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SOME IDENTITIES FOR THE RIEMANN
ZETA-FUNCTION II

Aleksandar Ivić

Abstract. Several identities for the Riemann zeta-function ζ(s) are proved. For

example, if ϕ1(x) := {x} = x − [x], ϕn(x) :=
∫ +∞
0 {u}ϕn−1

(
x
u

)
du
u (n ≥ 2),

then
ζn(s)

(−s)n
=

∫ +∞

0
ϕn(x)x−1−s dx (s = σ + it, 0 < σ < 1)

and

1

2π

∫ +∞

−∞
|ζ(σ + it)|2n

(σ2 + t2)n
dt =

∫ +∞

0
ϕ2

n(x)x−1−2σ dx (0 < σ < 1).

Let as usual ζ(s) =
∑+∞

n=1 n−s (Re s > 1) denote the Riemann zeta-
function. This note is the continuation of the author’s work [6], where several
identities involving ζ(s) were obtained. The basic idea is to use properties
of the Mellin transform (f : [0, +∞) → R )

(1) F (s) = M[f(x); s] :=
∫ +∞

0

f(x)xs−1 dx (s = σ + it, σ > 0),

in particular the analogue of the Parseval formula for Mellin transforms,
namely

(2)
1

2πi

∫ σ+i∞

σ−i∞
|F (s)|2 ds =

∫ +∞

0

f2(x)x2σ−1 dx.

For the conditions under which (2) holds, see e.g., [5] and [11]. If {x} denotes
the fractional part of x ({x} = x− [x], where [x] is the greatest integer not
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2 A. Ivić

exceeding x), we have the classical formula (see e.g., eq. (2.1.5) of E.C.
Titchmarsh [12])

(3)
ζ(s)
s

= −
∫ +∞

0

{x}x−1−s dx = −
∫ +∞

0

{1/x}xs−1 dx,

where s = σ + it, 0 < σ < 1. A quick proof is as follows. We have

ζ(s) =
∫ +∞

1−0

x−s d[x] = s

∫ +∞

1

[x]x−s−1 dx

= s

∫ +∞

1

([x]− x)x−s−1 dx + s

∫ +∞

1

x−s dx

= −s

∫ +∞

1

{x}x−s−1 dx +
s

s− 1
.

This holds initially for σ > 1, but since the last integral is absolutely con-
vergent for σ > 0, it holds in this region as well by analytic continuation.
Since

s

∫ 1

0

{x}x−s−1 dx = s

∫ 1

0

x−s dx =
s

1− s
(0 < σ < 1),

we obtain (3) on combining the preceding two formulae. We note that (3)
is a special case of the so-called Müntz’s formula (with f(x) = χ[0,1](x), the
characteristic function of the unit interval)

(4) ζ(s)F (s) =
∫ +∞

0

Pf(x) · xs−1 dx,

where the Müntz operator P is the linear operator defined formally on func-
tions f : [0,+∞) → C by

(5) Pf(x) :=
+∞∑
n=1

f(nx)− 1
x

∫ +∞

0

f(t) dt.

Besides the original proof of (4) by Müntz [8], proofs are given by E.C.
Titchmarsh [12, Chapter 1, Section 2.11] and recently by L. Báez-Duarte
[2]. The identity (4) is valid for 0 < σ < 1 if f ′(x) is continuous, bounded
in any finite interval and is O(x−β) for x → ∞ where β > 1 is a constant.
The identity (3), which Báez-Duarte [2] calls the proto-Müntz identity, plays
an important rôle in the approach to the Riemann Hypothesis (RH, that
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all complex zeros of ζ(s) have real parts equal to 1/2) via methods from
functional analysis (see e.g., the works [1]–[4] and [9]).

Our first aim is to generalize (3). We introduce the convolution functions
ϕn(x) by

(6) ϕ1(x) := {x} = x− [x], ϕn(x) :=
∫ +∞

0

{u}ϕn−1

(x

u

) du

u
(n ≥ 2).

The asymptotic behaviour of the function ϕn(x) is contained in

Theorem 1. If n ≥ 2 is a fixed integer, then

(7) ϕn(x) =
x

(n− 1)!
logn−1(1/x) + O

(
x logn−2(1/x)

)
(0 < x < 1),

and

(8) ϕn(x) = O(logn−1(x + 1)) (x ≥ 1).

