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Abstract. In this paper we give basic concepts of the Mathematica package “Or-
thogonalPolynomials”. The package “OrthogonalPolynomials” emerged from the
need to implement basic algorithms from the theory of orthogonal polynomials
to the Mathematica platform which offers, in our opinion the highest comput-
ing possibilities. Package performs construction of orthogonal polynomials and
quadrature formulas. Also, the package has implemented almost all the classes
of orthogonal polynomials studied up to date. For the detailed exposition of
the material presented in this paper we refer to [3], here we present only basic
characteristics of the package.

1. Introduction

In the first section we present possibilities of the programming language
Mathematica . In the second section we present the basic theory of orthogo-
nal polynomials and quadrature formulas. We present only the basic theory
which is needed for the understanding of construction algorithms. In the
third section we present symbolic implementation of the algorithms from
the orthogonal polynomial theory. In the fourth section we present numeri-
cal implementation of algorithms. In the fifth section we present supported
classes of orthogonal polynomials studied up to date.
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2. The Package Mathematica

Mathematica package [19] is very suitable for the implementation of the
algorithms we are studying for two reasons. The first reason is orientation
of the Mathematica in supporting symbolical computing, which is offered by
very few other packages. The second reason is possibility of working with
numbers of theoretically infinite precision.

Possibility of symbolic computation is very valuable for any scientific
discipline, and those are especially important for the theory of orthogonal
polynomials. All computations in the theory of orthogonal polynomials are
quite complicated and usually several free variables are included so that, if
performed by hand, computations are messy. Almost all algorithms which
are used are nonlinear and rational, i.e., if some nonlinearity is included it
is of polynomial type, therefore, the most valuable functions for symbolic
computations are those operating on rational functions. Complete informa-
tion about those functions can be found in [19]. We mention only functions
which are the most important for our application

• Together function which adds rational expressions,

• Cancel function which is used for cancellation of the common factors
in the rational expression,

• Factor function which is used to factorize expressions in the ring of
integers.

There are still more functions which can be used to manipulate with rational
expressions. Some of them are also presented in [3].

For the manipulation with expressions containing different special func-
tions we can use functions like Simplify and FullSimplify. These two func-
tions transform the starting expression into the expression which should be
the ‘simplest’. The term being simplest is measured in the context of the
number of special functions employed, and it is really the weighted sum of
the symbols appearing in the expression. Applying all identities, which are
known to the Mathematica , Mathematica keeps measuring simplicity of the
expressions it produces. Functions simply return the expression with the
smallest simplicity, i.e., having the smallest weighted sum of the symbols
appearing. Weights of the symbols appearing are not suitable for all the
possible applications, but there is a possibility left to the user to specify the
transformation rules and the algorithms most suitable for the simplification.
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Mathematica also has possibility of implementation of the transformation
rules for the symbols which are built-in or are defined by the user. We men-
tion that it is needed to define new functions performing transformations, if
we want to apply the new set of transformation rules using functions Simplify
and FullSimplify. Of course, we need to specify the names of the transfor-
mation functions as arguments (options) for the functions FullSimplify and
Simplify. It should be also mentioned that in some cases symbolic compu-
tation can lead into the expression containing an error. One of the simplest
examples is the integration of the function xn. Mathematica returns result
which is exact for all values of n except for n = −1.

All the algorithms dealt with in the theory of orthogonal polynomials
have rational dependence of the result of the input data. Since, there are
very few rational connections between the special functions, applicability of
the functions Simplify and FullSimplify is rather small. Actually no real
problem arose with some special function as input data for which some seri-
ous simplification can be done using functions Simplify and FullSimplify.

It should be mentioned that expressions involving special functions, which
are not known to Mathematica , can not be used in the process of simplifi-
cation. For the new relations between special functions we need to program
new transformation functions. Therefore, possibility of simplification of ex-
pressions involving special functions is based on the simplifications already
being done. The most important application of the possibility of symbolic
computing in the package is based on the possibility of producing analytic
results which were too complicated to be obtained by hand. Symbolic com-
puting enables constructions which can be useful in testing some hypothesis,
but also it can be used to impose some.

