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Abstract. We discuss the applicability of Krylov subspace methods to the so-
lution of linear systems of equations occurring in the application of collocation
methods to the numerical solution of Cauchy singular integral equations on an
interval. The aim is to obtain fast algorithms for the approximate solution of
such equations with O(n log n) computational complexity.

1. Introduction

During the last 15 years, the problem of the construction of fast solvers for
linear systems of algebraic equations occurring in the numerical solution of
singular integral and related equations have been played an important role.
Since, usually, the matrices of such systems are not sparse one has to try
to employ some structural and/or smoothing properties of the operators (or
matrices) involved in the original equation. The classes of singular integral
equations, for which there exist essential contributions in this direction can
be divided into two cases, the periodic case and a case, which we call quasi-
periodic.

As an example for the periodic case, let us consider a Cauchy singular
integral equation on the unit circle T = {z ∈ C : |z| = 1} of the form

(Au)(t) := a(t)u(t) +
b(t)
πi

∫

T

u(s) ds

s− t
= f(t) , t ∈ T ,(1.1)
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where a, b, f : T −→ C are given, say, continuous functions satisfying [a(t)]2−
[b(t)]2 6= 0 , t ∈ T . A collocation method for equation (1.1) can be described
in the following way. Let tnj = e2πij/(2n+1) , j = −n, . . . , n , be the collocation
points, ej(t) = tj , and

PTn u =
n∑

j=−n

〈u, ej〉T ej ,

the respective orthoprojection from L2(T) onto span {e−n, . . . , en} , where

〈u, v〉T =
1
2π

∫ π

−π
u(eis)v(eis) ds .

Look for an approximate solution un ∈ imPTn , such that

(Aun)(tnj) = f(tnj) , j = −n, . . . , n .(1.2)

If we define the interpolation operator LTn by

LTnf ∈ im PTn , (LTnf)(tnj) = f(tnj) , j = −n, . . . , n ,

the collocation conditions (1.2) can be written equivalently as the operator
equation

LTnAun = LTnf , un ∈ im PTn .

Write the operator A of (1.1) in the form A = aI + bST . It is well known
that ST : L2(T) −→ L2(T) is continuous with S2

T = I , such that

PT =
1
2
(I + ST) and QT =

1
2
(I − ST) = I − PT

are projections and A = cPT + dQT , where c = a + b , d = a− b . Hence the
collocation method (1.2) is equivalent to

LTn(cPT + dQT)un = LTnf , un ∈ imPTn .(1.3)

The application of Amosov’s idea (see [1, 5]) to this situation leads to the
following method.

Choose a positive integer m such that m < n and (2n + 1)/(2m + 1) is
an integer, and look for an approximate solution vn as vn = PTmwm +QTmzn ,
where QTm = I − PTm , wm ∈ im PTm , zn ∈ im PTn , and

zn = LTnBLTnf , B = c−1PT + d−1QT ,
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LTm(cPT + dQT)wm = LTmg , g = f − (cPT + dQT)QTmzn .

Using the Fourier matrix F n =
[

tknj

]n

j,k=−n
of order 2n + 1 together with

its inverse F−1
n =

1
2n + 1

[
t−k
nj

]n

j,k=−n
the method can be realized with

O(n log n) complexity if m is chosen in such a way that m ∼ n1/3 (see the
following algorithm). Let f̃n =

[
f(tnj)

]n

j=−n
and f̂n =

[ 〈f, ej〉T
]n

j=−n
.

Algorithm:

1. Compute ẑn = F−1
n

(
C−1

n F nI+
n + D−1

n F nI−n
)
F−1

n f̃n , where Cn =

diag c̃n , Dn = diag d̃n ,

I+
n =

[
0 0

0 In+1

]
, I−n =

[
In 0

0 0

]
.

2. Compute g̃m = f̃m − (CmIm,nF nI+
n + DmIm,nF nI−n )Im

n ẑn , where

Im
n = diag [1, . . . , 1︸ ︷︷ ︸

n−m

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
n−m

] , [Im,n]jk =

{
1 : tmj = tnk,

0 : otherwise.

3. Solve LTm
(
cPT + dQT

)
wm = LTmg .

