
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The concern of this paper is to continue the investigation of local
convergence properties of linear approximation operators published by Kirov and
Popova. Given a sequence of linear operators Ln new operators Ln,r can be
constructed by application of Ln to the r-th partial sum of the Taylor series of
the approximated function. In the first part of the paper we derive the complete
asymptotic expansion for the operators Ln,r as n tends to infinity, provided that
the underlying operators Ln possess such a property. As an application we obtain
the complete asymptotic expansions for the enhanced variant of some special
approximation operators such as Bernstein and Bernstein-Durrmeyer operators.
In the second part we study the operators which arise by replacing the derivatives
in the Taylor series by certain differences of the function.

1. Introduction

In his paper [17] Kirov introduced, for functions f ∈ Cr[0, 1] (r =
0, 1, 2, . . .), the polynomials

Bn,r(f ; x) =
n∑

ν=0

r∑

j=0

1
j!

f (j)
(ν

n

)(
x− ν

n

)j (n

ν

)
xν(1− x)n−ν (n ∈ N).(1.1)

For r = 0, they coincide with the classical Bernstein polynomials Bn. For
r ≥ 1, in contrast with the last ones, they are sensitive to the degree of
smoothness of the function f as approximations to f .
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Kirov proved for the operators (1.1) natural generalizations of the classi-
cal theorems of Popoviciu and Voronovskaja. The latter result asserts that,
for f ∈ Cr+2[0, 1] and each x ∈ [0, 1], there holds the asymptotic relation
([17, Theorem 2])

Bn,r(f ;x) = f(x) + (−1)rTn,r+1(x)
f (r+1)(x)

(r + 1)! nr+1
(1.2)

+(−1)rTn,r+2(x)
(r + 1)f (r+2)(x)

(r + 2)! nr+2
+ o(nr/2+1)

as n tends to infinity, where

Tn,s(x) =
n∑

ν=0

(ν − nx)s
(n

ν

)
xν(1− x)n−ν

(cf. [14, Eq. (1.2), p. 303]).

In the subsequent paper [18] Kirov and Popova associated, in a more
general setting, to each linear operator Ln : C[a, b] → C[a, b] a new operator
Ln,r of r-th order (r = 0, 1, 2, . . .) defined by

Ln,r(f ; x) = Ln(Px,rf ;x),(1.3)

where Px,rf is the r-th Taylor polynomial

Px,r(f ; t) =
r∑

j=0

f (j)(t)
j!

(x− t)j(1.4)

of the function f ∈ Cr[a, b] in a neighbourhood of the point t ∈ [a, b]. For
r = 0, we have Ln,0 ≡ Ln. Kirov and Popova studied the properties of the
operators (1.3) and proved a Korovkin-type theorem.

Instead of [a, b] we could, of course, consider an arbitrary finite or infinite
interval I, where in the latter case the most operators Ln require that f is
bounded on I or that f satisfies a certain growth condition.

The operators (1.1) appear as a special case of the operators (1.3) if
Ln ≡ Bn are the Bernstein polynomials and I = [0, 1].

The purpose of this paper is the investigation of the asymptotic behaviour
of sequences Ln,r of operators (1.3) originating from approximation proper-
ties of the operators Ln as n tends to infinity.
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Throughout the paper let (ϕk)
+∞
k=1 be a sequence of functions defined on

N, such that for each k ∈ N

lim
n→+∞ϕk (n) = 0 and

ϕk+1 (n) = o (ϕk (n)) (n → +∞).

