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Abstract. The present paper focuses on a class of linear positive operators intro-
duced by G. Mastroianni. An integral extension in Kantorovich sense is defined
and approximation properties of these two sequences are established in different
normed spaces.

1. Introduction

In [8] Mastroianni introduced and studied a sequence (Mn)n≥1 of dis-
crete linear positive operators to approximate unbounded functions on the
interval [0,+∞) := R+. Briefly, we recall this construction. Let (φn)n≥1

be a sequence of real valued functions defined on R+ which are infinitely
differentiable on R+ and which satisfy the following conditions:

φn(0) = 1 for every n ∈ N;(1.1)

(−1)kφ(k)
n (x) ≥ 0 for every n ∈ N, x ∈ R+ and k ∈ N ∪ {0} := N0;(1.2)

for each (n, k) ∈ N × N0 there exists a number p(n, k) ∈ N and a function
αn,k ∈ RR+ such that

φ(i+k)
n (x) = (−1)kφ

(i)
p(n,k)(x)αn,k(x), i ∈ N0, x ∈ R+,(1.3)

and

lim
n→+∞

n

p(n, k)
= lim

n→+∞
αn,k(x)

nk
= 1.(1.4)
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We set E2(R+) := {f ∈ C(R+) :
f(x)

1 + x2
is convergent as x → +∞}.

This space endowed with the norm ‖ · ‖∗, ‖f‖∗ := sup
x≥0

(1 + x2)−1|f(x)|, is a

Banach space. The operators Mn, n ∈ N, map E2(R+) into C(R+) and are
given by the following formula

(Mnf)(x) :=
+∞∑

k=0

(−1)k

k!
xkφ(k)

n (x)f
(

k

n

)
.

In time, a thoroughgoing study of this class was developed, see for in-
stance [9], [10], [5], and new properties of it have been pointed out. A
synthesis of these results can be found in the monograph [2; §5.3.11]. At the
same time, it is fair to notice that the above construction takes its origin
in a paper of Baskakov [3]. Following this way, many authors constructed
similar sequences of operators.

Particular cases. Mastroianni operators include some well-known classi-
cal linear positive operators such as Szász-Favard-Mirakyan and Baskakov
operators.

1◦ Choosing φn(x) = e−nx, p(n, k) = n and αn,k(x) = nk (constant
functions on R+) we obtain the first class.

2◦ Choosing φn(x) = (1 + x)−n, p(n, k) = n + k and

αn,k(x) = n(n + 1) · · · (n + k − 1)(1 + x)−k

the second mentioned class is obtained.
Our aim is to present new approximation properties of Mastroianni op-

erators. Also, an integral generalization of Mn in Kantorovich sense is in-
vestigated and special cases are revealed.

2. The class (M∗
n)

First of all, we propose a slight modification of Mastroianni operators.
Instead of the net (k/n : k ∈ N0) we can use the following (k/an : k ∈ N0),
where 0 < a1 < a2 < · · · < an < · · · and lim

n→+∞ an = +∞. This way, the net

is more flexible than the previous one and, practically, the properties of Mn

operators do not modified. Throughout the paper we use this new net, but
we keep the same notation, this means Mn, for the operators. Obviously,
condition (1.4) will be replaced by the following

lim
n→+∞

n

p(n, k)
= lim

n→+∞
αn,k(x)

ak
n

= 1, k ∈ N0.



