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DURRMEYER-SCHURER TYPE OPERATORS

Dan Barbosu

Dedicated to Prof. G. Mastroianni for his 65th birthday

Abstract. Starting with the Schurer operators ([5]) some Durrmeyer type opera-
tors are constructed. A convergence theorem is established and some estimations
for the rate of convergence are given.

1. Preliminaries

It is well known that the classical Bernstein operators B, : C([0,1]) —

C(]0,1]) are defined for any f € C(]0,1]) by

(1.1) (Bmf)(@) =Y pmp(@) f(k/m),
k=0

where m

(1.2) Pmi(@) = (k ):rk(l — )k

are the Bernstein fundamental polynomials.

Starting with the operators (1.1), J. L. Durrmeyer (see [3]) introduced in
1967 the operators D, : L1([0,1]) — C(]0,1]), defined by

m 1
(1.3) (Duf)(&) = (m+1) Y pnsla) [ (S0t
k=0 0

Considering a given non-negative integer p, F. Schurer (see [5]) in 1962 in-
troduced and studied the operators By, , : C([0,1 + p]) — C([0,1]), defined
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by
m-+p

(1.4) (BrpH)(@) = Prn(@) f(k/m),
k=0

where m
(1:5) () (@) = () )t (1 =y 7h,
are the Schurer fundamental polynomials.

In the present paper we modify the operators (1.4) in Durrmeyer sense
see also G. G. Lorentz ([4]).

Actually, we replace f(k/m) by an integral mean of f(z) on [0,1] as
follows

m-+p

~ 1
(10 Buph)a) = 49+ 1) Y Fnsla) | Fna011(0) .
k=0
where f belongs to the space L1([0,1]).
The focus of the paper is to investigate the operators (1.6). Section 2

provided a convergence theorem for the sequence {lﬂjmp f } oy’ In Section
m_

3 we prove some results in connection with the rate of convergence for Em,p f
under different assumptions of the function f.

2. Convergence Theorem for the Sequence {f)m,pf}mzl

We shall use the well known Bohman-Korovkin theorem (see [1]). In this
sense, we need some auxiliary results.

Lemma 2.1. The Durrmeyer-Schurer operators (1.6) are linear and posi-
tive.

Proof. The assertion follows from the definition (1.6). O

Lemma 2.2. The operator (3) transform any polynomial of degree s <
m + p into a polynomial of degree s.

Proof. From Lemma 2.1 follows that is sufficient to prove the assertion
for the test functions es(t) = t*, where s is a non-negative integer with the
property s < m + p.
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Taking into account of (1.6), we get

1 1

(2.1) /Q@mﬂwﬁﬁ - <m+p)/nﬁ+%1—wmwkdt
0 k 0

(m—i-p

k

Note that in the right side of (2.1), B(k+ s+ 1, m+p— k+ 1) denotes the
Beta function, i.e.,

)B%+S+lﬂn+p—k+n.

(k+s)!(m+p—Fk)!

(2.2) Bk+s+1, m+p—k+1)=

(m+p+s+1)
Using (2.1) and (2.2), we can write
m-+p
~ (m+p+1)! k‘—l—s)
2. Dy nes)(z) = - .
29 Duged) = T 3 Pt

On the other hand, for any z,y € R and any s,m,p € N satisfying the
inequality s < m + p we have

A S L
(2.4) B (2°(z +y) )—kZ:O( f )x Yy T

Using the well-known Leibniz formula, the left side of (2.4) can be expressed
in the form

(2.5) a@; (z°(z +y)""P) = Z(i)m al ((z+y)"*P)

drs—" da”

r=

() e e

rl(m+p— )'
From (2.4) and (2.5), with y := 1 — z, follows the identity

*L /s sl m—+ oy k+s
26 ()5 e = Y e

r=0 k=0

Taking into account of (2.6), from (2.3) we get

~ m+p+ st (m+ ,
27) Dmypes)le) = <n§+pis+1 'Z( )wmﬂap)w’ |
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which proves that ﬁm,pes is a polynomial of degree s < m +p. O

Like usually, for any integer s > 0 we denote by es(z) = z°, z € [0,1 + p]
the test functions.

Lemma 2.3. The Durrmeyer-Schurer operators (1.6) verify

(2.8) (Em,peo)(fﬁ) =1,
~ _(m+pz+1
29)  (Bager)) = DI,
(m+p— 1)(m+p)x2—|—4(m+p)x—|—2.

(m+p+2)(m+p+3)

(2.10) (Dpea)(x) =

Proof. The assertions follows from (2.7), for s € {0,1,2}. O

Theorem 2.1. The sequence {l~)m7pf}m21 converges to f, uniformly on
[0,1], for any f € C([0,1]).

Proof. Using Lemma 2.3 follows that lim l~)m7pes = e, uniformly on
m—0o0

[0,1] for s € {0,1,2}. Applying then the well known Bohman-Korovkin
theorem (see [1]), we arrive to the desired result. [J

3. Estimations of the Rate of Convergence in Terms of First
Order Modulus of Smoothness

We shall use the first order modulus of smoothness wy : [0,4+00) — R,
defined for any real functions f, bounded on the interval I C R, by

(81)  wilfi6) =sup{| (@)~ f")| : 22" € I, |2/ — 2| < 6.

It is well known (see [6]) the following result, obtained by O. Shisha and B.
Mond in 1968.

Theorem 3.1. Let L: C(I)+— B(I) be a linear and positive operator and
let @, be the function defined by v, (t) = |t — x|, (x,t) € [ x I.