We consider operators Ln satisfying an asymptotic relation and derive for
the corresponding operators Ln,r a complete asymptotic expansion of the
form

Ln,r(f ; x) ∼ f(x) +
+∞∑

k=1

ϕk (n) c
[r]
k (f ; x) (n → +∞)(1.5)

with certain coefficients c
[r]
k (f ;x) (k = 1, 2, . . .) independent of n. Formula

(1.5) means that, for all q ∈ N,

Ln,r(f ; x) = f(x) +
q∑

k=1

ϕk (n) c
[r]
k (f ; x) + o(n−q)

as n → +∞.
In particular, we obtain a complete asymptotic expansion for the opera-

tors Bn,r in the form

Bn,r(f ;x) ∼ f(x) +
+∞∑

k=1

ck(f ;x)
nk

(n → +∞),(1.6)

provided that f is bounded in [0, 1] and possesses derivatives of sufficiently
high order at x. For all coefficients ck(f ; x) (k = 1, 2, . . .) we determine
explicit expressions.

The asymptotic relation (1.6) gives much more insight in the asymptotic
behaviour of the operators (1.1) than Eq. (1.2).

Since the operators Ln,r have the lack that they require the existence of all
derivatives f ′, f ′′, . . . , f (r) on the whole interval [a, b], we establish operators
similar to Ln,r which work without any derivative of f . We construct such
operators by replacing the derivatives f (j) in the Taylor polynomial Px,r by
suitable differences of the function f and prove that they possess the same
properties as the Ln,r concerning asymptotic approximation in the most
common case ϕk (n) = n−k (k = 1, 2, . . .).

We shall make use of the Stirling numbers of the first and second kind,
denoted by Sk

m and σk
m, respectively. Recall that the Stirling numbers are
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defined by the equations

xm =
m∑

k=0

Sk
m xk resp. xm =

m∑

k=0

σk
m xk (m = 0, 1, . . .) .(1.7)

We mention that there are several results on asymptotic expansions of
special approximation operators such as Bernstein-Kantorovich operators
[4], the operators of Balázs and Szabados [7], the Meyer-König and Zeller
operators [1, 3], the operators of Butzer, Bleimann and Hahn [2, 5], and
the Gamma operators [12]. The Jakimovski-Leviatan operators and their
Kantorovich variant were studied by Abel and Ivan [9, 10]. Similar results
on a certain positive linear operator can be found in [15, 11].

2. Asymptotic Approximation by Operators Ln,r

2.1. The result. As first main result we obtain the complete asymp-
totic expansion of the operators Ln,r, provided the operators Ln possess a
complete asymptotic expansion. Throughout the paper we assume that the
functions f under consideration admit derivatives of sufficiently high orders.

Theorem 2.1. Let q, r ∈ N. Suppose the linear operators Ln : C[a, b] →
C[a, b] satisfy, for x ∈ [a, b], an asymptotic expansion

Ln(f ;x) = f(x)+
q∑

k=1

ϕk (n)
Lk∑

`=`k

gk,`(x)f (`)(x)+o (ϕq (n)) (n → +∞)(2.1)

with integers Lk ≥ `k ≥ 1 and certain values gk,`(x) independent of n. Then,
the operators Ln,r, as defined in Eq. (1.3), possess the asymptotic expansion

Ln,r(f ; x) = f(x)+(−1)r
q∑

k=1

ϕk (n)
Lk∑

`=max{`k,r+1}

(`− 1
r

)
gk,`(x)f (`)(x)(2.2)

+o (ϕq (n))

as n → +∞.

Several known linear approximation operators such as Bernstein polyno-
mials, Durrmeyer operators, Kantorovich polynomials, Baskakov operators,
Szász-Mirakjan operators and many others, satisfy an asymptotic expansion
of the form (2.1) with the special sequence

Lk = 2k (k ∈ N).

For such operators, we have the following
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Corollary 2.1. Under the assumptions of Theorem 2.1 and the additional
condition Lk = 2k (k ∈ N), there holds

Ln,r(f ; x) = f(x) + (−1)r
q∑

k=br/2c+1

ϕk (n)×(2.3)

×
2k∑

`=max{`k,r+1}

(`− 1
r

)
gk,`(x)f (`)(x) + o(ϕq (n)) (n → +∞).