Proof. Using the properties of {x}, namely {x} = x for 0 < x < 1 and
{x} ≤ x, one easily verifies (7) and (8) when n = 2. To prove the general
case we use induction, supposing that the theorem is true for some n. Then,
when 0 < x < 1,

ϕn+1(x) =
∫ x

0

+
∫ 1

x

+
∫ +∞

1

= I1 + I2 + I3,

say. We have, by change of variable,

I1 =
∫ x

0

{u}ϕn

(x

u

) du

u
=

∫ x

0

ϕn

(x

u

)
du = x

∫ +∞

1

ϕn(v)
dv

v2
= O(x).

By the induction hypothesis

I2 =
∫ 1

x

{u}ϕn

(x

u

) du

u
=

∫ 1

x

ϕn

(x

u

)
du

=
∫ 1

x

{
x

(n− 1)!u
logn−1

(u

x

)
+ O

(x

u
logn−2

(u

x

))}
du

=
x

(n− 1)!

∫ 1/x

1

logn−1 y
dy

y
+ O

(
x logn−1(1/x)

)

=
x

n!
logn(1/x) + O(x logn−1(1/x)).
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Finally, since {x} ≤ x and (8) holds,

I3 =
∫ +∞

1

{u}ϕn

(x

u

) du

u
¿ x

∫ +∞

1

logn−1
(u

x

) du

u2
¿ x logn−1

(
1
x

)
.

The proof of (8) is on similar lines, when we write

ϕn+1(x) =
∫ 1

0

+
∫ x

1

+
∫ +∞

x

= J1 + J2 + J3 (x ≥ 1),

say, so that there is no need to repeat the details. By more elaborate analysis
(7) could be further sharpened. ¤
Theorem 2. If n ≥ 1 is a fixed integer, and s = σ + it, 0 < σ < 1, then

(9)
ζn(s)
(−s)n

=
∫ +∞

0

ϕn(x)x−1−s dx.

Clearly (9) reduces to (3) when n = 1. From Theorem 1 it transpires that
the integral in (9) is absolutely convergent for 0 < σ < 1. By using (2) (with
−s in place of s) we obtain the following

Corollary 1. For n ∈ N we have

(10)
1
2π

∫ +∞

−∞

|ζ(σ + it)|2n

(σ2 + t2)n
dt =

∫ +∞

0

ϕ2
n(x)x−1−2σ dx (0 < σ < 1).

Proof of Theorem 2. As already stated, (9) is true for n = 1. The general
case is proved then by induction. Suppose that (9) is true for some n, and
consider

ζn+1(s)
(−s)n+1

=
∫ +∞

0

∫ +∞

0

{x}ϕn(y)(xy)−1−s dx dy (0 < σ < 1)

as a double integral. We make the change of variables x = v, y = u/v, noting
that the absolute value of the Jacobian of the transformation is 1/v. The
above integral becomes then
∫ +∞

0

∫ +∞

0

{v}ϕn

(u

v

)
u−1−sv−1 dudv =

∫ +∞

0

(∫ +∞

0

{v}ϕn

(u

v

) dv

v

)
u−1−s du

=
∫ +∞

0

ϕn+1(x)x−1−s dx,
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as asserted. The change of integration is valid by absolute convergence,
which is guaranteed by Theorem 1. ¤

Remark 1. L. Báez-Duarte kindly pointed out to me that the above procedure
leads in fact formally to a convolution theorem for Mellin transforms, namely (cf.
(1))

(11) M
[∫ +∞

0
f(u)g

(x

u

) du

u
; s

]
= M[f(x); s]M[g(x); s] = F (s)G(s),

which is eq. (4.2.22) of I. Sneddon [10]. An alternative proof of (9) follows from
the second formula in (3) and (11), but we need again a result like Theorem 1 to
ensure the validity of the repeated use of (11). A similar approach via (modified)
Mellin transforms and convolutions was carried out by the author in [7].

There is another possibility for the use of the identity (3). Namely, one
can evaluate the Laplace transform of {x}/x for real values of the variable.
This is given by

Theorem 3. If M ≥ 1 is a fixed integer and γ denotes Euler’s constant,
then for T → +∞

(12)
∫ +∞

0

{x}
x

e−x/T dx = 1
2 log T − 1

2γ + 1
2 log(2π)

+
M∑

m=1

ζ(1− 2m)
(2m− 1)!(1− 2m)

T 1−2m + OM (T−1−2M ).