(i) If f € Cg(I), for any x € I and any 6 > 0, the operator L verify
[(Lf)(x) — f(2)] < [f(@)][(Leo)(x) — 1
+{(Leo)(@) + 67V Te) @ L)@ } w1 (£:9)
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(ii) If f € C5(I), for any x € I and any & > 0, the operator L verifies
(LA)@) = @) < 1£@)l|(Leo) () = 1+ |7 @) (Le) (&) = @(Leo) (@)
+ VL) @) { V(Leo) (@) + 67 VL) (@) b (1'56).

For applying Theorem 3.1, we need

Lemma 3.1. The operator (1.6) verifies

_ _2(m+p—-3)z(l—-x)+2
(3.2) (Dm,p‘pi)(‘r) - (m+p+2)(m+p+3)

where @z (t) = |t — x|, (t,x) € [0,1+p] x [0,1+ p].

Proof. Because l~?m7p is linear, it follows

(Dimp2)(x) = (D pe2)(x) — 22( Dy per) (x) + 27 (Di peo) (x).

Next, we apply Lemma 2.3. O

Theorem 3.2. For any f € C([0,1 + p]), any = € [0,1] and any non-
negative integers m, p satisfying m—+p > 3, the Durrmeyer-Schurer operators
(1.6) verify

(3.3) (D )(@) = f(2)| < 21 (f58(m,p))
where

m+p+1
(34) o(m.p) = \/2(m+p+2)(m+p+3)'

Proof. Taking into account of Theorem 3.1, we get

(35) |(Donpf)(a) — ()| < (1 + (15\/ 2ty - Sl —a) 2 ) o (£:0)

(m+p+2)(m+p+3)

for any f € C([0,1 + p]), any = € [0,1], any non-negative integers m,p
satisfying m + p > 3 and any § > 0.

But, if m 4+ p > 3 and x € [0, 1], the inequality

m+p+1

(3.6) 2(m+p—3)z(l—2)+2< 5
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holds. From (3.5) and (3.6) it follows

~ 1 m-+p+1 )
(Dnpf) (@) = f(2)| < (1 + 5\/2<m+p+2)(m+p+3)>wlw>.

Taking § = d(m, p) (defined in (3.4)), this inequality becomes (3.3). O

An extension of Theorem 3.2 is the following result:

Theorem 3.3. For any f € Li([0,1 + p]), any x € [0,1] and any non-
negative integers m,p satisfying m + p > 3 the inequality (3.3) holds.

Proof. Applying Lemma 2.3 (the identity (2.8)), it follows

m+p

1
1) [(Bral) @) = S| <049+ 1) Y Bnse) [ BmnaO17(0) - S0l
k=0
On the other hand |f(t) — f(z)| < wi(f;[t—=|) < (14 672(t — 2)?) wi(f;6).
For |t — x| < 0 the last increase is clear. For |t — x| > § we use the following
properties

wi(f; A0) < (14 Nwi(f;6) < (14 Awi(f;0),

where we choose A = § 1|t — z|. In this way, the relation (3.7) implies

(3.8) |(Dwph)(@) — ()|
m—+p

1
<(m+p+1) Z jovm,k(x)/o Pmg(t) (L+672(x — t)*) wi(f;0)

k=0

m—+p

1
<m4p+1)y @ﬂ’k(x)/ B (1) (1 4+ 52z — %) wn(f: 6)dt
k=0 0

= {(Dm,p€0> (.%') + 572 (5m,p90?:) (I’)} wl(f; 5)
Taking into account of Lemma 2.3 and Lemma 3.1, from (3.8) it follows

2(m+p—3)z(l—2)+2 1
(m+p+2)(m+p+3) 6

(Brne) - 1) < (1+ )eats:o)

Using (3.6), this inequality becomes

~ m 1 1
|(Dnpf)(@) = f@)] < <1+ 2(m+p:2§’(;+p+3)52> w1 (f9),
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wherefrom, choosing § = §(m,p) (as in Theorem 3.2), we get the desired
result. [

Further, we estimate the rate of convergence for smooth functions.
Theorem 3.4. For any f € CY([0,1 + p]), any = € [0,1] and any non
negative integers satisfying m + p > 3, the operator (1.6) verify

|1 — 2z

(3.9) [Dmpf)2) = f(0)] < Smmmm

/()] + 20(m, p) w1 (f';6(m. p)) ,
where 6(m, p) is given by (3.4).

Proof. Lemma 2.3 (the equality (2.9)) leads us to

~ 1—2x
D =
(Drper)(a) = s

Let 6(m,p) be given by (3.4). Applying Theorem 3.1 we arrive to

— 2T / 6(m, ,
L2+ otm) (1422 Y (7).

ie., (3.9),if we put § = d(m,p). O

(Dinpf)(@)] <

Corollary 3.1. Under conditions of Theorem 3.4, the following inequality
~ 1
|(Dimpf)(x,y) = f(2)] <

—f 26 ¥ )
I+ V28, (7560, )
holds, for any x € [0, 1].
Proof. 'We apply Theorem 3.4, taking into account that |1 — 2z| < 1, for
each z € [0,1], and |f/(x)| < max }\f’(x)|, for each x € [0,1+p]. O
+p

)

Corollary 3.2. Forany f € C1([0,1]), any x € [0, 1] and any non-negative
integer m > 3, the Durrmeyer operators (1.3) satisfy

|1 — 2x|
m+ 2

1
p——1 1l + 26m w1 (5 0m)

|(Dm f)(2) = f(2)] <

‘f/($)| + 200, w1 (f/§ 5m)

IN

where 6y, = /(m +1)/(2(m + 2)(m + 3)).

Proof. The assertion follows from Theorem 3.4, for p =0. O
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