Mastroianni Operators Revisited 55

For every k ∈ N0 and x ≥ 0 we have

αn,k(x) ≥ 0 and lim
n→+∞

φ
(k)
n (0)
ak

n

= (−1)k.(2.1)

The above inequality is obtained multiplying identity (1.3) by (−1)i+k

and applying condition (1.2). The second statement in (2.1) can be proved
by induction on k ∈ N0, manipulating relations (1.1), (1.3) and (1.4). If
ej stands for the j-th monomial, ej(t) = tj , t ≥ 0, j ∈ N0, then an easy
computation leads us to the following identities

Mne0 = e0, Mne1 = −φ′n(0)
an

e1, Mne2 =
φ′′n(0)

a2
n

e2 − φ′n(0)
a2

n

e1.(2.2)

By virtue of these relations, the series which appear in the definition of
Mn are absolutely convergent. Also, according to the well-known Bohman-
Korovkin theorem, relations (2.2) and (2.1) guarantee that lim

n→+∞Mnf = f

uniformly on compact subsets of R+ for every f ∈ E2(R+). Applying a
classical result due to Shisha and Mond [11], we obtain the pointwise estimate
|(Mnf)(x)− f(x)| ≤ 2ω(f,

√
δn(x)), x ≥ 0,

δn(x) := Mn((e1 − xe0)2, x) =
(

1 + 2
φ′n(0)

an
+

φ′′n(0)
a2

n

)
x2 − φ′n(0)

a2
n

x,(2.3)

which holds for every f ∈ C(R+).
Setting

τn,j := φ(j)
n (0)/aj

n and un := τn,2 + 2τn,1 + 1,(2.4)

relation (2.3) implies

Mn((e1 − xe0)2, x) ≤ max{un, |τn,1|a−1
n }(x2 + x) := vn(x2 + x).(2.5)

In what follows we modify the Mn operators into integral form operators
by replacing f(k/an) with an integral mean of f(x) over an interval In,k :=
[k/an, (k + 1)/an], as follows

(M∗
nf)(x) := an

+∞∑

k=0

mn,k(x)
∫ (k+1)/an

k/an

f(t)dt, x ≥ 0, n ∈ N,(2.6)

where mn,k(x) :=
1
k!

(−1)kxkφ(k)
n (x) and f ∈ Mloc(R+), the class of all

measurable functions on R+ and bounded on every compact subinterval of
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R+. Clearly, the operator M∗
n is a linear positive one and it can be written

as a singular integral of the type (M∗
nf)(x) =

∫ +∞

0
Kn(x, t)f(t)dt, with

the kernel Kn(x, t) := an

∑

k≥0

mn,k(x)χn,k(t), where χn,k is the characteristic

function of the interval In,k, k ∈ N0.
We mention that these kind of extensions are familiar to several discrete

operators. For a quick information see [6, p. 115]. In [1] the first author
developed a similar approach for Balázs-Szabados operators.

Denoting by Ωn,r the r-th central moment of M∗
n, that is Ωn,r(x) :=

M∗
n((e1 − xe0)r, x), r∈ N0, x ∈ R+, by a straightforward calculation we get

Lemma 2.1. For every n ∈ N, the operator M∗
n defined by (2.6) verifies

M∗
ne0 = e0, M∗

ne1 = −τn,1e1 +
1

2an
, M∗

ne2 = τn,2e2 − 2τn,1

an
e1 +

1
3a2

n

,

Ωn,1 = −(1 + τn,1)e1 +
1

2an
, Ωn,2 = une2 − 1 + 2τn,1

an
e1 +

1
3a2

n

,(2.7)

where τn,j and un are defined by (2.4).

3. Approximation Properties of Mn and M∗
n

In the first part of this section, coming back to (Mn)n≥1, we establish
some pointwise estimates of the rate of convergence of this approxima-
tion process. More precisely, we present the relationship between the local
smoothness of f and the local approximation. For the sake of completeness,
we recall that a function f ∈ C(R+) is locally Lipα on E, 0 < α ≤ 1,
E ⊂ R+, if it satisfies the condition

|f(x)− f(y)| ≤ cf |x− y|α, (x, y) ∈ R+ × E,(3.1)

where cf is a constant depending only on α and f .