Remark 2.1. In Eq. (2.3) we use the convention that a sum is to be read as 0 if
the lower index is greater than the upper index. Note that in the case r ≤ 2q − 1,
Corollary 2.1 states that

Ln,r(f ; x) = f(x) + O
(
ϕbr/2c+1 (n)

)
(n → +∞).(2.4)

Proof of Theorem 2.1. By definitions (1.3) and (1.4), there holds

Ln,r(f ; x) =
r∑

j=0

1
j!

Ln((x− t)jf (j)(t);x)

and assumption (2.1) yields

Ln,r(f ;x) = f(x) +
r∑

j=0

1
j!

q∑

k=1

ϕk (n)
Lk∑

`=`k

gk,`(x)

×
(

d

dt

)` (
(x− t)j f (j) (t)

)∣∣∣∣∣
t=x

+ o(ϕq (n)) (n → +∞).

Using Leibniz rule, we obtain
(

d

dt

)` (
(x− t)j f (j) (t)

)∣∣∣∣∣
t=x

= (−1)jj!
( `

j

)
f (`)(x),

and therefore

Ln,r(f ; x) = f(x) +
q∑

k=1

ϕk (n)
Lk∑

`=`k

gk,`(x)f (`)(x)
r∑

j=0

(−1)j
( `

j

)
+ o(ϕq (n))

as n → +∞, so that Theorem 2.1 follows by the well-known identity
r∑

j=0

(−1)j
( `

j

)
= (−1)r

(`− 1
r

)
(`, r ∈ N).
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2.2. Bernstein Polynomials. In order to illustrate Theorem 2.1 we
apply it to the generalized Bernstein polynomials (1.1). As in many cases
here we have that ϕk (n) = n−k. The complete asymptotic expansion for the
Bernstein polynomials

Bn(f ; x) ∼ f(x)+
+∞∑

k=1

n−k
2k∑

`=k+1

f (`)(x)
`!

k∑

j=0

x`−j
∑̀

m=k

(−1)`−m
( `

m

)
Sm−k

m−j σm−j
m

as n → +∞ is known (cf. [2, Eq. (4) and Lemma 1]). Thus, the assumptions
of Corollary 2.1 are satisfied with `k = k + 1, Lk = 2k and

gk,`(x) =
1
`!

k∑

j=0

x`−j
∑̀

m=k

(−1)`−m
( `

m

)
Sm−k

m−j σm−j
m .

As usual, we put X = x(1 − x) (cf. [14, Theorem 1.1, p. 303]) and X ′ =
1− 2x. Then, there holds

Bn,0(f ;x) ≡ Bn(f ;x) = f(x) +
1
2n

Xf ′′(x)

+ n−2

(
1
6
XX ′f (3)(x) +

1
8
X2f (4)(x)

)
+ o(n−2),

Bn,1(f ;x) = f(x)− 1
2n

Xf ′′(x)

− n−2

(
1
3
XX ′f (3)(x) +

3
8
X2f (4)(x)

)
+ o(n−2),

Bn,2(f ;x) = f(x) + n−2

(
1
6
XX ′f (3)(x) +

3
8
X2f (4)(x)

)

+ n−3

(
1
8
X(1− 6X)f (4)(x) +

1
2
X2X ′f (5)(x) +

5
24

X3f (6)(x)
)

+ o(n−3),

Bn,3(f ;x) = f(x)− 1
8n2

X2f (4)(x)

− n−3

(
1
24

X(1− 6X)f (4)(x) +
1
3
X2X ′f (5)(x) +

5
24

X3f (6)(x)
)

+ o(n−3).

