DURRMEYER-SCHURER TYPE OPERATORS

Dan Bărbosu

Dedicated to Prof. G. Mastroianni for his 65th birthday

Abstract

Starting with the Schurer operators ([5]) some Durrmeyer type operators are constructed. A convergence theorem is established and some estimations for the rate of convergence are given.

1. Preliminaries

It is well known that the classical Bernstein operators $B_{m}: C([0,1]) \mapsto$ $C([0,1])$ are defined for any $f \in C([0,1])$ by

$$
\begin{equation*}
\left(B_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f(k / m) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{1.2}
\end{equation*}
$$

are the Bernstein fundamental polynomials.
Starting with the operators (1.1), J. L. Durrmeyer (see [3]) introduced in 1967 the operators $D_{m}: L_{1}([0,1]) \mapsto C([0,1])$, defined by

$$
\begin{equation*}
\left(D_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{0}^{1} p_{m, k}(t) f(t) d t \tag{1.3}
\end{equation*}
$$

Considering a given non-negative integer p, F. Schurer (see [5]) in 1962 introduced and studied the operators $\widetilde{B}_{m, p}: C([0,1+p]) \mapsto C([0,1])$, defined

[^0]by
\[

$$
\begin{equation*}
\left(\widetilde{B}_{m, p} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f(k / m), \tag{1.4}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\left(\widetilde{p}_{m, k}\right)(x)=\binom{m}{k} x^{k}(1-x)^{m+p-k} \tag{1.5}
\end{equation*}
$$

are the Schurer fundamental polynomials.
In the present paper we modify the operators (1.4) in Durrmeyer sense see also G. G. Lorentz ([4]).

Actually, we replace $f(k / m)$ by an integral mean of $f(x)$ on $[0,1]$ as follows

$$
\begin{equation*}
\left(\widetilde{D}_{m, p} f\right)(x)=(m+p+1) \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \int_{0}^{1} \widetilde{p}_{m, k}(t) f(t) d t \tag{1.6}
\end{equation*}
$$

where f belongs to the space $L_{1}([0,1])$.
The focus of the paper is to investigate the operators (1.6). Section 2 provided a convergence theorem for the sequence $\left\{\widetilde{D}_{m, p} f\right\}_{m \geq 1}$. In Section 3 we prove some results in connection with the rate of convergence for $\widetilde{D}_{m, p} f$ under different assumptions of the function f.

2. Convergence Theorem for the Sequence $\left\{\widetilde{D}_{m, p} f\right\}_{m \geq 1}$

We shall use the well known Bohman-Korovkin theorem (see [1]). In this sense, we need some auxiliary results.

Lemma 2.1. The Durrmeyer-Schurer operators (1.6) are linear and positive.

Proof. The assertion follows from the definition (1.6).
Lemma 2.2. The operator (3) transform any polynomial of degree $s \leq$ $m+p$ into a polynomial of degree s.

Proof. From Lemma 2.1 follows that is sufficient to prove the assertion for the test functions $e_{s}(t)=t^{s}$, where s is a non-negative integer with the property $s \leq m+p$.

Taking into account of (1.6), we get

$$
\begin{align*}
\int_{0}^{1} \widetilde{p}_{m, k}(t) t^{s} d t & =\binom{m+p}{k} \int_{0}^{1} t^{k+s}(1-t)^{m+p-k} d t \tag{2.1}\\
& =\binom{m+p}{k} B(k+s+1, m+p-k+1)
\end{align*}
$$

Note that in the right side of (2.1), $B(k+s+1, m+p-k+1)$ denotes the Beta function, i.e.,

$$
\begin{equation*}
B(k+s+1, m+p-k+1)=\frac{(k+s)!(m+p-k)!}{(m+p+s+1)!} \tag{2.2}
\end{equation*}
$$