Arbitrary precision number format offers a totally new perspective for
the numerical computation. Mathematica can represent real number with
almost infinite precision, i.e., with almost infinite length mantissa. We men-
tion that arbitrary length mantissa gives possibility of performing calcu-
lations in the arithmetics of arbitrary precision. Arithmetics of arbitrary
precision is exactly what is needed by anyone performing numerical cal-
culations. 1. It is known that there exist numerical algorithms with bad
conditioning, resulting in the significant loss of precision in the result. We
adopt the following meaning of the term bad conditioning: Algorithm is bad
conditioned provided we need much higher precision of the input data to

1Although, numerical algorithms are designed to return the result of the precision which
is comparable with the precision of the input data, possibility of the extended mantissa is
valuable at least for the possibility of checking the conditioning of the computation.
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get output data with a specified precision. Bad conditioning usually makes
the difference between applicable and non-applicable numerical algorithms.
If bad conditioned algorithm is executed on the machine with standard 16-
digits mantissa it may happen that all digits in the result are wrong, which
is clearly an argument to call such an algorithm non-applicable. The same
algorithm in the arbitrary precision arithmetics is applicable; provided we
know the input data with sufficient precision, we can always get some sig-
nificant digits in the result.

Of course, arbitrary precision number format can not really operate with
numbers with infinite mantissa, but mantissa can safely be a couple of thou-
sands digits long and still execution time can be acceptable.

3. Orthogonal Polynomials

The sequence of polynomials {Pk}+∞
k=0 is a sequence of orthogonal poly-

nomials with respect to the measure µ if and only if the following conditions
are fulfilled

• deg Pk = k, k ∈ N0,

• ∫
PkP` dµ = Ckδk`, k, ` ∈ N0, Ck 6= 0, k ∈ N0.

The case when there exist some k such that constant Ck is equal to zero
belongs to the cases of degenerate orthogonality and we say that sequence
of orthogonal polynomials is not regular, or that measure µ is not regular.

There exist a lot of sequences of orthogonal polynomials studied to these
days. A famous one is the sequence of Legendre polynomials, orthogonal
with respect to the Legendre measure (see [13]).

∫ 1

−1
Pk(x)P`(x) dx =

2δk`

2k + 1
.(3.1)

The characteristic property of orthogonal polynomials is the three term
recurrence relation they satisfy. It can be proven that monic sequences of
orthogonal polynomials satisfy the following relation

Pk+1(x) = (x− αk)Pk(x)− β2
kPk−1(x),(3.2)

where sequences αk and β2
k, k ∈ N0, are called coefficients of the three term

recurrence relation. The condition Ck 6= 0 is equivalent to the condition
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β2
k 6= 0, k ∈ N0. The case when there is some βk equal to zero belongs to

non-regular sequences of orthogonal polynomials.

Construction of orthogonal polynomials means calculation of the three
term recurrence relation coefficients, i.e., the sequences αk and βk, k ∈ N0.
If we know the three term recurrence coefficients we are able, applying three
term recurrence relation (3.2), to construct all the members of the sequence
of orthogonal polynomials. If we do not know the three term recurrence
relation coefficients then it is useful to calculate them since they are also
needed for the calculation of zeros of orthogonal polynomials, and for the
construction of the related Gaussian quadrature rules.

It is known (see [13]) that zeros of orthogonal polynomials can be deter-
mined as eigenvalues of the tridiagonal matrix, known as the Jacobi matrix.
The Jacobi matrix is a matrix created from the sequences of the three term
recurrence relation coefficients and it has the following form

Jn =




α0 β1 0 . . . 0
β1 α1 β2 . . . 0
0 β2 α2 . . . 0
...

...
...

. . .
...

0 0 0 . . . αn−1




.(3.3)

As it can be seen, instead of the quantities β2
k, k ∈ N, quantities βk, k ∈ N,

appear in the Jacobi matrix. So if some β2
k is negative (or complex) respective

entry in the Jacobi matrix is complex, we can expect that eigenvalues are
also complex. If all quantities β2

k, k ∈ N, are positive, then the Jacobi matrix
is real and symmetric. Therefore, it has only real eigenvalues with simple
algebraic multiplicity (see [13]). In the case all β2

k, k ∈ N, are positive we
also say that we are dealing with a positive definite case; when at least one
β2

k, k ∈ N, is negative (or complex) we say that we are dealing with a quasi-
definite case. This difference is significant for the determination of zeros
of orthogonal polynomials. For the positive definite case, Jacobi matrix is
real and symmetric, for calculation of zeros of orthogonal polynomials it
is enough to use QR-algorithm, (see [13]). Determination of zeros is more
complicated for the quasi-definite case, since QR-algorithm can become bad
conditioned, or orthogonal polynomial may have zeros of higher algebraic
multiplicity.