In case of stability of the collocation method (1.3) and of appropriate
smoothness properties of a, b, f the solution vn of the above fast algorithm
satisfies the same convergence rate as the solution un of the usual collocation
method (1.3). A consequence of this is that this fast algorithm is restricted
to the case of smooth coefficients a, b . For more details and further fast
algorithms we refer the reader to [5] and two the overview paper [14] as well
as to [4, 18].

The Cauchy singular integral operator ST on the unit circle satisfies the
nice relations

(STej) (t) =
1
πi

∫

T

ej(s) ds

s− t
=

{
ej(t) : j = 0, 1, 2, . . . ,

−ej(t) : j = −1,−2, . . .

Cases, in which analogous (trigonometric) relations are available, we call
quasi-periodic. One of such relations, for example, is the relation between the
normed Chebyshev polynomials Wn(x) and Vn(x) of degree n with respect
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to the weights (1− x)−1/2(1 + x)1/2 and (1− x)1/2(1 + x)−1/2 , respectively,
namely

1
π

∫ 1

−1

Wn(y)
y − x

√
1 + y

1− y
dy = Vn(x) , −1 < x < 1 , n = 0, 1, 2, . . . .

Based on this relation on can design an analogous fast algorithm as in the
periodic case to solve the equation

1
π

∫ 1

−1

[
1

y − x
+ h(x, y)

]
u(y)

√
1 + y

1− y
dy = f(x) , −1 < x < 1 ,

if the kernel h(x, y) and the right hand side f(x) are sufficiently smooth. In
such an algorithm there are used fast trigonometric transforms instead of the
discrete Fourier transform. For the interested reader we refer to [2, 9, 14].
Analogous ideas are applicable, for example, to singular integro-differential
equations of Prandtl’s type (see [6]).

In the present paper we discuss the applicability of Krylov subspace meth-
ods to solve systems of linear algebraic equations generated by collocation
methods applied to equations of the form (2.1). Here only the structure
of the matrix is used and no smoothness properties on the data are neces-
sary. Algorithms with O(n2) complexity were already used (see, for example,
[3, 8, 10]). In this paper our aim is to design algorithms of O(n log n) com-
plexity.

The paper is organized as follows. In the next section we discuss the
stability of the collocation methods under consideration together with the
condition of the respective sequences of systems of linear equations. In Sec-
tion 3 the structure of the system matrices is described and representations
of these matrices are presented, which involve only fast trigonometric trans-
forms and diagonal matrices. In Section 4 we shortly describe the Krylov
subspace methods, for which we present numerical examples in Section 5.

2. The Collocation Method and Its Stability

For given piecewise continuous functions a, b : [−1, 1] −→ C , let us con-
sider the Cauchy singular integral equation

a(x)u(x) +
b(x)
πi

∫ 1

−1

u(y) dy

y − x
= f(x) , −1 < x < 1 ,(2.1)

where also f : [−1, 1] −→ C is a given function belonging to the Hilbert
space L2

σ of square integrable with respect to the Chebyshev weight σ(x) =
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1/
√

1− x2 functions on [−1, 1] . The inner product in L2
σ is defined by

〈u, v〉σ =
∫ 1

−1
u(x)v(x)σ(x) dx .

Using the operators aI and bI of multiplication by a(x) and b(x) , respec-
tively, as well as the Cauchy singular integral operator S on the interval
[−1, 1] equation (2.1) can be written as operator equation

au + bSu = f .

The operators of multiplication by a piecewise continuous function as well
as the singular integral operator S are linear bounded operators in L2

σ .

Let us solve equation (2.1) numerically. Firstly we look for an approxi-
mate solution un(x) as weighted polynomial

un(x) =
n∑

k=1

ξnk
˜̀ω
nk(x) =

n−1∑

j=0

anj ũj(x) ,(2.2)

where

˜̀ω
nk(x) =

ϕ(x)`ω
nk(x)

ϕ(xω
nk)

, ũj(x) = ϕ(x)Uj(x) , ϕ(x) =
√

1− x2 ,

and `ω
nk(x) , k = 1, . . . , n , denote the usual fundamental Lagrange inter-

polation polynomials with respect to the nodes xω
nk (the zeros of the nth

orthogonal polynomial with respect to the weight ω(x)). By Uj(x) we de-
note the normalized Chebyshev polynomial of second kind and degree j ,
i.e.,

Uj(cos s) =

√
2
π

sin(j + 1)s
sin s

.