Using (2.1) and (2.2), we can write

$$
\begin{equation*}
\left(\widetilde{D}_{m, p} e_{s}\right)(x)=\frac{(m+p+1)!}{(m+p+s+1)!} \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \cdot \frac{(k+s)!}{k!} . \tag{2.3}
\end{equation*}
$$

On the other hand, for any $x, y \in \mathbb{R}$ and any $s, m, p \in \mathbb{N}$ satisfying the inequality $s \leq m+p$ we have

$$
\begin{equation*}
\frac{\partial^{s}}{\partial x^{s}}\left(x^{s}(x+y)^{m+p}\right)=\sum_{k=0}^{m+p}\binom{m+p}{k} x^{k} \cdot y^{m+p-k} \cdot \frac{(k+s)!}{k!} . \tag{2.4}
\end{equation*}
$$

Using the well-known Leibniz formula, the left side of (2.4) can be expressed in the form

$$
\begin{align*}
\frac{\partial^{s}}{\partial x^{s}}\left(x^{s}(x+y)^{m+p}\right) & =\sum_{r=0}^{s}\binom{s}{r} \frac{d^{s-r}\left(x^{s}\right)}{d x^{s-r}} \frac{d^{r}}{d x^{r}}\left((x+y)^{m+p}\right) \tag{2.5}\\
& =\sum_{r=0}^{s}\binom{s}{r} \frac{s!}{r!} \frac{(m+p)!}{(m+p-r)!} x^{r}(x+y)^{m+p-r}
\end{align*}
$$

From (2.4) and (2.5), with $y:=1-x$, follows the identity

$$
\begin{equation*}
\sum_{r=0}^{s}\binom{s}{r} \frac{s!}{r!} \cdot \frac{(m+p)!}{(m+p-r)!} x^{r}=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \frac{(k+s)!}{k!} . \tag{2.6}
\end{equation*}
$$

Taking into account of (2.6), from (2.3) we get

$$
\begin{equation*}
\left(\widetilde{D}_{m, p} e_{s}\right)(x)=\frac{(m+p+1)!}{(m+p+s+1)!} \sum_{r=0}^{s}\binom{s}{r} \frac{s!}{r!} \frac{(m+p)!}{(m+p-r)!} x^{r}, \tag{2.7}
\end{equation*}
$$

which proves that $\widetilde{D}_{m, p} e_{s}$ is a polynomial of degree $s \leq m+p$.
Like usually, for any integer $s \geq 0$ we denote by $e_{s}(x)=x^{s}, x \in[0,1+p]$ the test functions.

Lemma 2.3. The Durrmeyer-Schurer operators (1.6) verify

$$
\begin{align*}
& \left(\widetilde{D}_{m, p} e_{0}\right)(x)=1 \tag{2.8}\\
& \left(\widetilde{D}_{m, p} e_{1}\right)(x)=\frac{(m+p) x+1}{m+p} \tag{2.9}\\
& \left(\widetilde{D}_{m, p} e_{2}\right)(x)=\frac{(m+p-1)(m+p) x^{2}+4(m+p) x+2}{(m+p+2)(m+p+3)} \tag{2.10}
\end{align*}
$$

Proof. The assertions follows from (2.7), for $s \in\{0,1,2\}$.
Theorem 2.1. The sequence $\left\{\widetilde{D}_{m, p} f\right\}_{m \geq 1}$ converges to f, uniformly on $[0,1]$, for any $f \in C([0,1])$.

Proof. Using Lemma 2.3 follows that $\lim _{m \rightarrow \infty} \widetilde{D}_{m, p} e_{s}=e_{s}$ uniformly on $[0,1]$ for $s \in\{0,1,2\}$. Applying then the well known Bohman-Korovkin theorem (see [1]), we arrive to the desired result.