One of the most important applications of orthogonal polynomials is
approximation of the integral with respect to the orthogonality measure.
Approximation of the integral is performed with the weighted sum of the
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following form ∫
f dµ ≈

n∑

k=1

wkf(xk).(3.4)

Quantities wk, k = 1, . . . , n are called weights of the quadrature formula,
and quantities xk, k = 1, . . . , n, are called nodes of the quadrature formula.
Usual requirement of the quadrature formulae is maximal algebraic degree
of exactness. A formula has algebraic degree of exactness n provided it can
integrate exactly all polynomials with degree not exceeding n. A quadra-
ture formula for which weights are designed to fulfill this criterion is called
the interpolatory quadrature formula. The special case of the interpolatory
quadrature formulae are quadrature formulae for which nodes are fixed and
chosen equidistant inside of the supporting interval of the measure of or-
thogonality µ. The other way of construction is to choose nodes and weighs
so that we have maximal algebraic degree of exactness. This idea originated
in the work of Gauss. Quadrature formulae for which nodes and weights are
chosen so that formula has the maximal algebraic degree of exactness are
called Gaussian quadrature formulae.

It can be shown that Gaussian quadrature formulae have zeros of orthog-
onal polynomials as their nodes (see [13], [2]). The formula with n terms
has as its nodes zeros of the n-th orthogonal polynomial and has algebraic
degree of exactness 2n − 1. The main benefit introduced by the Gaussian
quadrature formula is that we need only n computations of the integrand
to get algebraic degree of exactness 2n − 1, which is only half of what we
need with the interpolatory quadrature rule with, for example, fixed and
equidistant nodes for the same algebraic degree of exactness. A problem
connected with Gaussian quadrature rules is connected with the measures
which are not positive, also known as signed or complex measures. Zeros of
polynomials orthogonal with respect to such measures need not be inside of
the supporting set of the measure, even more zeros of such orthogonal poly-
nomials need not be simple. It is well-known that for the positive measure
zeros of orthogonal polynomials are inside the supporting set and that they
are simple. In the latter case, the Gaussian quadrature rule has full meaning,
since if nodes are not contained in the supporting set of the measure we can
not apply the quadrature rule to the integrands for which we do not know
the values outside the supporting set of the measure2.

2Unless integrand is not an analytic function, we can not extend it uniquely to some
neighborhood of the supporting set of the measure in the complex plane, so that we can not
calculate its values in nodes of the quadrature rule which do not belong to the supporting
set of the measure.
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There exist measures which do not have sequences of orthogonal polyno-
mials at all. Such measure is, for example, dµ(x) = χ[−a,a]xdx, a ∈ R. Such
measures are called non-definite or non-regular, and sequence of orthogonal
polynomials can not be constructed at all. It is possible in some such cases
to create a sequence of orthogonal polynomials with respect to the ’slightly’
modified measure. We also mention that there can be constructed a measure
for which integrals of all polynomials are equal to zero. If support of such
measure is bounded integral of every continuous function, continuous on the
supporting set is also zero. If support is not bounded integrals of continuous
functions need not be zero.

If measure is positive the sequence of orthogonal polynomials always ex-
ists, therefore, the Gaussian quadrature rule always exists. It can be shown
that provided support of the measure is bounded sequence of the Gaus-
sian quadrature formulae converge for the continuous integrand. In the case
support is not bounded convergence question is not that simple. It might
happen that two different positive measures, with unbounded support, may
have the same sequences of orthogonal polynomials. If the sequence of or-
thogonal polynomials uniquely determines the orthogonality measure, we
say that measure and sequence are determinate, if opposite they are non-
determinate. A historically important example of the measure which is not
determinate is the Stiletjes family of measures connected with the Stieltjes
orthogonal polynomials (see [2]).

For the complex measures term determinate is not important since there
exist complex measures which have integral zero on the set of polynomials,
hence, no sequence of orthogonal polynomials can not determine the complex
measure uniquely. What can be determined by the sequence of orthogonal
polynomials is the class of measures having the same orthogonal polyno-
mial sequence. If we are limited to the measures of the bounded support
if integrals of polynomials can not be distinguished integrals of continuous
functions can not be distinguished either, provided integrand is continuous
on the union on the supporting sets. However, if the support is not bounded,
the previous is not valid, which is a direct consequence of the fact that the
Weierstrass theorem (see [13]) about approximation of continuous function
by polynomials is not valid on the unbounded domains.