For ω we choose ω = σ or ω = ϕ . Remark that

xσ
nk = cos

2k − 1
2n

π and xϕ
nk = cos

kπ

n + 1
.

Secondly we apply a collocation method

a(xω
nj)un(xω

nj) +
b(xω

nj)
πi

∫ 1

−1

un(y) dy

y − xω
nj

= f(xω
nj) , j = 1, . . . , n ,(2.3)

to determine the unknown coefficients ξnk, k = 1, . . . , n, or anj , j = 0, 1, . . .,
n − 1, in (2.2). If we define the weighted interpolation operator Mω

n =
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ϕLω
nϕ−1I , where Lω

n is the usual Lagrange interpolation operator with re-
spect to the nodes xω

nk , k = 1, . . . , n , the collocation method (2.3) can
be written as operator equation Aω

nun = Mω
n f , where Aω

n = Mω
n ALn and

Ln : L2
σ −→ L2

σ is the projection

Lnu =
n−1∑

j=0

〈u, ũj〉σ ũj .

Remark that the system (ũn)+∞n=0 forms an orthonormal basis in L2
σ . We call

a sequence (An) of operators An : im Ln −→ imLn stable in L2
σ if, for all

sufficiently large n , these operators are invertible and the norms of their
inverses are uniformly bounded.

Theorem 2.1. ([13], Thm. 2.1) For piecewise continuous functions a, b :
[−1, 1] −→ C , the sequence (Mω

n (aI + bS)Ln) is stable in L2
σ if and only if,

(a) in the case ω = σ , the operator aI + bS : L2
σ −→ L2

σ is invertible,
(b) in the case ω = ϕ , the operators aI ± bS : L2

σ −→ L2
σ are both

invertible.

We remark that the collocation methods under consideration in [13] as
well as in the present paper are special cases of the collocation methods
investigated in [11] and [12].

Let λω
nk , k = 1, . . . , n , denote the Christoffel numbers with respect to

the weight ω(x) , i.e. λσ
nk = π/n and λϕ

nk = π[ϕ(xϕ
nk)]

2/(n + 1), and let
ψn,ϕ =

√
(n + 1)/π . By means of the Gaussian rule one can easily prove

that the system
{

ψn,ϕ
˜̀ϕ
nk : k = 1, . . . , n

}
forms an orthonormal basis in the

space imLn . The matrix representation of the operator Aω
n with respect to

this basis is equal to Aϕ
n =

[
αϕ

jk

]n

j,k=1
with αϕ

jk =
(
A˜̀ϕ

nk

)
(xϕ

nj) . Hence,

the spectral norm ‖Aϕ
n‖ of the matrix Aϕ

n is equal to the norm ‖Aϕ
n‖L2

σ→L2
σ

of the operator Aϕ
n : im Ln −→ im Ln . Let `2

n denote the n-dimensional
complex vector space equipped with the norm

‖(ξk)
n

k=1‖`2n
=

(
n∑

k=1

|ξk|2
)1/2

.

As a consequence of Theorem 2.1 we get the following corollary.

Corollary 2.2. Let a, b : [−1, 1] −→ C be piecewise continuous functions.
The sequence (Aϕ

n) of matrices considered as operators Aϕ
n : `2

n −→ `2
n is

stable if and only if both operators aI ± bS : L2
σ −→ L2

σ are invertible.
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Let us mention that the operators Aϕ
n (as well as the operators Aσ

n) are
strongly convergent (see [13]), and consequently, their norms are uniformly
bounded. Thus, Corollary 2.2 implies that stability of the collocation method
w.r.t. the Chebyshev nodes of second kind is necessary and sufficient for the
boundedness of the sequence of the spectral condition numbers of Aϕ

n .

In order to get an analogous result in case of ω = σ , let us denote by
Uω

n =
[

τjk

]n

j,k=1
the matrix of the basis transformation (in imLn) from

{ũ0, . . . , ũn−1} to {ψω,n
˜̀ω
n1, . . . , ψω,n

˜̀ω
nn}, where ψσ,n =

√
n/π . Moreover,

let Tn(x) denote the normalized Chebyshev polynomials of first kind and of
degree n ,

T0(x) =

√
1
π

, Tn(cos s) =

√
2
π

cosns , n = 1, 2, . . . .