2.3. Bernstein-Durrmeyer operators. As a further example we con-
sider the Bernstein-Durrmeyer operators Mn. In this case we have ϕk (n) =
1/(k!(n+2)k), where zk denotes the rising factorial zk = z(z+1) · · · (z+k−1),
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z0 = 1. The complete asymptotic expansion for the Bernstein-Durrmeyer
operators Mn is given by the concise formula (see [6])

Mn(f ;x) ∼ f(x) +
+∞∑

k=1

1

k!(n + 2)k

(
Xkf (k)(x)

)(k)
,

where we again put X = x(1− x). Hence, the assumptions of Corollary 2.1
are satisfied with `k = k, Lk = 2k and

gk,`(x) =
( k

`− k

)(
Xk

)(2k−`)

Thus, we conclude that

Mn,r(f ; x) ∼ f(x) +
+∞∑

k=br/2c+1

(−1)r

k!(n + 2)k

k∑

`=0

(` + k − 1
r

)(k

`

) (
Xk

)(k−`)
f (k+`)(x).

Application of the Vandermonde convolution

(` + k − 1
r

)
=

r∑

j=0

( `

j

)(k − 1
r − j

)

and the identity
(

k
`

)(
`
j

)
=

(
k
j

)(
k−j
`−j

)
yields

k∑

`=0

(` + k − 1
r

)(k

`

) (
Xk

)(k−`)
f (k+`)(x)

=
r∑

j=0

(k − 1
r − j

)(k

j

) k−j∑

`=0

(k − j

`

)(
Xk

)(k−j−`)
f (k+j+`)(x).

Finally, by Leibniz rule it follows

Mn,r(f ;x) ∼ f(x) +
+∞∑

k=br/2c+1

(−1)r

k!(n + 2)k

r∑

j=0

(k − 1
r − j

)(k

j

)(
Xkf (k+j)(x)

)(k−j)

.

As an immediate consequence we obtain the following Voronovskaja type
result:

lim
n→+∞nr (Mn,2r−1(f ;x)− f(x)) = −Xr

r!
f (2r)(x),

lim
n→+∞nr+1 (Mn,2r(f ;x)− f(x))

=
Xr

(r + 1)!

[
(r + 1)2 X ′f (2r+1)(x) + (2r + 1)Xf (2r+2)(x)

]
.
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2.4. Szász-Mirakjan-Durrmeyer operators. The last example is the
Durrmeyer variant Sn of the Szász-Mirakjan operators defined by

Sn (f ; x) = ne−nx
+∞∑

ν=0

(nx)ν

ν!

∫ +∞

0
e−nt (nt)ν

ν!
f (t) dt (x ≥ 0) .(2.5)

They are a special case by the more general Jakimovski-Leviatan-Durrmeyer
operators studied in [8] and possess the complete asymptotic expansion

Sn (f ; x) ∼ f(x) +
+∞∑

k=1

1
k!nk

(
xkf (k)(x)

)(k)
(n → +∞) .

Hence, the assumptions of Corollary 2.1 are satisfied with ϕk (n) = n−k,
`k = k, Lk = 2k and

gk,`(x) =
1

(`− k)!

( k

`− k

)
x`−k.

Thus, we conclude that

Sn,r(f ;x) ∼ f(x) +
+∞∑

k=br/2c+1

(−1)r

nk

k∑

`=0

(` + k − 1
r

)(k

`

)x`

`!
f (k+`) (x) .

As in the preceding example we obtain
k∑

`=0

(` + k − 1
r

)(k

`

)x`

`!
f (k+`) (x)

=
r∑

j=0

(k − 1
r − j

)(k

j

) k−j∑

`=0

(k − j

`

) xj+`

(j + `)!
f (k+j+`)(x).

Since xj+`/ (j + `)! =
(
xk

)(k−j−`)
/k!, the Leibniz rule implies

Sn,r(f ;x) ∼ f(x) +
+∞∑

k=br/2c+1

(−1)r

k!nk

r∑

j=0

(k − 1
r − j

)(k

j

)(
xkf (k+j)(x)

)(k−j)
.

As an immediate consequence we obtain the following Voronovskaja type
result:

lim
n→+∞nr (Sn,2r−1(f ; x)− f(x)) = −xr

r!
f (2r)(x),

lim
n→+∞nr+1 (Sn,2r(f ; x)− f(x))

=
xr

(r + 1)!