We can pose the following question, provided we have quasi-definite mea-
sure: what can we say about the convergence of the Gaussian quadrature
formulae? Specially, for the case of the positive measure with the bounded
supporting set it will converge to the value of the integral, for every con-
tinuous function. In the case support is not bounded the previous need not
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be true. A case when measure is not positive has been studied only par-
tially. There are no general results about the convergence of the Gaussian
quadrature formulae. There is the result connected with the polynomials
orthogonal on the semicircle (see [9]). Also, some convergence results can
be given in the case sequences of the three term recurrence coefficients are
uniformly bounded (see [4]). As it has already been mentioned, the Gaussian
quadrature formula does not have any meaning for the continuous functions
unless measure is positive, since zeros of orthogonal polynomials need not be
contained in the supporting set of the measure. In the case of quasi-definite
measure a Gaussian quadrature formula has full meaning only if the inte-
grand is an analytic function in the some domain of the complex plain, which
is the neighborhood of the supporting set of the orthogonality measure and
provided all zeros of orthogonal polynomials are simple. A case with non-
simple zeros can also be useful (see [4]). Whatsoever, such a neighborhood
of the supporting set of the measure has not been characterized yet, neither
it is simple to characterize the case when all zeros of orthogonal polynomials
are simple. In the case of already mentioned polynomials orthogonal on the
semicircle it was shown that zeros of orthogonal polynomials are localized
in the certain domain of the complex plain and that zeros are simple (see
[9]). The experimental results are quite interesting and show that in the case
of quasi-definite measure we may also have localized and simple zeros very
often, actually it is hard to find a case in which it will be known that zeros
are not simple.

For the class of polynomials orthogonal on the semicircle we know that
all zeros are simple; the same holds for the class of the generalized Bessel
polynomials. If all zeros are not simple, the Gaussian quadrature formula is
modified (see [4]), and has the following form

∫
f(x) dµ ≈

M∑

k=1

Mk∑

ν=1

wk,νf
(ν−1)(xk),(3.5)

where xk, k = 1, . . . , M , are different zeros of the n-th orthogonal polynomial
with respect to µ and Mk, k = 1, . . . , M , are respective multiplicities, of
course,

∑n
k=1 Mk = n.

Regardless of the problems we mentioned, the leading idea during the
construction of the package was to include all known classes of orthogo-
nal polynomials and to prove tools for the construction of the Gaussian
quadrature rule for the all possible polynomial classes. Construction of the
Gaussian quadrature rule is important at least, as it provides the way to
calculate zeros of the orthogonal polynomials.
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Besides the basic Gaussian quadrature formula there are other types of
the quadrature rules which can be used for the approximation of an integral
and which are also connected with some classes of orthogonal polynomials.
Usually, numerical integration is performed by the Gauss-Kronrod quadra-
ture formula. It can be given in the following form

∫
f dµ ≈

n∑

k=1

wkf(xG
k ) +

n+1∑

k=1

wn+kf(xK
k )(3.6)

The idea for the Gauss-Kronrod quadrature formula belongs to Kronrod, and
it can be summarized as follows. If we already have calculated function values
in the Gaussian quadrature formula for some n ∈ N, can we construct the
formula with algebraic exactness higher then 2n−1 which will include already
calculated function values. In formula (3.6), quantities xG

k , k = 1, . . . , n, are
nodes of the Gaussian quadrature formula of exactness 2n−1 quantities wk,
k = 1, . . . , 2n + 1, are the weights of Gauss-Kronrod quadrature formula
which are to be constructed, as we need to construct additional nodes xK

k ,
k = 1, . . . , n+1. The algebraic degree of exactness of this formula, according
to the number of free terms it has, is 3n+1. More information on the Gauss-
Kronrod quadrature rules can be found in [11], [8], [1].

A problem with the Gauss-Kronrod quadrature formula is position of the
additional nodes xK

k , k = 1, . . . , n + 1, with respect to the supporting set of
the measure µ. Namely, it is proven that in the case of the Legendre measure
additional nodes xK

k , k = 1, . . . , n + 1, are contained in the supporting set
of the Legendre measure, even more additional nodes are interlaced with
Gaussian nodes, i.e., xK

k < xG
k < xK

k+1, k = 1, . . . , n. This is particularly of
great importance for the applications, since, almost every function written
to perform numerical integration relies on the previous fact. On the other
hand it is proven that in the case of the Laguerre measure additional nodes
xK

k , k = 1, . . . , n + 1 in the Gauss-Kronrod quadrature formula are outside
of the supporting set of the measure.

There exist also quadrature formulae which use derivatives of the inte-
grand to approximate an integral. Those are formulae of the following form

∫
f dµ ≈

n∑

k=1

2sk−1∑

j=0

wkjf
(j)(xk)(3.7)

These formulas have been studied only for the positive measures, and in that
case it can be shown that nodes of these formulae are contained inside the
supporting set of the measure. In this case construction of the quadrature
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formulae can be performed using orthogonal polynomials, but those poly-
nomials are not polynomials orthogonal with respect to the measure µ any
more, rather, those polynomials are orthogonal with respect to the measure

dµσ(x) = dµ(x)
n∏

k=1

(x− xk)2sk .(3.8)

Where xk, k = 1, . . . , n, are zeros of the polynomial of the n-th degree
with respect to the measure µσ. Usually, with σ we denote the vector
(s1, s2, s3, . . . , sn). It is possible to give the construction when all s are
different or when all s are the same.