Theorem 3.1. If f is locally Lipα on E ⊂ R+, α ∈ (0, 1], then one has

|(Mnf)(x)− f(x)| ≤ cf

(
vα/2
n (x2 + x)α/2 + 2dα(x,E)

)
, x ≥ 0,

where vn is defined at (2.5) and d(x,E) represents the distance between x
and E.
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Proof. It is clear that (3.1) holds true for any x ∈ R+ and y ∈ E, the
closure of the set E in R. Let (x, x0) ∈ R+×E such that |x−x0| = d(x,E) :=
inf{|x− y| : y ∈ E}. Since |f − f(x)| ≤ |f − f(x0)|+ |f(x0)− f(x)| and Mn

is a linear positive operator reproducing the constants, we get

|(Mnf)(x)− f(x)| ≤ Mn(|f − f(x0)|, x) + |f(x)− f(x0)|(3.2)
≤ Mn(cf |e1 − x0|α, x) + cf |x− x0|α.

Based on Hölder’s inequality, one has Mnhα ≤ M
α/2
n h2 for every function

h ∈ RR+
+ . Consequently, for every x ≥ 0 we deduce

Mn(|e1 − x|α, x) ≤ δα/2
n (x),(3.3)

where δn(x) is given at (2.3). Since |t − x0| ≤ |t − x| + |x − x0| and Mn is
monotone, the elementary inequality

(a + b)α ≤ aα + bα, a ≥ 0, b ≥ 0, 0 < α ≤ 1,

and relation (3.3) imply

Mn(cf |e1 − x0|α, x) ≤ cf (Mn(|e1 − x|α, x) + |x− x0|α)

≤ cf (δα/2
n (x) + |x− x0|α).

Returning to (3.2) and taken into account (2.5), the conclusion follows.

In particular for E = R+, if f satisfies ω(f, t) = O(tα) then a constant
cf independent of n and x exists, such that |Mnf − f | ≤ cfv

α/2
n (e2 + e1)α/2.

In order to increase the degree of exactness of Mn operators, we consider
the following condition to be fulfilled

an = −φ′n(0), n ∈ N,(3.4)

in other words τn,1 = −1, which guarantees that Mne1 = e1. Taking into
account (1.3), our requirement is equivalent with the relation an = αn,1(0),
n ∈ N. Moreover, we get φ

(k)
n (0) = (−1)kαn,k(0) for every k ∈ N0.

Following the line of Ditzian-Totik [6, § 1.2], we consider ϕ ∈ RR+ an
admissible weight function. In order to give another estimate of the approx-
imation error, we need to use the weighted K-functional of second order for
f ∈ CB(R+) defined as follows

K2,ϕ(f, t) := inf
g

{
‖f − g‖+ t‖ϕ2g′′‖ : g′ ∈ ACloc(R+)

}
, t > 0,

where ‖ · ‖ stands for the supremum norm and g′ ∈ ACloc(R+) means that
g is differentiable and g′ is absolutely continuous on every compact of R+.
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Theorem 3.2. If (3.4) takes place and ϕ is an admissible weight function
such that ϕ2 is concave, then

|(Mnf)(x)− f(x)| ≤ 2K2,ϕ

(
f,

vnx(x + 1)
2ϕ2(x)

)

holds true for every x > 0, where vn is defined by (2.5).

Proof. Let x > 0 be fixed and g : R+ → R be twice differentiable such
that g′ ∈ ACloc(R+). Starting from Taylor’s expansion

g(u) = g(x) + g′(x)(u− x) +
∫ u

x
g′′(t)(u− t)dt, u ≥ 0,

and knowing that (3.4) holds true, in other words Mn reproduces linear
functions, we have

(Mng)(x)− g(x) = Mn

(∫ e1

xe0

g′′(t)(e1 − t)dt, x

)
.

Since ϕ2 is concave, for every t = (1− λ)u + λx, λ ∈ (0, 1), we get

ϕ2(t) ≥ (1− λ)ϕ2(u) + λϕ2(x) ≥ λϕ2(x)

and consequently
|t− u|
ϕ2(t)

=
λ|x− u|
ϕ2(t)

≤ |x− u|
ϕ2(x)

.