[
(r + 1)2 f (2r+1)(x) + (2r + 1)xf (2r+2)(x)

]
.
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3. Asymptotic approximation by operators L∆
n,r,α

For practical use the operators Ln,r are not easy to handle, since they
require the existence of all derivatives f ′, f ′′, . . . , f (r). For certain functions
f , their computation may demand great effort. Moreover, the operators Ln,r

have the lack, that the derivatives must exist on the whole interval [a, b].
It would be desirable to establish operators similar to Ln,r which improve

the order of convergence (locally) even if f possesses only local smoothness
properties, but work without any derivative of f . To overcome this difficulty
we construct such operators by replacing the derivatives f (j) in the Taylor
polynomial Px,r by suitable differences of the function f . It turns out that
these new operators improve the degree of approximation in the same way
as the operators Ln,r. In this section we consider only the most common
case ϕk (n) = n−k (k = 1, 2, . . .).

We mention before some preliminaries. As usual, we define for a function
f , and h ∈ R the (forward) differences ∆hf(x) = f(x + h) − f(x) and
differences of higher order ∆m

h f(x) = ∆h(∆m−1
h f(x)). Furthermore, put, for

each h ∈ R, ∆0
hf(x) = f(x). Analogously to the Taylor polynomial Px,r in

Eq. (1.4) we consider the truncated Newton series P
[h]
x,r defined by

P [h]
x,r(f ; t) =

r∑

j=0

1
j!

(
x− t

h

)j

∆j
hf(t).(3.1)

Let α : [a, b] → R be a function with α(x) 6= 0 (x ∈ [a, b]). For a given linear
operator Ln : C[a, b] → C[a, b], we define the new operator L∆

n,r,α of r-th
order (r = 0, 1, 2, . . .) by

L∆
n,r,α(f ; x) = Ln(P [α(x)/n]

x,r f ; x).(3.2)

or, in a more explicit form,

L∆
n,r,α(f ;x) =

r∑

j=0

1
j!

j∑

`=0

S`
j

(
n

α(x)

)`

Ln((x− t)`∆j
α(x)/nf(t);x),(3.3)

where we made use of Eq. (1.7).
However, there arises the problem, that the computation of the operators

L∆
n,r,α(f ; x) may require the evaluation of f(t) for some t /∈ [a, b]. One way

to overcome this difficulty is a continuous continuation of f to R by the
definition f(x) = f(a) (x < a) and f(x) = f(b) (x > b), which we shall
assume in the following.
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Usually this does not influence the asymptotic properties of L∆
n,r,α(f ; x),

since, for the most approximation operators, Ln(f ; x) is essentially given by
values of f (t) for arguments t close to x.

However, it can affect the good approximation properties of L∆
n,r,α(f ; x),

for moderate values of n. Therefore, we choose the function α in a proper
manner, for example,

α(x) =
{

b− x if a ≤ x ≤ (a + b)/2,
a− x if (a + b)/2 < x ≤ b.

The operators L∆
n,r,α improve the degree of approximation of the operators

Ln in a completely analogous fashion as it do the operators Ln,r. To be
precise, we have the following result.

Theorem 3.1. Let q, r ∈ N. Suppose the linear operators Ln : C[a, b] →
C[a, b] satisfy, for x ∈ (a, b), an asymptotic expansion

Ln(f ; x) = f(x) +
q∑

k=1

n−k
Lk∑

`=`k

gk,`(x)f (`)(x) + o
(
n−q

)
(n → +∞)(3.4)

with integers Lk ≥ `k ≥ 1 and certain values gk,`(x) independent of n. Then,
the operators L∆

n,r,α, as defined in Eq. (3.2), possess the asymptotic expansion

L∆
n,r,α(f ; x) = f(x) +

q∑

k=1

n−k
k−1∑

m=0

αm(x)
Lk−m∑

`=`k−m

gk−m,`(x)f (`+m)(x)×(3.5)

×
r∑

j=0

(−1)j
( `

j

) j!
(m + j)!

r−j∑

µ=0

Sj
j+µσj+µ

j+m + o
(
n−q

)
(n → +∞).