4. Implementation of Some Symbolic Algorithms

As it is already mentioned in the previous section 2, all algorithms which
are important in the theory of orthogonal polynomials have nonlinear de-
pendence of output data as functions of input data, but that nonlinearity
can be expressed using rational functions. The most important algorithms
are Chebyshev algorithm, modified Chebyshev algorithm, Laurie algorithm
and algorithms which perform Christoffel modifications of the measure.

Chebyshev algorithm can be represented as the mapping of the sequence
of moments of the measure µ

µk =
∫

R
xk dµ(x),

into the coefficients of the three term recurrence relation αk and β2
k, k ∈ N0.

Algorithm is rational and nonlinear and it can be represented using recur-
rence relation which uses only addition and multiplication of the operations
(see [7], [13], [3]).

Modified Chebyshev algorithm can be expressed as the mapping of the
sequence of modified moments of some measure µ

µk =
∫

R
Tk(x) dµ(x),

and coefficients of the three term recurrence relation for the sequence of
the polynomials Tk, α̂k i β̂2

k, k ∈ N0, into the coefficients of the three term
recurrence relation αk i β2

k, k ∈ N0, for the measure µ. Algorithm is, also,
nonlinear and has rational data dependence, only operations involved are
addition and multiplication (see [7], [13], [3]).
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Laurie’s algorithm can be expressed as the mapping between the three
term recurrence relation coefficients of the measure µ into the three term
recurrence relation coefficients from which it is possible to get the Gauss-
Kronrod quadrature formula nodes and weights using QR-algorithm. Algo-
rithm is also nonlinear and rational, the only operations involved are addition
and multiplication (see [3], [11]).

The Christoffel modification algorithms are algorithms which give answer
to the following problems. Suppose we are given three term recurrence rela-
tion coefficients αk and β2

k, k ∈ N0, for the measure µ, what are three term
recurrence coefficients for the measures

dµ(x)
z − x

, (z − x)dµ(x).(4.1)

Algorithms which describe the solutions of the problems are known as the
Christoffel modification algorithms (see [7]). The Christoffel modification
algorithms are nonlinear and rational, the only operations involved are ad-
dition and multiplication (see [7], [3], [6]).

Because of the rational dependence of output and input data the most
optimal implementation should use built-in power of the functions which
operate on the rational expressions. Implementation should involve the fol-
lowing calculations

• On every operation of addition, we should apply the function Together,
which performs addition of two (or more) rational expressions into the
unique rational expression, also function Together performs possible
cancellation to the rational expression obtained, such that returned
rational expression has mutually simple numerator and denominator.
Additional information on the function Together can be found in [19],
[3].

• On every operation of the multiplication of the two rational expressions
function Cancel should be applied, since Mathematica does not cancel
common factors using simple multiplication, although it writes the
result as the single rational expression. Only after function Cancel
is employed numerator and denominator are mutually simple. For
additional information about the function Cancel refer to [19], [3].

• On every expression which represents final result of the calculation
function Factor should be applied in order to get the factored result,
which is much more readable then the non-factored one. We repeat
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that function Factor factors over ring of integers, however, it can be set
to factor over any ring of Gaussian integers. For additional information
on function Factor one should see [19], [3].

It is possible also to perform factorization and cancellation over some
extensions of the ring of integers, ring known as Gaussian integers. More
about that can be found in [19], [3]. We only mention that such extended
functionality is implemented in the package.

As an example of symbolic calculation we present construction and ver-
ification of the Layman hypothesis (see [12]). The Layman hypothesis can
be expressed in the following way sequence of the Hankel transforms of the
sequence

Cn + Cn+1 =
(2n)!(5n + 4)

n!(n + 1)!
, n ∈ N0,

i.e., that Hankel transform of the sum of two consecutive Catalan num-
bers are the Fibonacci numbers with odd indices. This hypothesis can be
reformulated in the following form (see [5]) β coefficients of the three term
recurrence relation satisfied by the orthogonal polynomials with the moment
sequence

Cn + Cn+1, n ∈ N,

are given by

β2
k =

F2k−1F2k+3

F 2
2k+1

, k ∈ N,

where Fk, k ∈ N0, are Fibonacci numbers. This fact is proven in [5].