3. Estimations of the Rate of Convergence in Terms of First Order Modulus of Smoothness

We shall use the first order modulus of smoothness $\omega_{1}:[0,+\infty) \mapsto \mathbb{R}$, defined for any real functions f, bounded on the interval $I \subset \mathbb{R}$, by

$$
\begin{equation*}
\omega_{1}(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime \prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} . \tag{3.1}
\end{equation*}
$$

It is well known (see [6]) the following result, obtained by O. Shisha and B. Mond in 1968.

Theorem 3.1. Let $L: C(I) \mapsto B(I)$ be a linear and positive operator and let φ_{x} be the function defined by $\varphi_{x}(t)=|t-x|,(x, t) \in I \times I$.
(i) If $f \in C_{B}(I)$, for any $x \in I$ and any $\delta>0$, the operator L verify

$$
\begin{aligned}
|(L f)(x)-f(x)| \leq & |f(x)|\left|\left(L e_{0}\right)(x)-1\right| \\
& +\left\{\left(L e_{0}\right)(x)+\delta^{-1} \sqrt{\left(L e_{0}\right)(x)\left(L \varphi_{x}^{2}\right)(x)}\right\} \omega_{1}(f ; \delta) .
\end{aligned}
$$

(ii) If $f \in C_{B}^{1}(I)$, for any $x \in I$ and any $\delta>0$, the operator L verifies

$$
\begin{aligned}
|(L f)(x)-f(x)| & \leq|f(x)|\left|\left(L e_{0}\right)(x)-1\right|+\left|f^{\prime}(x)\right|\left|\left(L e_{1}\right)(x)-x\left(L e_{0}\right)(x)\right| \\
& +\sqrt{\left(L \varphi_{x}^{2}\right)(x)}\left\{\sqrt{\left(L e_{0}\right)(x)}+\delta^{-1} \sqrt{\left(L \varphi_{x}^{2}\right)(x)}\right\} \omega_{1}\left(f^{\prime} ; \delta\right) .
\end{aligned}
$$

For applying Theorem 3.1, we need
Lemma 3.1. The operator (1.6) verifies

$$
\begin{equation*}
\left(\widetilde{D}_{m, p} \varphi_{x}^{2}\right)(x)=\frac{2(m+p-3) x(1-x)+2}{(m+p+2)(m+p+3)}, \tag{3.2}
\end{equation*}
$$

where $\varphi_{x}(t)=|t-x|,(t, x) \in[0,1+p] \times[0,1+p]$.
Proof. Because $\widetilde{D}_{m, p}$ is linear, it follows

$$
\left(\widetilde{D}_{m, p} \varphi_{x}^{2}\right)(x)=\left(\widetilde{D}_{m, p} e_{2}\right)(x)-2 x\left(\widetilde{D}_{m, p} e_{1}\right)(x)+x^{2}\left(\widetilde{D}_{m, p} e_{0}\right)(x) .
$$

Next, we apply Lemma 2.3.
Theorem 3.2. For any $f \in C([0,1+p])$, any $x \in[0,1]$ and any nonnegative integers m, p satisfying $m+p \geq 3$, the Durrmeyer-Schurer operators (1.6) verify

$$
\begin{equation*}
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq 2 \omega_{1}(f ; \delta(m, p)), \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(m, p)=\sqrt{\frac{m+p+1}{2(m+p+2)(m+p+3)}} . \tag{3.4}
\end{equation*}
$$

Proof. Taking into account of Theorem 3.1, we get

$$
\begin{equation*}
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq\left(1+\frac{1}{\delta} \sqrt{\frac{2(m+p-3) x(1-x)+2}{(m+p+2)(m+p+3)}}\right) \omega_{1}(f ; \delta) \tag{3.5}
\end{equation*}
$$

for any $f \in C([0,1+p])$, any $x \in[0,1]$, any non-negative integers m, p satisfying $m+p \geq 3$ and any $\delta>0$.