Proof. We multiply (3) by T sΓ(s), where Γ(s) is the gamma-function,
integrate over s and use the well-known identity (e.g., see the Appendix of
[5])

e−z =
1

2πi

∫ c+i∞

c−i∞
z−sΓ(s) ds (Re z > 0, c > 0).

We obtain

(13)
1

2πi

∫ c+i∞

c−i∞

ζ(s)
s

T sΓ(s) ds = −
∫ +∞

0

{x}
x

e−x/T dx (0 < c < 1).

In the integral on the left-hand side of (13) we shift the line of integra-
tion to Re s = −N − 1/2, N = 2M + 1 (i.e., taking c = −N − 1/2) and
then apply the residue theorem. The gamma-function has simple poles at
s = −m, m = 0, 1, 2, . . . with residues (−1)m/m!. The zeta-function has
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simple (so-called “trivial zeros”) at s = −2m, m ∈ N, which cancel with the
corresponding poles of Γ(s). Thus there remains a pole of order two at s = 0,
plus simple poles at s = −1,−3,−5, . . . . The former produces the main term
in (12), when we take into account that ζ(0) = − 1

2 , ζ ′(0) = − 1
2 log(2π) (see

[5, Chapter 1]) and Γ′(1) = −γ. The simple poles at s = −1,−3,−5, . . .
produce the sum over m in (12), and the proof is complete. ¤

Remark 2. The method of proof clearly yields also, as T → +∞,

∫ +∞

0

ϕn(x)

x
e−x/T dx = Pn(log T ) +

M∑

m=1

cm,nT 1−2m + OM (T−1−2M ),

where Pn(z) is a polynomial in z of degree n whose coefficients may be explicitly
evaluated, and cm,n are suitable constants which also may be explicitly evaluated.

For our last result we turn to Müntz’s identity (4)–(5) and choose f(x) =
e−πx2

, which is a fast converging kernel function. Then

Pf(x) =
+∞∑
n=1

f(nx)− 1
x

∫ +∞

0

f(t) dt =
+∞∑
n=1

e−πn2x2 − 1
2x

,

F (s) =
∫ +∞

0

e−πx2
xs−1 dx = 1

2π−s/2Γ( 1
2s).

From (2) and (4) it follows then that, for 0 < σ < 1,
∫ +∞

−∞
|ζ(σ + it)Γ(1

2σ + 1
2 it)|2 dt(14)

= 8π1+σ

∫ +∞

0

(
+∞∑
n=1

e−πn2x2 − 1
2x

)2

x2σ−1 dx.

The series on the right-hand side of (14) is connected to Jacobi’s theta func-
tion

(15) θ(z) :=
+∞∑
n=1

e−πn2z (Re z > 0),

which satisfies the functional equation (proved easily by e.g., Poisson sum-
mation formula)

(16) θ(t) =
1√
t
θ

(
1
t

)
(t > 0).
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From (15)–(16) we infer that

(17)
+∞∑
n=1

e−πn2x2
=

1
2
(
θ(x2)− 1

)
=

1
2x

θ

(
1
x2

)
− 1

2
(x > 0).

By using (17) it is seen that the right-hand side of (14) equals

8π1+σ

∫ +∞

0

1
4

(
1
x

θ

(
1
x2

)
− 1− 1

x

)2

x2σ−1 dx

(18)

= 2π1+σ

∫ +∞

0

(uθ(u2)− 1− u)2u−1−2σ du.

The (absolute) convergence of the last integral at infinity follows from

uθ(u2)− u = 2u

+∞∑
n=1

e−πn2u2
,

while the convergence at zero follows from

uθ(u2) = θ

(
1
u2

)
= 1 + O

(
e−u−2

)
(u → 0+).

Now we note that (14) remains unchanged when σ is replaced by 1− σ, and
then we use the functional equation (see e.g., [5, Chapter 1]) for ζ(s) in the
form

π−s/2ζ(s)Γ(1
2s) = π−(1−s)/2ζ(1− s)Γ(1

2 (1− s))

to transform the resulting left-hand side of (14). Then (14) and (18) yield
the following

Theorem 4. For 0 < σ < 1 we have

∫ +∞

−∞
|ζ(σ + it)Γ(1

2σ + 1
2 it)|2 dt = 2πσ

∫ +∞

0

(uθ(u2)− 1− u)2u2σ−3 du.
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