As analogous result to Corollary 2.1 for the operators Ln,r in the case
Lk = 2k (k ∈ N) we have for the operators L∆

n,r,α the following result.

Corollary 3.1. Under the assumptions of Theorem 3.1 and the additional
condition Lk = 2k (k ∈ N), there holds

L∆
n,r,α(f ; x) = f(x) +

q∑

k=br/2c+1

n−k
k−1∑

m=0

αm(x)
Lk−m∑

`=`k−m

gk−m,`(x)f (`+m)(x)(3.6)

×
r∑

j=0

(−1)j
( `

j

) j!
(m + j)!

r−j∑

µ=0

Sj
j+µσj+µ

j+m + o
(
n−q

)
(n → +∞).
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Remark 3.1. As in Remark 2.1 we have in the case r ≤ 2q − 1

L∆
n,r,α(f ; x) = f(x) + O

(
n−(br/2c+1)

)
(n → +∞).(3.7)

For the proof of Theorem 3.1, we need some auxiliary results.

Lemma 3.1. Let m, q ∈ N with q ≥ m and x ∈ R. Furthermore, let
f ∈ Cq(I), where I is an interval containing x. Then, we have

∆m
h f(x) = m!

q∑
ν=m

f (ν)(x)
ν!

σm
ν hν + o(hq) (h → 0).

Remark 3.2. The formula

∆m
h f (x) = m!

+∞∑
ν=m

f (ν) (x)
ν!

σm
ν hν

for f analytic in x ∈ C is well-known. Since Lemma 3.1 seems not to appear in the
literature, we sketch a short proof.

Proof of Lemma 3.1. By Taylor’s formula, we have

f(t) =
q∑

ν=0

f (ν)(x)
ν!

(t− x)ν +
(t− x)q

q!

(
f (q)(ξt)− f (q)(x)

)

with ξt between x and t. Let h ∈ R be so small that x + mh ∈ I. Applying
∆m

h on both sides of the latter formula and taking the limit t → x we obtain

∆m
h f(x) =

q∑

ν=0

f (ν)(x)
ν!

m∑

j=0

(−1)m−j
(m

j

)
(jh)ν + R,

where for the remainder R there holds

|R| =

∣∣∣∣∣∣
hq

q!

m∑

j=0

(−1)m−j
(m

j

)
jq

(
f (q)(ξx+jh)− f (q)(x + jh)

)
∣∣∣∣∣∣

≤ 2mmq |h|q
q!

ω(f (q); mh)

with the ordinary modulus of continuity ω. Lemma 3.1 now follows by the
well-known formula

σm
ν =

1
m!

m∑

j=0

(−1)m−j
(m

j

)
jν

(see, e.g., [16, Eq. (3), p. 176]).
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Lemma 3.2. Let r ∈ N, q ∈ N0 and x ∈ R. Furthermore, let f ∈ Cr+q(I),
where I is an interval containing x. Then, the derivatives of the truncated
Newton series P

[h]
x,r, as defined by Eq. (3.1), satisfy the asymptotic relation

[(
d

dt

)`

P [h]
x,r(f ; t)

]

t=x

(3.8)

=
q∑

k=0

hkf (`+k)(x)
r∑

j=0

(−1)j
( `

j

) j!
(k + j)!

r−j∑

µ=0

Sj
j+µσj+µ

j+k + o(hq),

when h → 0 (` = 0, 1, 2, . . .).

Remark 3.3. Note that, in the special case ` = 0, we have, for each h ∈ R, h 6= 0,

P [h]
x,r(f ; x) = f(x).(3.9)

Proof of Lemma 3.2. Applying Leibniz rule to definition (3.1) yields

(
d

dt

)`

P [h]
x,r(f ; t) =

r∑

j=0

1
j!

∑̀

µ=0

( `

µ

)[(
d

dt

)µ (
x− t

h

)j
]

∆j
hf (`−µ)(t).