It can be verified directly using functions implemented in the package,
using for example the following code

In[1]:=<<OrthogonalPolynomials‘
In[2]:=mom=Table [Binomial [2n,n]/(n+1)+

Binomial [2(n+1),n+1]/(n+2),{n,0,20}];
aChebyshevAlgorithm[mom,Algorithm->Symbolic]

Out[3]={{3/2, 19/10, 129/65, 883/442, 6051/3026,
41473/20737, 284259/142130, 1948339/974170, 13354113/6677057,
91530451/45765226}, {2, 5/4, 26/25, 170/169, 1157/1156,
7922/7921, 54290/54289, 372101/372100, 2550410/2550409,
17480762/17480761}}
Even more hypothesis can be found in [5].
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5. Numerical Algorithms

For the implementation of the numerical algorithms the most important
thing is to provide for the user the simplest control of the precision and ac-
curacy of the computation being performed. Mathematica has two quantities
to control quality of the returned numerical quantities. Those are Precision
i Accuracy. It is known that quantity of the exact digits in some number can
be measured as its relative error with respect to the exact number (see [19],
[13], [3]). This characteristic of the number is known as the Precision of
the number. Precision is perfect for measuring quality of the approximation
of all numbers except the number zero, since if we are approximating zero
precision does not have any meaning (see [3]). For determining the quality
of the approximation of number zero we need different criterion, and that is
Accuracy. Accuracy is really the absolute error of the approximation. The
number has accuracy n if n decimal digits behind decimal point are zeros.
These two terms Precision i Accuracy determine quality of the returned nu-
merical quantities. Every numerical function implemented has as options a
possibility of specifying these two quantities.

Beside these two terms which are crucial for determining the request qual-
ity of the result, it is also crucial to determine the number of decimal digits
we are using to work with, i.e., we need to specify the length of the mantissa
in the intermediate results. Every implemented numerical function has as
an option also WorkingPrecision, which determines the length of mantissa
in the intermediate results. Of course, we can not get higher precision then
the precision we are working with.

The biggest effort in the implementation of the numerical algorithms is
made for the construction of quadrature formulas. For the construction of
the Gaussian quadrature formula for the positive measure QR-algorithm is
implemented, for the computation of the eigenvalues of the real symmetric
Jacobi matrices, this algorithm also is implemented for the calculation of the
zeros of orthogonal polynomials (see, [10], [7], [13]). For the computation of
weights in the Gaussian quadrature rule, QR-algorithm can be used; as it is
well-known, however, there are the cases when QR-algorithm exhibits bad
conditioning, such that an alternative approach is used for the construction
of weights in the Gaussian quadrature formulae (see [15]).

For the signed (or complex) measures the nodes of the Gaussian quadra-
ture formulae can be calculated using QR-algorithm, but one should be
cautious since it is well-known that for the complex Jacobi matrices QR-
algorithm is bad conditioned even for the computation of the eigenvalues of
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the matrix. Therefore, one should increase WorkingPrecision if eigenvalues
of the complex Jacobi matrix are constructed. There are also some alterna-
tive approaches. For example, for the computation of zeros of generalized
Bessel polynomials there is an algorithm developed in [18], which can be
applied in the modified form in all semiclassical cases. For the detailed dis-
cussion see [3]. In any case, in almost all practical applications it is enough
to use QR-algorithm with WorkingPrecision which is significantly higher
then the requested precision of the result. For example, it is usual to use
couple of hounder digits in mantissa to calculate, for example, zeros of the
polynomial of degree two or three hounders.

For the construction of weights in the Gaussian quadrature formula it is
usual to use QR-algorithm as it is proposed by [10], [7], but precision of the
constructed weights is not controlled. Because of this fact, there exist some
constructions where returned weights are quite wrong, with very high loss of
precision. Therefore, as it was already mentioned in [15], we developed an
approach which can control the precision of the returned weights. However,
this method slightly increases the time of computation and also it requires
slightly more memory, but these problems are nothing compered to the fact
that we have exact information of the precision of constructed weights.

For the construction of the Gauss-Kronrod quadrature formulae two al-
gorithms are implemented. One developed in [1] and the second developed
in [11]. The first algorithm can be used strictly for the construction of the
Gauss-Kronrod quadrature formulae for the positive measure for which addi-
tional nodes in (3.6) are in addition contained in the support of the measure.
The second algorithm is much more flexible and it can be used for the con-
struction of the Gauss-Kronrod quadrature formulae for the arbitrary mea-
sure. It should be noted that second algorithm performs construction of the
Gauss-Kronrod quadrature formula in such a way that it really constructs
Jacobi matrix whose eigenvalues are nodes in the Gauss-Kronrod quadrature
formula, this means that in order to construct the Gauss-Kronrod quadra-
ture formula we compute again already known Gaussian nodes in (3.6). The
first algorithm does not have such a redundancy, but it can only be applied
for the special measures.

