+1}(s)}{(-s)^{n+1}}=\int_{0}^{+\infty} \int_{0}^{+\infty}\{x\} \varphi_{n}(y)(x y)^{-1-s} \mathrm{~d} x \mathrm{~d} y \quad(0<\sigma<1)
$$

as a double integral. We make the change of variables $x=v, y=u / v$, noting that the absolute value of the Jacobian of the transformation is $1 / v$. The above integral becomes then

$$
\begin{aligned}
\int_{0}^{+\infty} \int_{0}^{+\infty}\{v\} \varphi_{n}\left(\frac{u}{v}\right) u^{-1-s} v^{-1} \mathrm{~d} u \mathrm{~d} v & =\int_{0}^{+\infty}\left(\int_{0}^{+\infty}\{v\} \varphi_{n}\left(\frac{u}{v}\right) \frac{\mathrm{d} v}{v}\right) u^{-1-s} \mathrm{~d} u \\
& =\int_{0}^{+\infty} \varphi_{n+1}(x) x^{-1-s} \mathrm{~d} x
\end{aligned}
$$

as asserted. The change of integration is valid by absolute convergence, which is guaranteed by Theorem 1.

Remark 1. L. Báez-Duarte kindly pointed out to me that the above procedure leads in fact formally to a convolution theorem for Mellin transforms, namely (cf. (1))

$$
\begin{equation*}
\mathcal{M}\left[\int_{0}^{+\infty} f(u) g\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u} ; s\right]=\mathcal{M}[f(x) ; s] \mathcal{M}[g(x) ; s]=F(s) G(s) \tag{11}
\end{equation*}
$$

which is eq. (4.2.22) of I. Sneddon [10]. An alternative proof of (9) follows from the second formula in (3) and (11), but we need again a result like Theorem 1 to ensure the validity of the repeated use of (11). A similar approach via (modified) Mellin transforms and convolutions was carried out by the author in [7].

There is another possibility for the use of the identity (3). Namely, one can evaluate the Laplace transform of $\{x\} / x$ for real values of the variable. This is given by

Theorem 3. If $M \geq 1$ is a fixed integer and γ denotes Euler's constant, then for $T \rightarrow+\infty$

$$
\begin{align*}
\int_{0}^{+\infty} \frac{\{x\}}{x} \mathrm{e}^{-x / T} \mathrm{~d} x & =\frac{1}{2} \log T-\frac{1}{2} \gamma+\frac{1}{2} \log (2 \pi) \tag{12}\\
& +\sum_{m=1}^{M} \frac{\zeta(1-2 m)}{(2 m-1)!(1-2 m)} T^{1-2 m}+O_{M}\left(T^{-1-2 M}\right)
\end{align*}
$$

Proof. We multiply (3) by $T^{s} \Gamma(s)$, where $\Gamma(s)$ is the gamma-function, integrate over s and use the well-known identity (e.g., see the Appendix of [5])

$$
\mathrm{e}^{-z}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} z^{-s} \Gamma(s) \mathrm{d} s \quad(\operatorname{Re} z>0, c>0)
$$

We obtain
(13) $\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta(s)}{s} T^{s} \Gamma(s) \mathrm{d} s=-\int_{0}^{+\infty} \frac{\{x\}}{x} \mathrm{e}^{-x / T} \mathrm{~d} x \quad(0<c<1)$.

In the integral on the left-hand side of (13) we shift the line of integration to $\operatorname{Re} s=-N-1 / 2, N=2 M+1$ (i.e., taking $c=-N-1 / 2$) and then apply the residue theorem. The gamma-function has simple poles at $s=-m, m=0,1,2, \ldots$ with residues $(-1)^{m} / m$!. The zeta-function has
simple (so-called "trivial zeros") at $s=-2 m, m \in \mathbb{N}$, which cancel with the corresponding poles of $\Gamma(s)$. Thus there remains a pole of order two at $s=0$, plus simple poles at $s=-1,-3,-5, \ldots$. The former produces the main term in (12), when we take into account that $\zeta(0)=-\frac{1}{2}, \zeta^{\prime}(0)=-\frac{1}{2} \log (2 \pi)$ (see $\left[5\right.$, Chapter 1]) and $\Gamma^{\prime}(1)=-\gamma$. The simple poles at $s=-1,-3,-5, \ldots$ produce the sum over m in (12), and the proof is complete.

Remark 2. The method of proof clearly yields also, as $T \rightarrow+\infty$,

$$
\int_{0}^{+\infty} \frac{\varphi_{n}(x)}{x} \mathrm{e}^{-x / T} \mathrm{~d} x=P_{n}(\log T)+\sum_{m=1}^{M} c_{m, n} T^{1-2 m}+O_{M}\left(T^{-1-2 M}\right)
$$

where $P_{n}(z)$ is a polynomial in z of degree n whose coefficients may be explicitly evaluated, and $c_{m, n}$ are suitable constants which also may be explicitly evaluated.