In the case ω = ϕ, we have τjk = 〈ψϕ,n
˜̀ϕ
nk, ũj−1〉σ. Thus,

τjk =

√
n + 1

π

1
ϕ(xϕ

nk)
〈
`ϕ
nk, Uj−1

〉
ϕ

=

√
2

n + 1
sin

jkπ

n + 1
,(2.4)

i.e., Uϕ
n =

√
2

n + 1
S1

n , where S1
n =

[
sin

jkπ

n + 1

]n

j,k=1

is the first discrete

sine transform (DST-1) of order n (cf. [7]). Of course, due to the fact,
that both bases are orthonormal ones, the matrix Uϕ

n is unitary. Using the
relation

(1− x2)Un−1(x) =
1
2

[Tn−1(x)− Tn+1(x)] , n = 2, 3, . . . ,

in case ω = σ we get

τjk =
〈
ψσ,n

˜̀σ
nk, ũj−1

〉
σ

=
√

n

π

1
ϕ(xσ

nk)
〈
`σ
nk, ϕ

2Uj−1

〉
σ

=





√
π

n
ϕ(xσ

nk)Uj−1(xσ
nk) : j = 1, 2, . . . , n− 1 ,

√
π

n

1
ϕ(xσ

nk)
1
2

Tn−1(xσ
nk) : j = n ,

=





√
2
n

sin
j(2k − 1)π

2n
: j = 1, 2, . . . , n− 1 ,

1
2

√
2
n

sin
n(2k − 1)π

2n
: j = n .

(2.5)
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Hence, Uσ
n =

√
2
n

DnS2
n , where S2

n =
[

sin
j(2k − 1)π

2n

]n

j,k=1

is the second

discrete sine transform (DST-2) of order n and Dn = diag
[
1, . . . , 1, 1

2

] ∈
Rn×n . Since, for j = 1, . . . , n ,

ũj−1(x) =
ψσ,n

ψσ,n

n∑

k=1

ũj−1(xσ
nk)˜̀σnk(x) =

√
2
n

n∑

k=1

sin
j(2k − 1)π

2n
ψσ,n

˜̀σ
nk(x) ,

the inverse matrix of Uσ
n is given by

(Uσ
n)−1 =

[ √
2
n

sin
j(2k − 1)π

2n

]n

k,j=1

=

√
2
n

(
S2

n

)T = (Uσ
n)T D−1

n .

The matrix representation Aσ
n of the operator Aσ

n : im Ln −→ imLn with
respect to the basis

{
ψσ,n

˜̀σ
nk : k = 1, . . . , n

}
is equal to Aσ

n =
[

ασ
jk

]n

j,k=1

with ασ
jk =

(
A˜̀σ

nk

)
(xσ

nj) . If An denotes the matrix representation of An :
imLn −→ im Ln with respect to the orthonormal basis {ũ0, . . . , ũn−1} , then

Aσ
n = (Uσ

n)T D−1
n AnUσ

n .(2.6)

If, for some nonnegative constants cn and dn ,

cn‖ξn‖`2n
≤ ‖Anξn‖`2n

≤ dn‖ξn‖`2n
∀ ξn ∈ `2

n ,

then, by means of (2.6), one can easily prove that

cn

2
‖ξn‖`2n

≤ ‖Aσ
nξn‖`2n

≤ 2 dn‖ξn‖`2n
∀ ξn ∈ `2

n .

Consequently, we have the following corollary of Theorem 2.1.

Corollary 2.3. Let a, b : [−1, 1] −→ C be piecewise continuous functions.
The sequence (Aσ

n) of matrices considered as operators Aσ
n : `2

n −→ `2
n is

stable if and only if the operator aI + bS : L2
σ −→ L2

σ is invertible.

3. The Structure of the Discretized Equations

With the help of well known relations between the Chebyshev polynomials
of first and second kind and the Cauchy singular integral operator S one can
show that Aω

n can be written in the form (see [10, Section 5])

Aω
n = aω

n + bω
nSnDn(β) ,
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where

aσ
n = diag

[
a(xω

nk)−
xσ

nkb(x
σ
nk)

nϕ(xσ
nk)

]n

k=1

, aϕ
n = diag

[
a(xϕ

nk)
]n

k=1
,

bω
n = diag [ b(xω

nk) ]nk=1, Sn =
[

αω
k − αω

j

xω
nk − xω

nj

]n

j,k=1

, Dn(β) = diag [βω
k ]nk=1,

and

ασ
k = (−1)kϕ(xσ

nk) , βσ
k =

(−1)k

ni
, αϕ

k = (−1)k , βϕ
k =

(−1)kϕ(xϕ
nk)

(n + 1)i
.

