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SOME COMPANIONS OF OSTROWSKI'S INEQUALITY FOR
ABSOLUTELY CONTINUOUS FUNCTIONS AND
APPLICATIONS

S. S. Dragomir

Dedicated to Prof. G. Mastroianni for his 65th birthday

Abstract. Companions of Ostrowski’s integral ineqaulity for absolutely contin-
uous functions and applications for composite quadrature rules and for p.d.f.’s
are provided.

1. Introduction

In [1], Guessab and Schmeisser have proved among others, the following
companion of Ostrowski’s inequality:

Theorem 1.1. Let f: [a,b] — R be such that
(1.1) 1F (@)= f(s)| <Mt—s|", foranyt,s € [a,b]

with k € (0,1], i.e., f € Lipy, (k). Then, for each x € [a, ‘%Fb] , we have the
nequality

X a — X b
(1.2) f“”g“’ )—bia/f(t)dt’

2k+1 (1 — a)k’url +(a+b— 2:1;)k+1
5[ 2 (k+1)(b—a) M.
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This inequality is sharp for each admissible x. Equality is obtained if and
only if f =M f. + c with ¢ € R and

(z— )" for a<t<u,
(1.3) fe@) =% (t—a)* for x<t<3(a+b),

fela+b—1t) for 3(a+b)<t<b.

We remark that for k =1, i.e., f € Lip,,, since

=|=+2
+ b—a

4(z—a)® + (a+b—2x)? 1 y — Batb ) ?
10— a) 3 <4> (b—a),

then we have the inequality

Xz a — X b
(1.4) f()+f(2+b )—bia/f(t)dt‘

et

The constant 1/8 is best possible in (1.4) in the sense that it cannot be
replaced by a smaller constant.

for any z € [a,

We must also observe that the best inequality in (1.4) is obtained for

= a-ZBb’ giving the trapezoid type inequality

3a+b a+3b b
(1'5) f(4);f(4)_bia/f(t)dt

< -(b—a)M.

|

The constant 1/8 is sharp in (1.5) in the sense mentioned above.
For a recent monograph devoted to Ostrowski type inequalities, see [2].

In this paper we improve the above results and also provide other bounds
for absolutely continuous functions whose derivatives belong to the Lebesgue
spaces Ly [a,b], 1 < p < +o00. Some natural applications are also provided.
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2. Some Integral Inequalities

The following identity holds.

Lemma 2.1. Assume that f : [a,b] — R is an absolutely continuous func-
tion on [a,b]. Then we have the equality

b x
@) 5@+ flatb-a)- 2 [ =t [ oo @

1 fetr s g1 1 ,
+b_a/x <t— . )f(t)dt+b_a/a+b_$(t—b)f(t)dt,

for any x € [a, GTH’] .

N

Proof. Using the integration by parts formula for Lebesgue integrals, we
have

/x(t—a)f’(t)dtzf(:v)(w—a)—/xf(t)dt,

/:+b—a: (ta—gb> f()dt=f(a+b—2z) (a;be)

s (=) - [T

and

b b
/ (t—b)f’(t)dt—(m—a)f(a—i—b—x)—/ £ (t) dt.

+b—2x a+b—zx

Summing the above equalities, we deduce the desired identity (2.1). O

Remark 2.1. The identity (2.1) was obtained in [1, Lemma 3.2] for the case of
piecewise continuously differentiable functions on [a, b] .

The following result holds.
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Theorem 2.1. Let f : [a,b] — R be an absolutely continuous function on
[a,b]. Then we have the inequality

(2.2) ’;[f()+f(a+b—:n _a/f dt‘

gbla[lx@—aﬂf@ﬂﬁ

+/xa+b_x ‘Hb‘}f \dt+/aib_x(b—t)\f’(t)\dt]
— M (z)

t —

for any x € [a, “T‘H’] .