For our last result we turn to Müntz's identity (4)-(5) and choose $f(x)=$ $\mathrm{e}^{-\pi x^{2}}$, which is a fast converging kernel function. Then

$$
\begin{aligned}
P f(x) & =\sum_{n=1}^{+\infty} f(n x)-\frac{1}{x} \int_{0}^{+\infty} f(t) \mathrm{d} t=\sum_{n=1}^{+\infty} \mathrm{e}^{-\pi n^{2} x^{2}}-\frac{1}{2 x} \\
F(s) & =\int_{0}^{+\infty} \mathrm{e}^{-\pi x^{2}} x^{s-1} \mathrm{~d} x=\frac{1}{2} \pi^{-s / 2} \Gamma\left(\frac{1}{2} s\right)
\end{aligned}
$$

From (2) and (4) it follows then that, for $0<\sigma<1$,

$$
\begin{align*}
\int_{-\infty}^{+\infty} \mid \zeta(\sigma & +i t)\left.\Gamma\left(\frac{1}{2} \sigma+\frac{1}{2} i t\right)\right|^{2} \mathrm{~d} t \tag{14}\\
& =8 \pi^{1+\sigma} \int_{0}^{+\infty}\left(\sum_{n=1}^{+\infty} \mathrm{e}^{-\pi n^{2} x^{2}}-\frac{1}{2 x}\right)^{2} x^{2 \sigma-1} \mathrm{~d} x
\end{align*}
$$

The series on the right-hand side of (14) is connected to Jacobi's theta function

$$
\begin{equation*}
\theta(z):=\sum_{n=1}^{+\infty} \mathrm{e}^{-\pi n^{2} z} \quad(\operatorname{Re} z>0) \tag{15}
\end{equation*}
$$

which satisfies the functional equation (proved easily by e.g., Poisson summation formula)

$$
\begin{equation*}
\theta(t)=\frac{1}{\sqrt{t}} \theta\left(\frac{1}{t}\right) \quad(t>0) \tag{16}
\end{equation*}
$$

From (15)-(16) we infer that

$$
\begin{equation*}
\sum_{n=1}^{+\infty} \mathrm{e}^{-\pi n^{2} x^{2}}=\frac{1}{2}\left(\theta\left(x^{2}\right)-1\right)=\frac{1}{2 x} \theta\left(\frac{1}{x^{2}}\right)-\frac{1}{2} \quad(x>0) \tag{17}
\end{equation*}
$$

By using (17) it is seen that the right-hand side of (14) equals

$$
\begin{align*}
& 8 \pi^{1+\sigma} \int_{0}^{+\infty} \frac{1}{4}\left(\frac{1}{x} \theta\left(\frac{1}{x^{2}}\right)-1-\frac{1}{x}\right)^{2} x^{2 \sigma-1} \mathrm{~d} x \tag{18}\\
&=2 \pi^{1+\sigma} \int_{0}^{+\infty}\left(u \theta\left(u^{2}\right)-1-u\right)^{2} u^{-1-2 \sigma} \mathrm{~d} u
\end{align*}
$$

The (absolute) convergence of the last integral at infinity follows from

$$
u \theta\left(u^{2}\right)-u=2 u \sum_{n=1}^{+\infty} \mathrm{e}^{-\pi n^{2} u^{2}}
$$

while the convergence at zero follows from

$$
u \theta\left(u^{2}\right)=\theta\left(\frac{1}{u^{2}}\right)=1+O\left(\mathrm{e}^{-u^{-2}}\right) \quad(u \rightarrow 0+)
$$

Now we note that (14) remains unchanged when σ is replaced by $1-\sigma$, and then we use the functional equation (see e.g., [5, Chapter 1]) for $\zeta(s)$ in the form

$$
\pi^{-s / 2} \zeta(s) \Gamma\left(\frac{1}{2} s\right)=\pi^{-(1-s) / 2} \zeta(1-s) \Gamma\left(\frac{1}{2}(1-s)\right)
$$

to transform the resulting left-hand side of (14). Then (14) and (18) yield the following

Theorem 4. For $0<\sigma<1$ we have

$$
\int_{-\infty}^{+\infty}\left|\zeta(\sigma+i t) \Gamma\left(\frac{1}{2} \sigma+\frac{1}{2} i t\right)\right|^{2} \mathrm{~d} t=2 \pi^{\sigma} \int_{0}^{+\infty}\left(u \theta\left(u^{2}\right)-1-u\right)^{2} u^{2 \sigma-3} \mathrm{~d} u .
$$

REFERENCES

1. L. BÁEZ-DuARTE: A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), no. 1, 5-11.
2. L. BÁEz-Duarte: A general strong Nyman-Beurling criterion for the Riemann Hypothesis. Publ. Inst. Math. (Beograd) (N.S.) (to appear).
3. L. Báez-Duarte, M. Balazard, B. Landreau et E. Saias: Notes sur la fonction ζ de Riemann, 3. Adv. Math. 149 (2000), 130-144.
4. A. Beurling: A closure problem related to the Riemann zeta-function. Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 312-314.
5. A. Ivić: The Riemann Zeta-function. John Wiley \& Sons, New York, 1985.
6. A. Ivić: Some identities for the Riemann zeta-function. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14 (2003), 20-25.
7. A. Ivić: Estimates of convolutions of certain number-theoretic error terms. Int. J. Math. Math. Sci. 2004, no. 1-4, 1-23.
8. C. H. Müntz: Beziehungen der Riemannschen ζ-Funktion zu willkürlichen reellen Funktionen. Mat. Tidsskrift, B (1922), 39-47.
9. B. Nyman: On the One-Dimensional Translation Group and SemiGroup in Certain Function Spaces. Thesis, University of Uppsala, 1950, 55 pp.
10. I. Sneddon: The Use of Integral Transforms. McGraw-Hill, New York etc., 1972.
11. E. C. Titchmarsh: Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford, 1948.
12. E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. (2nd ed.), Oxford at the Clarendon Press, 1986.

Katedra Matematike RGF-a
Universiteta u Beogradu
Đušina 7, 11000 Beograd
Serbia and Montenegro
e-mail: aivic@matf.bg.ac.yu, ivic@rgf.bg.ac.yu