For the construction of nodes in quadrature formulae of type (3.7) two
algorithms are implemented. One is given in [14], [16]. The mentioned
algorithm uses construction over increasing parameter s in the quadrature
formula (3.7), and it can hardly be applied in the case for the measures with
unbounded supporting set. The second algorithm is investigated in [17] and
it can be applied with equal success for the measures with bounded and
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unbounded support. The latter algorithm is also given in many details in
[3].

Still another group of algorithms is implemented and those are algorithms
for performing Christoffel modifications of the measure (see [6]). In this
class we should mention a very well conditioned algorithm which can be
used for the modification of the measure with the factor (x− t)2. Almost all
algorithms for the modification of the measure can be found in [7].

We are also going to mention Chebyshev algorithm, which can be used
for the construction of the three term recurrence relation coefficients for the
sequence of moments. As it is well-known this algorithm is bad conditioned.
For some measures, for example Laguerre measure, we need moments calcu-
lated with much higher precision in order to obtain the requested precision
in three term recurrence coefficients. Since Mathematica can easily handle
few hundreds of precision in the input data and in intermediate calculation,
Chebyshev algorithm is applicable. We are going to give the example of
determination of the three term recurrence coefficients for the measure

dµ(x) = χ[0,+∞)(x)e−x4
dx.(5.1)

It is known that moments can be expressed in the form

µk =
∫ ∞

−∞
e−x4

xk dx =
1 + (−1)k

4
Γ

(
k + 1

4

)
.(5.2)

Coefficients of three term recurrence relation can be calculated using the
following program
In[2]:=<<OrthogonalPolynomials‘
In[4]:=SetPrecision[aChebyshevAlgorithm[Table[(1 + (−1)k)/4

Gamma[(k + 1)/4],{k,0, 40}],WorkingPrecision->100],16]
Out[4]={{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1.812804954110954, 0.3379891200336424, 0.4016796597635174,
0.5051042323448223, 0.5780581503317113, 0.6467673820472450,
0.7078631509051525, 0.7644231260520773, 0.8170217520109819,
0.8664703641900223, 0.913249899440007, 0.957756084884179,
1.000288746559780, 1.041089178928227, 1.080352725238558,
1.118240764497883, 1.154888263975016, 1.190409501421220,
1.224902232945476, 1.258450855794495}}
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6. Supported Classes of Orthogonal Polynomials and
Implemented Functions

All classes of orthogonal polynomials are divided into three classes. Those
are polynomials orthogonal with respect to the absolutely continuous mea-
sure,i.e., where measure can be represented using weight function dµ =
w(x)dx, completely singular measure and polynomials orthogonal with re-
spect to the signed (complex) measure. The first class of the polynomials is
termed continuous class, second class is termed discrete class and the third
class is termed complex.

All supported classes of polynomials are the following:

• Legendre, Chebyshev of the first, second, third and fourth kind, Gegen-
baur, generalized Gegenbauer, Jacobi, associated Legendre, Polaczek
the first, second and third kind, generalized Laguerre, generalized
Hermite, Abel, Lindelof, logistic, Hano, dual Han, Wilson, Stieltjes-
Wigert, Meixner of the second kind,

• Charlier, Lommel, Meixner of the first kind, Tricomi-Carlitz

• Bessel, generalized Bessel, Gautschi-Milovanović

There are also other classes of orthogonal polynomials which are to be
implemented. We are referencing the class of orthogonal polynomials by the
term which is formed from the name of the polynomials class with prefix
“a”. For example, Chebyshev polynomials of the first kind are referenced
with “aChebyshevI”.

For all supported classes of the polynomials package provides basic infor-
mation. Function operating on the classes are the following

• aThreeTermRecurrence-function returns three term recurrence coeffi-
cients of the referenced polynomial class. It is implemented in the
format of the pure function. It can return coefficients of the three
term recurrence relation in the closed analytic form.

• aNorm-function which returns the norm of the monic polynomials of
the referenced class. It is implemented in the format of thepure func-
tion. It is able to to return closed analytic expression of the norm of
the referenced polynomial class.

• aNumerator -returns numerator polynomials of the given order for the
referenced polynomial class (see [2]). It is also implemented in the
format of the pure function.
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• aKernel -returns kernel polynomial of the referenced polynomial class
(see [2]). It is implemented in the format of the pure function.

Function which are specific for the continuous class of polynomials are
the following

• aWeight-returns the weight function with respect to which referenced
class is orthogonal, it is also pure function.