Since matrices of the form Sn can be represented with the help of fast dis-
crete trigonometric transforms, in [10] the authors propose to apply iterative
methods to solve the systems Aω

nξn = ηn of linear equations effectively. This
means the following. Let

Cω
n =

[ 1
xω

nk − xω
nj

]n

j,k=1

(zeros on the main diagonal).

Then Sn = Cω
nDn(α)−Dn(α)Cω

n and ([7, Theorems 5.2, 5.5])

Cω
n =





− 1
n

Dσ
nC3

nΓ
σ
nC2

nDσ
n : ω = σ ,

− 1
n + 1

Dϕ
nS1

nΓ
ϕ
nS1

nDϕ
n : ω = ϕ ,

where

Dω
n = diag

[
(−1)k

ϕ(xω
nk)

]n

k=1

, Γω
n = tridiag

[ −cω 0 cω

]
,

cσ =
1
2

[
1 3 · · · 2n− 3

]
, cϕ =

1
2

[
3 5 · · · 2n− 1

]
,

and C2
n and C3

n denote the second and third discrete cosine transform of
order n , respectively,

C2
n =

[
cos

(j − 1)(2k − 1)π
2n

]n

j,k=1

, C3
n =

(
C2

n

)T
.

Consequently, using these representations four trigonometric transforms are
needed to apply the matrix Aω

n to a vector.
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In what follows let us find other representations of the matrices Aσ
n and

Aϕ
n , which allow the matrix vector multiplication with the help of only two

trigonometric transforms. For this, recall the well known relation

Sũm = SϕUm = iTm+1 , m = 0, 1, 2, . . . ,

and use (2.5) and (2.4) to compute

(
S ˜̀ω

nk

)
(xω

nj) = i
n∑

m=1

〈˜̀ω
nk, ũm−1

〉
σ

Tm(xω
nj)

=





2i
n

n−1∑

m=1

cos
m(2j − 1)π

2n
sin

m(2k − 1)π
2n

: ω = σ ,

2i
n + 1

n∑

m=1

cos
mjπ

n + 1
sin

mkπ

n + 1
: ω = ϕ ,

where, in the case ω = σ , we took into account that Tn(xσ
nj) = 0 . Hence we

have

Aσ
n = ãσ

n −
2
ni

bσ
nC3

nV nS2
n and Aϕ

n = aϕ
n −

2
(n + 1)i

bϕ
nC̃

1

nS1
n(3.1)

with V n =
[

δj−1,k

]n

j,k=1
, ãσ

n = diag
[

a(xσ
nk)

]n

k=1
, and a submatrix C̃

1

n =[
cos

jkπ

n + 1

]n

j,k=1

of the first discrete cosine transform

C1
n+2 =

[
cos

jkπ

n + 1

]n+1

j,k=0

of order n + 2 .

4. The Application of Krylov Subspace Methods

Given a regular matrix A ∈ Cn×n and a vector η ∈ Cn we have to solve
the system

Aξ = η .(4.1)

The basic idea of the Krylov subspace methods consists in minimizing the
residual η −Aξ for ξ = ξ0 + ζ , where

ζ ∈ Kk(A, ρ0) = span
{

ρ0, Aρ0, . . . , A
k−1ρ0

}
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and ρ0 = η − Aξ0 (see, for example, [16]). Remark that in our situation
the matrices Aω

n are not symmetric as well as not sparse. But, due to the
representations (3.1) these matrices have a nice structure which enables us to
apply them to a vector of length n with O(n log n) computational complexity
(cf. [19]).

In the present paper we compare the numerical results (i.e., the number of
iteration steps necessary to obtain a prescribed accuracy) for three Krylov
subspace methods (GMRES, FOM, and CGNR) described shortly in the
following:

• The GMRES (generalized minimal residual) algorithm minimizes the
norm ‖η −Aξ‖ (‖.‖ = ‖.‖`2n

), which is equivalent to finding ξk = ξ0 + ζk ,
ζk ∈ Kk(A, ρ0) , such that

η −Aξk ⊥ AKk(A, ρ0) .