If f" € Lo [a,b], then we have the inequalities

1 —a)? ’ +0b 2 /
(2.3) M(z) < b—a [(x 2a) Hf H[a,z},oo_'_ <a 2 _x> Hf H[m,a—i—b—x],oo

(x

— a)Q /
+ 9 Hf H [a+b—2x,b],00

¢ | 2

1 x_3a4+b ,

3 T2 (b—a (0= a) [/ lljg.5],00
i 2a

1 [z—a 2°‘+ x — ofb
20-1\ p—aqa b—a
- 1
XSG o0 + a0+ I W] (0=
if a>1, +%:1

1/z—a\? x—‘%‘b 2
max 2<ba)’ b—a

% (10100 + 1 gz 0-s)0 + 1 N0 | (0= @)

IN

)

1
o

for any x € [a, aT‘H’] )

The inequality (2.2), the first inequality in (2.3) and the constant 1/8 are
sharp.
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Proof. The inequality (2.2) follows by Lemma 2.1 on taking the modulus
and using it properties.
If f' € Loo|a,b], then

(x —

[a-alrwla s C ),

a+b a+b

2

2
‘- =) 15 st

/a—l—b—z
T

b / (x — a)2 /
/a (b - t) |f (t)‘ dt < T Hf H[a—&—b—z,b},oo

+b—2x

17 (0] < (

and the first inequality in (2.3) is proved.

Denote
T @ atb Ny
(x) = T Hf H[a,x},oo + 9 -7 Hf H[z,aerfx],oo
(¢ — a)*
s —
for x € [a, “TH’] .

Firstly, observe that

M (w) < max{“-f/H[a,z]po ’ Hf,H[m,a—i-b—xLoo ) Hf,H[a—f—b—ac,bLoo}
(x —a)? a+b 2 (z—a)?
s [ 2 Tl 7)) T

1 3a+0\?
e [0 2 (o= 222)

and the first inequality in (2.3) is proved.
Using Holder’s inequality for o > 1, é + % =1, we also have

~ (x —a)? ¢ a+b\** (z —a)? “\*
ity < { U5 (oo oty e
X |:Hf/H/[6a,x],oo + Hf/H/[gx,aerfx],oo + Hf/H/[gaerfx,b],oo} ’

giving the second inequality in (2.3).
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Finally, we also observe that

M (z) < max{(“";“)Q’ <x_ a;b>2}
< [II1

The sharpness of the inequalities mentioned follows from Theorem 1.1 for
k = 1. We omit the details. [

la,z],00 + Hf/H[a:,aerfz],oo + Hf/H[aerfm,b],oo} ’

Remark 2.2. If in Theorem 2.1 we choose x = a, then we get

b
(2.4) ‘f(a);rf(b)_bla/ oy

< 2 0= a) ' lla,b1,00

e

with 1/4 as a sharp constant (see for example [2, p. 25]).

If in the same theorem we now choose = = ‘ITH’, then we get

(2.5) ‘f(a;rb> —bla/abf(t)dt

& (0= 0) [ s o0 + 17 N 1))

IN

2 2

1 /
< Z(b*a) 1 N ta,0,00

with the constants 1/8 and 1/4 being sharp. This result was obtained in [3].
It is natural to consider the following corollary.

Corollary 2.1. With the assumptions in Theorem 2.1, one has the inequal-
ity:

(26) f(342) + f (¢4 —bia/bf“)d’f

1 /
; < g(b—a)Hf H[a7b},oo'

The constant 1/8 is best possible in the sense that it cannot be replaced by a
smaller constant.

The case when [’ € L, [a,b] , p > 1 is embodied in the following theorem.