But, if $m+p \geq 3$ and $x \in[0,1]$, the inequality

$$
\begin{equation*}
2(m+p-3) x(1-x)+2 \leq \frac{m+p+1}{2} \tag{3.6}
\end{equation*}
$$

holds. From (3.5) and (3.6) it follows

$$
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq\left(1+\frac{1}{\delta} \sqrt{\frac{m+p+1}{2(m+p+2)(m+p+3)}}\right) \omega_{1}(f ; \delta) .
$$

Taking $\delta=\delta(m, p)$ (defined in (3.4)), this inequality becomes (3.3).
An extension of Theorem 3.2 is the following result:

Theorem 3.3. For any $f \in L_{1}([0,1+p])$, any $x \in[0,1]$ and any nonnegative integers m, p satisfying $m+p \geq 3$ the inequality (3.3) holds.

Proof. Applying Lemma 2.3 (the identity (2.8)), it follows

$$
\begin{equation*}
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq(m+p+1) \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \int_{0}^{1} \widetilde{p}_{m, k}(t)|f(t)-f(x)| d t . \tag{3.7}
\end{equation*}
$$

On the other hand $|f(t)-f(x)| \leq \omega_{1}(f ;|t-x|) \leq\left(1+\delta^{-2}(t-x)^{2}\right) \omega_{1}(f ; \delta)$. For $|t-x|<\delta$ the last increase is clear. For $|t-x| \geq \delta$ we use the following properties

$$
\omega_{1}(f ; \lambda \delta) \leq(1+\lambda) \omega_{1}(f ; \delta) \leq\left(1+\lambda^{2}\right) \omega_{1}(f ; \delta)
$$

where we choose $\lambda=\delta^{-1}|t-x|$. In this way, the relation (3.7) implies

$$
\begin{align*}
& \left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \tag{3.8}\\
& \quad \leq(m+p+1) \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \int_{0}^{1} \widetilde{p}_{m, k}(t)\left(1+\delta^{-2}(x-t)^{2}\right) \omega_{1}(f ; \delta) \\
& \quad \leq(m+p+1) \sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) \int_{0}^{1} \widetilde{p}_{m, k}(t)\left(1+\delta^{-2}(x-t)^{2}\right) \omega_{1}(f ; \delta) d t \\
& \quad=\left\{\left(\widetilde{D}_{m, p} e_{0}\right)(x)+\delta^{-2}\left(\widetilde{D}_{m, p} \varphi_{x}^{2}\right)(x)\right\} \omega_{1}(f ; \delta) .
\end{align*}
$$

Taking into account of Lemma 2.3 and Lemma 3.1, from (3.8) it follows

$$
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq\left(1+\frac{2(m+p-3) x(1-x)+2}{(m+p+2)(m+p+3)} \frac{1}{\delta^{2}}\right) \omega_{1}(f ; \delta)
$$

Using (3.6), this inequality becomes

$$
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq\left(1+\frac{m+p+1}{2(m+p+2)(m+p+3)} \frac{1}{\delta^{2}}\right) \omega_{1}(f ; \delta),
$$

wherefrom, choosing $\delta=\delta(m, p)$ (as in Theorem 3.2), we get the desired result.

Further, we estimate the rate of convergence for smooth functions.
Theorem 3.4. For any $f \in C^{1}([0,1+p])$, any $x \in[0,1]$ and any non negative integers satisfying $m+p \geq 3$, the operator (1.6) verify

$$
\begin{equation*}
\left|\left(\widetilde{D}_{m, p} f\right)(x)-f(x)\right| \leq \frac{|1-2 x|}{m+p+2}\left|f^{\prime}(x)\right|+2 \delta(m, p) \omega_{1}\left(f^{\prime} ; \delta(m, p)\right), \tag{3.9}
\end{equation*}
$$

where $\delta(m, p)$ is given by (3.4).
Proof. Lemma 2.3 (the equality (2.9)) leads us to

$$
\left(\widetilde{D}_{m, p} e_{1}\right)(x)=\frac{1-2 x}{m+p+2} .
$$

Let $\delta(m, p)$ be given by (3.4). Applying Theorem 3.1 we arrive to

$$
\left|\left(\widetilde{D}_{m, p} f\right)(x)\right| \leq \frac{|1-2 x|}{m+p+2}\left|f^{\prime}(x)\right|+\delta(m, p)\left(1+\frac{\delta(m, p)}{\delta}\right) \omega_{1}\left(f^{\prime} ; \delta(m, p)\right),
$$

i.e., (3.9), if we put $\delta=\delta(m, p)$.