Using Arnoldi’s procedure with the modified Gram-Schmidt algorithm to
compute an orthonormal basis in Kk(A, ρ0) leads to the following algorithm,
in which ε > 0 defines the prescribed accuracy:

1◦ ξ0 , ρ0 := η −A ξ0 , v1 := ‖ρ0‖−1ρ0 , k := 0

2◦ (Arnoldi’s procedure with modified Gram-Schmidt algorithm)

– k := k + 1 , v̂ := Avk

– i = 1, 2, . . . , k : hik := 〈v̂, vi〉 , v̂ := v̂ − hikvi

– hk+1,k := ‖v̂‖ , vk+1 := h−1
k+1,kv̂

3◦ ξk := ξ0 + V kζk , where ζk is the solution of the minimization problem

J (ζ) := ‖γe1 − H̃kζ‖ −→ min (ζ ∈ Ck, γ = ‖ρ0‖)(4.2)

with

H̃k =




h11 h12 · · · h1k

h21 h22 h2k

. . . . . .
...

. . . hkk

0 hk+1,k




, V k =
[

v1 v2 · · · vk

]

4◦ if ‖Aξk − η‖ > ε‖ρ0‖ goto 2.
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To solve the least squares problem (4.2) one uses plane rotations to get
a QR-factorization of H̃k , say QkH̃k = Rk , Qk =

(
Q−1

k

)T ∈ C(k+1)×(k+1) .
This factorization can be updated at each iteration step and the norm of the
minimal residual is computed by ‖Aξk − η‖ = (γQke1)k+1 (the last com-
ponent of γQke1 in the kth iteration step) without computing the optimal
solution ξk (see [17]). If nA is the number of multiplications, which are nec-
essary to apply the matrix A (of order n) to a vector of length n , then m
(= dimension of the Krylov space) steps of GMRES require O(m2n) + mnA

multiplications (cf. [17]).

• The FOM (full orthogonalization method) determines ξk = ξ0 + ζk ,
ζk ∈ Kk(A, ρ0) , by the condition

η −Aξk ⊥ Kk(A, ρ0) .

The algorithm can be shortly described as follows:

1◦ ξ0 , ρ0 := η −A ξ0 , v1 := ‖ρ0‖−1ρ0 , k := 0

2◦ (Arnoldi’s procedure with modified Gram-Schmidt algorithm)

– k := k + 1 , v̂ := Avk

– i = 1, 2, . . . , k : hik := 〈v̂,vi〉 , v̂ := v̂ − hikvi

– hk+1,k := ‖v̂‖ , vk+1 := h−1
k+1,kv̂

3◦ ξk := ξ0 + V kζk , where ζk = γH−1
k e1 , γ = ‖ρ0‖ , and

Hk =




h11 h12 · · · h1k

h21 h22 h2k

. . . . . .
...

0
. . . hkk




, V k =
[

v1 v2 · · · vk

]

4◦ if ‖Aξk − η‖ > ε‖ρ0‖ goto 2.

The residual norm after the kth step is equal to ‖Aξk − η‖ = hk+1,k

∣∣eT
k ζk

∣∣.
Here m steps of the algorithm need O(m2n + m3) + mnA multiplications.

• The CGNR method (conjugate gradient algorithm for the normal
equation) is the application of the CG-algorithm to the system AT Aξ = η ,
which corresponds to the least squares problem of minimizing the residual
‖η −Aξ‖ . Consequently, ξk is determined by the condition

AT (η −Aξk) ⊥ Kk(AT A,AT ρ0) .

The algorithm can be organized in the following way (cf. [16, Sect. 8.3]):
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1◦ ξ0 , ρ0 := η −Aξ0 , ζ0 := AT ρ0 , p0 := ζ0 , k := 0

2◦ v̂ := Apk

3◦ α := ‖ζk‖2/‖v̂‖2

4◦ ξk+1 := ξk + αpk , ρk+1 := ρk − α v̂ ,

if ‖ρk+1‖ < ε‖ρ0‖ then stop

5◦ ζk+1 := AT ρk+1

6◦ β := ‖ζk+1‖2/‖ζk‖2 , pk+1 := ζk+1 + β pk

7◦ k := k + 1 goto 2.