• aGetInterval -returns the interval of the orthogonality, i.e., the support
of the measure.

Functions specific for the discrete polynomial class are the following

• aDistribution-represent the distribution function with respect to which
referenced polynomials are orthogonal to, where distribution function
is given by

ψ(x) =
∫ x

−∞
dµ.

• aSupport-returns the supporting set of the measure, however it is clear
that support can be an infinite set, that is why function produces
a message about the supporting set and also returns few points of
the supporting set. The number of returned points is given as the
parameter of the function.

There are no functions specific only for the complex class of orthogonal
polynomials according to the supporting set. Complex class uses already
presented functions. If complex polynomials are orthogonal with respect to
the absolutely continuous measure, the weight function is returned using
aWeight. If polynomials are orthogonal on the interval of the real line,
the interval is returned by the function aGetInterval. If polynomials are
orthogonal over some curve in the complex plain, information about the
curve is contained in the function aSupport.

Every polynomial class has, as its representative, function which may
return value of the specific polynomial in the sequence. The name of the
representative function is given by adding prefix “a” to the English tran-
scription of the name of the polynomial class. The function is able to return
the numerical value of the given member of the polynomial sequence at some
specific point, or it can return the analytic value of the polynomial.

For the construction of the quadrature formulae interface is unified through
the function aNodesWeights. Choice of the different quadrature formulae is
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dictated using the keyword for the given quadrature formula and referencing
to some polynomial class. Keywords for the quadrature formulae are the
following

• aGaussian-construction of the Gaussian quadrature formulae (3.4). It
is possible to perform construction for all supported classes of the or-
thogonal polynomials. In the case function aNodesWeights is called
for the construction of this type of quadrature rule function aGaus-
sianNodesWeights is called which performs computation. Function
aGaussianNodesWeights has different calling formats. It is possible
to call function aGaussianNodesWeights for the class of polynomials
which is not supported and for which coefficients of the three term
recurrence relation are known, if the construction with QR-algorithm
is wanted, or for which we know good starting values for the Pasquini
algorithm (see [18]). Once functions aNodesWeights or aGaussianN-
odesWeights are called it is possible to choose the way in which weights
are constructed.

• aRadau-performs construction of the Gauss-Radau quadrature for-
mula. It is possible to construct Gauss-Radau quadrature formula
calling directly function aRadauNodesWeights or calling the function
aNodesWeights. It is possible to construct Gauss-Radau quadrature
formula for all supported polynomial classes for which this formula
has meaning.

• aLobatto-performs the construction of the Gauss-Lobatto quadrature
formulae. It is possible to perform the construction directly call-
ing the function aLobattoNodesWei-ghts or calling the function aN-
odesWeights. It is possible to construct Gauss-Lobatto quadrature
formula for all supported classes of the polynomials for which this for-
mula has meaning

• aKronrod - performs the construction of Gauss-Kronrod quadrature for-
mula (3.6). It is possible to construct Gauss-Kronrod quadrature for-
mula directly calling the function aKronrodNodesWeights or calling
the function aNodesWeights with the keyword aKronrod. Construc-
tion can be performed for all supported polynomial classes for which
Gauss-Kronrod quadrature formula exists, i.e., for which additional
nodes of the Gauss-Kronrod formula are inside the supporting set of
the measure. If the additional nodes of The Gauss-Kronrod quadra-
ture formula are not inside the supporting set construction can be
performed using Laurie algorithm.
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• aTuran-performs the construction of the Gauss-Turan quadrature for-
mula (3.7), with all sν = s, ν = 1, . . . , n. It is possible to con-
struct Gauss-Turan quadrature formula calling the function aTuranN-
odesWeights or function aGaussianNodesWeights using the keyword
aTuran. Construction is possible for all supported classes of the poly-
nomials with positive orthogonality measure.

• aSigma-performs the construction of the Gaussian quadrature for-
mula (3.7). It is possible to perform the construction using function
aSigmaNodes-Weights or the function aNodesWeights using the key-
word aSigma. Construction is possible for all supported classes of
polynomials with the positive orthogonality measure.

Using function aThreeTermRecurrence it is possible to call Chebyshev
and modified Chebyshev algorithm for the given set of moments, i.e., mod-
ified moments. There is also implemented function aChebyshevAlgorithm
which performs construction of the three term recurrence relation using
Chebyshev and modified Chebyshev algorithm.

We also mention possibilities of performing Christofell modifications (4.1)
for the given class of orthogonal polynomials. Using function aChristoffe-
lAlgorithm and choosing among options it is possible to construct whatever
modification with the rational function. Function aModify unifies interface i
gives the possibility of performing modifications directly on the implemented
polynomial classes.
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