Taking advantage of the identity

(
x− t

h

)j

=
j∑

i=0

Si
j

(
x− t

h

)i

we obtain
[(

d

dt

)`

P [h]
x,r(f ; t)

]

t=x

=
r∑

j=0

1
j!

j∑

µ=0

(−1)µµ!
( `

µ

)
Sµ

j h−µ∆j
hf (`−µ)(x).

Now we insert the asymptotic expansion of Lemma 3.1 in order to get
[(

d

dt

)`

P [h]
x,r(f ; t)

]

t=x

=
r∑

j=0

j∑

µ=0

(−1)µµ!
( `

µ

)
Sµ

j h−µ




r+q∑

ν=j

f (`−µ+ν)(x)
ν!

σj
νh

ν + o(hr+q)




=
r∑

j=0

j∑

µ=0

(−1)j−µ`j−µSj−µ
j h−j+µ

r+q−j∑

ν=0

f (`+µ+ν)(x)
(ν + j)!

σj
ν+jh

ν+j + o(hq)
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=
q∑

k=0

hk
r∑

j=0

j∑

µ=0

[µ ≤ k][k − µ ≤ r + q − j](−1)j−µ`j−µSj−µ
j σj

j+k−µ

× f (`+k)(x)
(k − µ + j)!

+ o(hq)

=
q∑

k=0

hk
r∑

µ=0

r−µ∑

j=0

(−1)j`jSj
j+µσj+µ

j+k

f (`+k)(x)
(k + j)!

+ o(hq)

as h → 0, which implies Lemma 3.2.
Proof of Theorem 3.1. By definition (3.2) and assumption (3.4), there

holds

L∆
n,r,α(f ; x) = P [α(x)/n]

x,r (f ;x) +
q∑

k=1

n−k
Lk∑

`=`k

gk,`(x)

×
[(

d

dt

)`

P [α(x)/n]
x,r (f ; t)

]

t=x

+ o
(
n−q

)
(n → +∞)

and, by Lemma 3.2 and Remark 3.3, we obtain

L∆
n,r,α(f ; x) = f(x) +

q∑

k=1

n−k
Lk∑

`=`k

gk,`(x)
q∑

m=0

(
α(x)

n

)m

f (`+m)(x)(3.10)

×
r∑

j=0

(−1)j
( `

j

) j!
(m + j)!

r−j∑

µ=0

Sj
j+µσj+µ

j+m + o
(
n−q

)
(n → +∞),

which implies Theorem 3.1.
Proof of Corollary 3.1. In view of Eq. (3.4) we have to show that

k−1∑

m=0

αm(x)
Lk−m∑

`=`k−m

gk−m,`(x)f (`+m)(x)×(3.11)

×
r∑

j=0

(−1)j
( `

j

) j!
(m + j)!

r−j∑

µ=0

Sj
j+µσj+µ

j+m = 0

if 1 ≤ k ≤ br/2c. For m = 0, the summand in Eq. (3.11) becomes

Lk∑

`=`k

gk,`(x)f (`)(x)
r∑

j=0

(−1)j
( `

j

)
=

Lk∑

`=`k

gk,`(x)f (`)(x)(−1)r
(`− 1

r

)
,
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which vanishes if Lk = 2k ≤ r.

For m ≥ 1, the well-known “orthogonality”-relation for the Stirling-
numbers (see, e.g., [16, p. 183, Eq. (2)]), implies

r−j∑

µ=0

Sj
j+µσj+µ

j+m = 0

if r− j ≥ m. Furthermore,
(

`
j

)
= 0 if ` ≤ Lk−m = 2(k −m) < j. Thus, the

summands in Eq. (3.11) vanish if j ≤ r −m or 2(k −m) < j. This is surely
the case if r−m ≥ 2(k−m), i.e., if 2k ≤ r+m. Therefore, in Eq. (3.11) only
summands with 2k > r occur. This completes the proof of Corollary 3.1.
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