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DURRMEYER-SCHURER TYPE OPERATORS
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Dedicated to Prof. G. Mastroianni for his 65th birthday

Abstract. Starting with the Schurer operators ([5]) some Durrmeyer type opera-
tors are constructed. A convergence theorem is established and some estimations
for the rate of convergence are given.

1. Preliminaries

It is well known that the classical Bernstein operators Bm : C([0, 1]) 7→
C([0, 1]) are defined for any f ∈ C([0, 1]) by

(Bmf)(x) =
m∑

k=0

pm,k(x)f(k/m),(1.1)

where
pm,k(x) =

(m

k

)
xk(1− x)m−k ,(1.2)

are the Bernstein fundamental polynomials.
Starting with the operators (1.1), J. L. Durrmeyer (see [3]) introduced in

1967 the operators Dm : L1([0, 1]) 7→ C([0, 1]), defined by

(Dmf)(x) = (m + 1)
m∑

k=0

pm,k(x)
∫ 1

0
pm,k(t)f(t) dt.(1.3)

Considering a given non-negative integer p, F. Schurer (see [5]) in 1962 in-
troduced and studied the operators B̃m,p : C([0, 1 + p]) 7→ C([0, 1]), defined
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by

(B̃m,pf)(x) =
m+p∑

k=0

p̃m,k(x)f(k/m),(1.4)

where
(p̃m,k) (x) =

(m

k

)
xk(1− x)m+p−k ,(1.5)

are the Schurer fundamental polynomials.
In the present paper we modify the operators (1.4) in Durrmeyer sense

see also G. G. Lorentz ([4]).
Actually, we replace f(k/m) by an integral mean of f(x) on [0, 1] as

follows

(D̃m,pf)(x) = (m + p + 1)
m+p∑

k=0

p̃m,k(x)
∫ 1

0
p̃m,k(t)f(t) dt,(1.6)

where f belongs to the space L1([0, 1]).
The focus of the paper is to investigate the operators (1.6). Section 2

provided a convergence theorem for the sequence
{

D̃m,pf
}

m≥1
. In Section

3 we prove some results in connection with the rate of convergence for D̃m,pf
under different assumptions of the function f .

2. Convergence Theorem for the Sequence {D̃m,pf}m≥1

We shall use the well known Bohman-Korovkin theorem (see [1]). In this
sense, we need some auxiliary results.

Lemma 2.1. The Durrmeyer-Schurer operators (1.6) are linear and posi-
tive.

Proof. The assertion follows from the definition (1.6).

Lemma 2.2. The operator (3) transform any polynomial of degree s ≤
m + p into a polynomial of degree s.

Proof. From Lemma 2.1 follows that is sufficient to prove the assertion
for the test functions es(t) = ts, where s is a non-negative integer with the
property s ≤ m + p.
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Taking into account of (1.6), we get
∫ 1

0
p̃m,k(t)tsdt =

(m + p

k

)∫ 1

0
tk+s(1− t)m+p−k dt(2.1)

=
(m + p

k

)
B(k + s + 1, m + p− k + 1).

Note that in the right side of (2.1), B(k + s + 1, m + p− k + 1) denotes the
Beta function, i.e.,

B(k + s + 1, m + p− k + 1) =
(k + s)!(m + p− k)!

(m + p + s + 1)!
.(2.2)

Using (2.1) and (2.2), we can write

(D̃m,pes)(x) =
(m + p + 1)!

(m + p + s + 1)!

m+p∑

k=0

p̃m,k(x) · (k + s)!
k!

.(2.3)

On the other hand, for any x, y ∈ R and any s,m, p ∈ N satisfying the
inequality s ≤ m + p we have

∂s

∂xs

(
xs(x + y)m+p

)
=

m+p∑

k=0

(m + p

k

)
xk · ym+p−k · (k + s)!

k!
.(2.4)

Using the well-known Leibniz formula, the left side of (2.4) can be expressed
in the form

∂s

∂xs

(
xs(x + y)m+p

)
=

s∑

r=0

(s

r

)ds−r(xs)
dxs−r

dr

dxr

(
(x + y)m+p

)
(2.5)

=
s∑

r=0

(s

r

)s!
r!

(m + p)!
(m + p− r)!

xr(x + y)m+p−r .

From (2.4) and (2.5), with y := 1− x, follows the identity

s∑

r=0

(s

r

)s!
r!
· (m + p)!
(m + p− r)!

xr =
m+p∑

k=0

p̃m,k(x)
(k + s)!

k!
.(2.6)

Taking into account of (2.6), from (2.3) we get

(D̃m,pes)(x) =
(m + p + 1)!

(m + p + s + 1)!

s∑

r=0

(s

r

)s!
r!