Corollary 3.1. Under conditions of Theorem 3.4, the following inequality

$$
\left|\left(\widetilde{D}_{m, p} f\right)(x, y)-f(x)\right| \leq \frac{1}{m+p+2}\left\|f^{\prime}\right\|+\sqrt{2} \delta(m, p) \omega_{1}\left(f^{\prime} ; \delta(m, p)\right)
$$

holds, for any $x \in[0,1]$.
Proof. We apply Theorem 3.4, taking into account that $|1-2 x| \leq 1$, for each $x \in[0,1]$, and $\left|f^{\prime}(x)\right| \leq \max _{x \in[0,1+p]}\left|f^{\prime}(x)\right|$, for each $x \in[0,1+p]$.

Corollary 3.2. For any $f \in C^{1}([0,1])$, any $x \in[0,1]$ and any non-negative integer $m \geq 3$, the Durrmeyer operators (1.3) satisfy

$$
\begin{aligned}
\left|\left(D_{m} f\right)(x)-f(x)\right| & \leq \frac{|1-2 x|}{m+2}\left|f^{\prime}(x)\right|+2 \delta_{m} \omega_{1}\left(f^{\prime} ; \delta_{m}\right) \\
& \leq \frac{1}{m+2}\left\|f^{\prime}\right\|+2 \delta_{m} \omega_{1}\left(f^{\prime} ; \delta_{m}\right),
\end{aligned}
$$

where $\delta_{m}=\sqrt{(m+1) /(2(m+2)(m+3))}$.
Proof. The assertion follows from Theorem 3.4, for $p=0$.

REFERENCES

1. O. Agratini: Aproximare prin operatori liniari. Presa universitară Clujeană, Cluj-Napoca 2000 (in Romanian).
2. F. Altomare and M. Campiti: Korovkin-type Approximation Theory and its Applications. de Gruyter Series Studies in Mathematics, vol. 17, Walter de Gruyter \& Co., Berlin, New York, 1994.
3. J.L. Durrmeyer: Une formule d'inversion de la transformée de Laplace: Application à la theorie des moments. Thèse de 3e cycle, Faculté des Sciences de l'Université de Paris, 1967.
4. G.G. Lorentz: Bernstein Polynomials. Toronto, Univ. of Toronto Press, 1953.
5. F. Schurer: Linear positive operators in approximation theory. Math. Inst. Tech. Univ Delft Report, 1962.
6. O. Shisha and B. Mond: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60 (1968), 1196-1200.
7. D.D. Stancu, Gh. Coman, O. Agratini, R. Trâmbiţaş: Analiză numerică şi teoria aproximării. vol. I. Presa Universitară Clujeană, ClujNapoca, 2001 (in Romanian).
8. D.D. Stancu: Curs şi culegere de probleme de analiză numerică. Vol. 1, Univ. "Babeş-Bolyai" Cluj-Napoca, Facultatea de Matematică, ClujNapoca, 1977 (in Romanian).

North University of Baia Mare
Faculty of Science
Department of Mathematics and Computer Science
Str. Victoriei 76, 4800 Baia Mare, ROMANIA
e-mail: dbarbosu@ubm.ro; danbarbosu@yahoo.com

[^0]: Received April 2, 2003.
 2000 Mathematics Subject Classification. Primary 41A36; Secondary 41A25, 41A63.