It turns out that
∣∣∣∣
∫ u

x
g′′(u)(u− t)dt

∣∣∣∣ ≤ ‖ϕ2g′′‖
∣∣∣∣
∫ u

x

|t− u|
ϕ2(t)

dt

∣∣∣∣

≤ ‖ϕ2g′′‖
∣∣∣∣
∫ u

x

|x− u|
ϕ2(x)

dt

∣∣∣∣ = ‖ϕ2g′′‖(x− u)2

ϕ2(x)
.

Applying the linear positive operator Mn, we have

Mn

(∫ e1

xe0

g′′(t)(e1 − t)dt, x

)
≤ ‖ϕ2g′′‖ δn(x)

ϕ2(x)
,

and further

|(Mnf)(x)− f(x)| ≤ |Mn(f − g, x)|+ |g(x)− f(x)|+ |(Mng)(x)− g(x)|

≤ 2‖f − g‖+ vn‖ϕ2g′′‖x2 + x

ϕ2(x)
.
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In the above we used that every operator Mn maps continuously CB(R+)
into itself: for each h ∈ CB(R+) and x ≥ 0 one has |(Mnh)(x)| ≤ ‖h‖. At
this point, taking the infimum over all g with g′ ∈ ACloc(R+), we get the
desired result.

It is known that K2,ϕ(f, t2) and Ditzian-Totik modulus of smoothness of
second order are equivalent, that is K2,ϕ(f, t2) ∼ ω2,ϕ(f, t)∞. We recall

ω2,ϕ(f, t)∞ := sup
0≤h≤t

sup
x±hϕ(x)≥0

|f(x−ϕ(x)h)− 2f(x) + f(x + ϕ(x)h)|.(3.5)

On the light of this fact, Theorem 3.2 implies: a constant Cϕ independent
of f and n exists, such that

|(Mnf)(x)− f(x)| ≤ Cϕω2,ϕ

(
f,

√
vnx(x + 1)√

2ϕ(x)

)

∞
, x > 0.

We notice that the construction of Mn operators requires an estimation
of an infinite sum which, from computational point of view, restricts the
operators usefulness. In this respect, in order to approximate a function f , it
is useful to consider partial sums of Mnf which have finite terms depending
upon n. In other words, the operators are truncated fading away their
“tails”. For a fixed constant λ > 0, we consider the operators defined as
follows

(M 〈λ〉
n f)(x) =

[λan]∑

k=0

mn,k(x)f
(

k

an

)
, x ≥ 0, n ∈ N,

where [α] indicates the largest integer not exceeding α.

Theorem 3.3. The operators M
〈λ〉
n , n ∈ N, have the property

lim
n→+∞(M 〈λ〉

n f)(x) = f(x) for all f ∈ C([0, λ]),

uniformly on every compact Kλ ⊂ [0, λ].

Proof. For every function f ∈ C([0, λ]) we introduce the function fλ ∈
C(R+) given by

fλ(x) =

{
f(x), 0 ≤ x ≤ λ,

f(λ), x > λ.
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For every x ∈ [0, λ) we have

(M 〈λ〉
n f)(x) = (Mnfλ)(x)− f(λ)rn(x), where rn(x) =

+∞∑

k=[λan]+1

mn,k(x).

If k/an > λ and 0 ≤ x < λ, then 1 < (λ − x)−2(k/an − x)2 holds true.
Consequently we can write

rn(x) ≤ 1
(λ− x)2

∑
k| k

an
−x|>λ−x

mn,k(x)
(

k

an
− x

)2

≤ 1
(λ− x)2

+∞∑

k=0

mn,k(x)
(

k

an
− x

)2

≤ x(x + 1)
(λ− x)2

vn,

where vn was defined by (2.5). Since relation (2.1) guarantees that rn(x) =
o(1) (n → +∞), uniformly on every compact subinterval Kλ ⊂ [0, λ), the
proof is finished.