For m steps of CGNR one needs O(mn)+m(nA+nAT ) multiplications. If
we denote by κ = cond (A) the spectral condition number of the matrix A ,
i.e., cond (A) = ‖A‖‖A−1‖ , where ‖A‖ denotes the norm of A : `2

n −→ `2
n ,

then the `2
n-norm of the residual ρm after m steps of CGNR can be estimated

by

‖ρm‖ ≤ 2
(

κ− 1
κ + 1

)m

‖ρ0‖

(see [15, Section 2]). Thus, taking into account the representations (3.1), in
the case of stable sequences (Aω

n) (cf. Corollaries 2.2 and 2.3), we get that
the complexity of CGNR can be estimated by O

(
(log ε)(n log n)

)
if ε > 0 is

the prescribed accuracy.

5. Numerical Examples

Let us consider three examples of Cauchy singular integral equations of
the form (2.1) together with the collocation methods (2.3) and the Krylov
subspace methods for the solution of the respective systems of linear equa-
tions considered in the previous section. In the first example both operators
aI + bS and aI − bS are invertible in L2

σ , while in the second and third ex-
ample only the operator aI + bS is invertible. Due to the Corollaries 2.2 and
2.3 this means that in the last two examples the sequence of the condition
numbers of the respective matrices are bounded only for collocation with
respect to the Chebyshev nodes of first kind. In each example we choose ε
equal to 10−10 . In the tables we collect the number of iterations (equal to
the dimension of the Krylov space in the last step) necessary to achieve this
accuracy by the different methods. For all computations the initial guess is
equal to the vector ξ0 =

[
1 · · · 1

]T
.
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Example 5.1. Let us consider an example with the piecewise continuous
coefficients

a(x) =

{
2 : x ≤ −0.5

3 + x : x > −0.5

}
, b(x) = i

{
x : x ≤ 0.5

x− 1 : x > 0.5

}

and the right hand side

f(x) =

{
1 : x ≤ 0.5

x2 − 1 : x > 0.5

}
.

Collocation w.r.t. xσ
nj , k = 1, . . . , n Collocation w.r.t. xϕ

nj , k = 1, . . . , n

number of iterations
n GMRES FOM CGNR
512 24 24 26

1024 25 25 27
16384 26 26 28
32768 26 26 29
65536 26 26 30

131072 27 27 30

number of iterations
n GMRES FOM CGNR
511 21 22 23

1023 22 22 23
16383 22 22 24
32767 22 22 24
65535 23 23 25

131071 23 23 25

We see that the number of iterations does not essentially increase with
the size n of the matrices.

Example 5.2. In this example we have a(x) =
√

1− x , b(x) = −ix , and
f(x) = |x|.

Collocation w.r.t. xσ
nj , k = 1, . . . , n Collocation w.r.t. xϕ

nj , k = 1, . . . , n

number of iterations
n GMRES FOM CGNR
512 73 74 26

1024 73 75 26
16384 74 76 27
32768 74 76 27
65536 75 76 27

131072 75 76 28

number of iterations
n GMRES FOM CGNR
511 70 71 32

1023 70 71 32
16383 69 71 36
32767 69 71 37
65535 69 70 38

131071 69 70 39

Example 5.3. Let a(x) =
√

1.01− x2 , b(x) = −ix , and f(x) = |x| .
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Collocation w.r.t. xσ
nj , k = 1, . . . , n Collocation w.r.t. xϕ

nj , k = 1, . . . , n

number of iterations
n GMRES FOM CGNR
512 56 57 8

1024 56 57 8
16384 56 57 9
32768 56 57 9
65536 56 57 9

131072 56 57 9

number of iterations
n GMRES FOM CGNR
511 53 54 9

1023 53 53 9
16383 51 52 12
32767 51 52 12
65535 50 51 12

131071 50 51 13

We see that also in the case of increasing condition numbers the number
of iterations behaves well. For this, one should take into consideration that,
in case of the collocation points xϕ

nj , only one (Example 5.2) or two (Example
5.3) singular values of the matrices Aϕ

n tend to zero and the others stay away
from zero (see [13, Section 5]).
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