(m + p)!
(m + p− r)!

xr,(2.7)



68 D. Bărbosu

which proves that D̃m,pes is a polynomial of degree s ≤ m + p.
Like usually, for any integer s ≥ 0 we denote by es(x) = xs, x ∈ [0, 1 + p]

the test functions.

Lemma 2.3. The Durrmeyer-Schurer operators (1.6) verify

(D̃m,pe0)(x) = 1,(2.8)

(D̃m,pe1)(x) =
(m + p)x + 1

m + p
,(2.9)

(D̃m,pe2)(x) =
(m + p− 1)(m + p)x2 + 4(m + p)x + 2

(m + p + 2)(m + p + 3)
.(2.10)

Proof. The assertions follows from (2.7), for s ∈ {0, 1, 2}.

Theorem 2.1. The sequence {D̃m,pf}m≥1 converges to f , uniformly on
[0, 1], for any f ∈ C([0, 1]).

Proof. Using Lemma 2.3 follows that lim
m→∞ D̃m,pes = es uniformly on

[0, 1] for s ∈ {0, 1, 2}. Applying then the well known Bohman-Korovkin
theorem (see [1]), we arrive to the desired result.

3. Estimations of the Rate of Convergence in Terms of First
Order Modulus of Smoothness

We shall use the first order modulus of smoothness ω1 : [0,+∞) 7→ R,
defined for any real functions f , bounded on the interval I ⊂ R, by

ω1(f ; δ) = sup
{
|f(x′)− f(x′′)| : x′, x′′ ∈ I, |x′ − x′′| ≤ δ

}
.(3.1)

It is well known (see [6]) the following result, obtained by O. Shisha and B.
Mond in 1968.

Theorem 3.1. Let L : C(I) 7→ B(I) be a linear and positive operator and
let ϕx be the function defined by ϕx(t) = |t− x|, (x, t) ∈ I × I.

(i) If f ∈ CB(I), for any x ∈ I and any δ > 0, the operator L verify

|(Lf)(x)− f(x)| ≤ |f(x)||(Le0)(x)− 1|

+
{

(Le0)(x) + δ−1
√

(Le0)(x)(Lϕ2
x)(x)

}
ω1(f ; δ).
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(ii) If f ∈ C1
B(I), for any x ∈ I and any δ > 0, the operator L verifies

|(Lf)(x)− f(x)| ≤ |f(x)||(Le0)(x)− 1|+ |f ′(x)||(Le1)(x)− x(Le0)(x)|

+
√

(Lϕ2
x)(x)

{√
(Le0)(x) + δ−1

√
(Lϕ2

x)(x)
}

ω1(f ′; δ).

For applying Theorem 3.1, we need

Lemma 3.1. The operator (1.6) verifies

(D̃m,pϕ
2
x)(x) =

2(m + p− 3)x(1− x) + 2
(m + p + 2)(m + p + 3)

,(3.2)

where ϕx(t) = |t− x|, (t, x) ∈ [0, 1 + p]× [0, 1 + p].

Proof. Because D̃m,p is linear, it follows

(D̃m,pϕ
2
x)(x) = (D̃m,pe2)(x)− 2x(D̃m,pe1)(x) + x2(D̃m,pe0)(x).

Next, we apply Lemma 2.3.

Theorem 3.2. For any f ∈ C([0, 1 + p]), any x ∈ [0, 1] and any non-
negative integers m, p satisfying m+p ≥ 3, the Durrmeyer-Schurer operators
(1.6) verify ∣∣∣(D̃m,pf)(x)− f(x)

∣∣∣ ≤ 2ω1(f ; δ(m, p)) ,(3.3)

where

δ(m, p) =

√
m + p + 1

2(m + p + 2)(m + p + 3)
.(3.4)

Proof. Taking into account of Theorem 3.1, we get

∣∣∣(D̃m,pf)(x)− f(x)
∣∣∣≤

(
1 +

1
δ

√
2(m + p− 3)x(1− x) + 2
(m + p + 2)(m + p + 3)

)
ω1(f ; δ)(3.5)

for any f ∈ C([0, 1 + p]), any x ∈ [0, 1], any non-negative integers m, p
satisfying m + p ≥ 3 and any δ > 0.

But, if m + p ≥ 3 and x ∈ [0, 1], the inequality

2(m + p− 3)x(1− x) + 2 ≤ m + p + 1
2

(3.6)
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holds. From (3.5) and (3.6) it follows

∣∣∣(D̃m,pf)(x)− f(x)
∣∣∣≤

(
1 +

1
δ

√
m + p + 1

2(m + p + 2)(m + p + 3)

)
ω1(f ; δ).