If Mn turns into Szász operator, see Particular cases (1◦), then, choosing
an = n and λ = 1, the truncated operator M

〈1〉
n ≡ Sn,1 is given by the

formula

(Sn,1f)(x) = e−nx

[n]∑

k=0

(nx)k

k!
f

(
k

n

)
, f ∈ E2(R+), x ≥ 0.

In this particular case, Theorem 3.3 encounters a result obtained by Lehn-
hoff [7, Theorem 5].

Further on, we are going to present an approximation property for smooth
functions of the operators defined by (2.6). In this respect we recall some
definitions and preliminary results. The vector space

C2
B(R+) :=

{
f ∈ CB(R+) : f ′ and f ′′ exist and belong to CB(R+)

}
,

endowed with norm ‖ · ‖C2
B
, ‖f‖C2

B
:=

2∑

j=0

‖f (j)‖, is a Banach space.

The K-functional for the couple (CB(R+), C2
B(R+)) is given by

K(f, t) := inf
g∈C2

B(R+)

{
‖f − g‖+ t‖g‖C2

B

}
, f ∈ CB(R+), t > 0.
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For every t > 0, the following inequality

K(f, t) ≤ c
{

ω2(f,
√

t )∞ + min(1, t)‖f‖
}

(3.6)

holds true. The constant c is independent of f and ω2(f, ·)∞ is defined at
(3.5) by choosing ϕ ≡ 1. Actually, we can describe the K-functional in terms
of the moduli of smoothness in a more general frame of Besov and Sobolev
spaces, see e.g. [4, Theorem 4.12].

Theorem 3.4. Let M∗
n, n ≥ 1, be defined by (2.6). For each f ∈ CB(R+)

and x ≥ 0 one has

|(M∗
nf)(x)− f(x)| ≤ C

{
ω2(f,

√
λn,x ) + min(1, λn,x)‖f‖

}
,

where C is a constant independent of f and n, λn,x :=
1
2
wn max{1, x2} and

wn := |1 + τn,1|+ 1
2
|un|+ 1

2an

(
1 + 2|1 + 2τn,1|+ 1

3an

)
= o(1),(3.7)

when n → +∞, and the quantities un and τn,1 being defined by (2.4).

Proof. For a given function g ∈ C2
B(R+) and x ≥ 0, we get

g(t)− g(x) = (t− x)g′(x) +
1
2
(t− x)2g′′(ξ),

where ξ = ξ(t, x) is a point of the interval determined by t and x, t ∈ R+.
Consequently, by applying M∗

n, we obtain

(M∗
ng)(x)− g(x) = g′(x)Ωn,1(x) +

1
2
g′′(ξ)Ωn,2(x).

By using (2.7) and (3.7) we can write successively

|(M∗
ng)(x)− g(x)|
≤ ‖g′‖

(
1

2an
+ |τn,1 + 1|x

)
+

1
2
‖g′′‖

(
|un|x2 +

|1 + 2τn,1|
an

x +
1

3a2
n

)

≤ wn‖g‖C2
B

max{1, x2}.

Since a−1
n = o(1) (n → +∞), based on (2.4) and (2.1), clearly wn = o(1)

(n → +∞).
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Further on, for every f ∈ CB(R+) and g ∈ C2
B(R+) we have

|(M∗
nf)(x)− f(x)|
≤ |(M∗

nf)(x)− (M∗
ng)(x)|+ |(M∗

ng)(x)− g(x)|+ |g(x)− f(x)|
≤ 2‖f − g‖+ wn‖g‖C2

B
max{1, x2}.

Passing to the infimum over all functions g ∈ C2
B(R+), we get

|(M∗
nf)(x)− f(x)| ≤ 2K

(
f,

wn

2
max{1, x2}

)
.

By using (3.6) the proof of the theorem is complete.

Remark 3.1. Under the additional assumption specified at (3.4), the new look of
wn is the following

wn =
1
2
(|τn,2 − 1|+ 3a−1

n + a−2
n /3).
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