Taking δ = δ(m, p) (defined in (3.4)), this inequality becomes (3.3).
An extension of Theorem 3.2 is the following result:

Theorem 3.3. For any f ∈ L1([0, 1 + p]), any x ∈ [0, 1] and any non-
negative integers m, p satisfying m + p ≥ 3 the inequality (3.3) holds.

Proof. Applying Lemma 2.3 (the identity (2.8)), it follows

∣∣∣
(
D̃m,pf

)
(x)− f(x)

∣∣∣≤(m + p + 1)
m+p∑

k=0

p̃m,k(x)
∫ 1

0

p̃m,k(t)|f(t)− f(x)|dt.(3.7)

On the other hand |f(t)−f(x)| ≤ ω1(f ; |t−x|) ≤ (
1 + δ−2(t− x)2

)
ω1(f ; δ).

For |t− x| < δ the last increase is clear. For |t− x| ≥ δ we use the following
properties

ω1(f ; λδ) ≤ (1 + λ)ω1(f ; δ) ≤ (1 + λ2)ω1(f ; δ),

where we choose λ = δ−1|t− x|. In this way, the relation (3.7) implies
∣∣∣(D̃m,pf)(x)− f(x)

∣∣∣(3.8)

≤ (m + p + 1)
m+p∑

k=0

p̃m,k(x)
∫ 1

0
p̃m,k(t)

(
1 + δ−2(x− t)2

)
ω1(f ; δ)

≤ (m + p + 1)
m+p∑

k=0

p̃m,k(x)
∫ 1

0
p̃m,k(t)

(
1 + δ−2(x− t)2

)
ω1(f ; δ)dt

=
{(

D̃m,pe0

)
(x) + δ−2

(
D̃m,pϕ

2
x

)
(x)

}
ω1(f ; δ).

Taking into account of Lemma 2.3 and Lemma 3.1, from (3.8) it follows
∣∣∣(D̃m,pf)(x)− f(x)

∣∣∣ ≤
(

1 +
2(m + p− 3)x(1− x) + 2
(m + p + 2)(m + p + 3)

1
δ2

)
ω1(f ; δ).

Using (3.6), this inequality becomes
∣∣∣(D̃m,pf)(x)− f(x)

∣∣∣ ≤
(

1 +
m + p + 1

2(m + p + 2)(m + p + 3)
1
δ2

)
ω1(f ; δ),
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wherefrom, choosing δ = δ(m, p) (as in Theorem 3.2), we get the desired
result.

Further, we estimate the rate of convergence for smooth functions.

Theorem 3.4. For any f ∈ C1([0, 1 + p]), any x ∈ [0, 1] and any non
negative integers satisfying m + p ≥ 3, the operator (1.6) verify

|(D̃m,pf)(x)− f(x)| ≤ |1− 2x|
m + p + 2

|f ′(x)|+ 2δ(m, p) ω1

(
f ′; δ(m, p)

)
,(3.9)

where δ(m, p) is given by (3.4).

Proof. Lemma 2.3 (the equality (2.9)) leads us to

(D̃m,pe1)(x) =
1− 2x

m + p + 2
.

Let δ(m, p) be given by (3.4). Applying Theorem 3.1 we arrive to

|(D̃m,pf)(x)| ≤ |1− 2x|
m + p + 2

|f ′(x)|+ δ(m, p)
(

1 +
δ(m, p)

δ

)
ω1

(
f ′; δ(m, p)

)
,

i.e., (3.9), if we put δ = δ(m, p).

Corollary 3.1. Under conditions of Theorem 3.4, the following inequality

|(D̃m,pf)(x, y)− f(x)| ≤ 1
m + p + 2

‖f ′‖+
√

2 δ(m, p) ω1

(
f ′; δ(m, p)

)
.

holds, for any x ∈ [0, 1].

Proof. We apply Theorem 3.4, taking into account that |1− 2x| ≤ 1, for
each x ∈ [0, 1], and |f ′(x)| ≤ max

x∈[0,1+p]
|f ′(x)|, for each x ∈ [0, 1 + p].

Corollary 3.2. For any f ∈ C1([0, 1]), any x ∈ [0, 1] and any non-negative
integer m ≥ 3, the Durrmeyer operators (1.3) satisfy

|(Dmf)(x)− f(x)| ≤ |1− 2x|
m + 2

|f ′(x)|+ 2δm ω1

(
f ′; δm

)

≤ 1
m + 2

‖f ′‖+ 2δm ω1

(
f ′; δm

)
,

where δm =
√

(m + 1)/(2(m + 2)(m + 3)).

Proof. The assertion follows from Theorem 3.4, for p = 0.
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