Theorem 2.2. Let f : [a,b] — R be an absolutely continuous function on
[a,b] so that f" € Lyla,b], p > 1. If M (x) is as defined in (2.2), then we
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have the bounds:

Q=

1 r—a g !
(27) M(.’L’) < (q+ 1) [(b— (I) Hf H[a,x],p

1
L faxb g\
2 (F50) 1w
r—a 1+%
F(520) U sy | -
g\ 1+E 1 (et 145
2 ﬁ) +2q< b—a )
{||f/H[a7pr7 Hf/H[x,a—i-b—pr? ||fl|‘[a+b—;c7b] } (b - a)

— a—i—% a (atb_g OH_%
1 F(%S) +2i (545
S —

(g+1)

Q=

1
q

QI+~

Q=

[ A A

if a>1, é-i—

1
—a 1+(11 1 [ atb_, Iy
z—0 2 =
max (b—a) , 24 —
X
\

1
17 Nt + 1 N asat+ 18 sy ] (6= @)
for any x € [a “—*‘b] .

72

Proof. Using Holder’s integral inequality for p > 1

1411 weh
p—i-q , we have

/ax(t—a)}f’(t)]dt§</ (t—ath> 17l ot = (x—a)'Fs

—||f azlp
el I8

atb—x a+b a+b—zx a-+b :
/x t— ’}f ‘dt < </x t— 9 ’ ) Hf H[oca-i—b x],p
24

—Z,p
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and
1

b , b . 3 /
[ emalreia < ([ 0-07) 15,

(x—a)"s
ety [P

Summing the above inequalities, we deduce the first bound in (2.7).

The last part may be proved in a similar fashion to the one in Theorem
2.1, and we omit the details. [

Remark 2.3. If in (2.7) we choose o = ¢, 5 = p, % + % =1, p > 1, then we get
the inequality

1 +1%

24 z—a)\? atb _ o\ 1 1
2.8) M(z) < 2 —a)7 ||f
@9 M < 2 [(b) +< = b=t 17

for any x € [a, “—b] .

Remark 2.4. If in Theorem 2.2 we choose x = a, then we get the trapezoid
inequality

(2.9) |f(“)2 b—a/f t) dt

The constant 1/2 is best possible in the sense that it cannot be replaced by a smaller
constant (see for example [2, p. 42]).

1
O =a)" 1/ ll{ap.p
1 )

(g+ 1)«

1
< Z.
-2

Indeed, if we assume that (2.9) holds with a constant C' > 0, instead of
1/2, ie.,

F@+fe) 1 (b= )7 1f llj0s1,
2.10 — dt| < C - -
( ) 2 b—a/af(t) t‘g (q—i—l)E

then for the function f: [a,b] = R, f(x) =k ‘:L’ ‘ k > 0, we have

@0 _yb=o /f

k(b—a)v;

lablp —
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and by (2.10) we deduce

k(b—a) k(b—a) < Ck(b—a)
2 4 - (q+1)1/q’

giving C' > w Letting ¢ — 1+, we deduce C' > 1/2, and the sharpness
of the constant is proved.

Remark 2.5. Ifin Theorem 2.2 we choose = (a + b)/2, then we get the midpoint
inequality

(2.11) ’f(a;rb>—/f £) dt

1 (b-a)t / /
<. N .
T2 i g+ (19 52+ 18 g ).
1
1 7 11
35( )l”fHab p>1, - +-=1.
(g+1)e P q

In both inequalities the constant 1/2 is sharp in the sense that it cannot
be replaced by a smaller constant.

To show this fact, assume that (2.11) holds with C, D > 0, i.e.,

(2.12) ‘f(‘”b) ia/bf(t)dt‘

»D\»—\

b
<O (1 sy 19 g
(b— E
<D a0 17 o1
(¢+1)
For the function f : [a,b] = R, f () = k|z — %$|, k > 0, we have

f<a—2|—b) _a/f a)7

1

(st _2(b;“>pk:2$(b—a)ék,

17 g, 2521, + 157

Hf,H[a,b],p = (b B a)% k;
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and then by (2.12) we deduce

k(b—a) k(b—a) k(b—a)
= S ey

giving C, D > (QH) " for any ¢ > 1. Letting ¢ — 1+, we deduce C, D >
and the sharpness of the constants in (2.11) are proved.

1
2

The following result is useful in providing the best quadrature rule in
the class for approximating the integral of an absolutely continuous function
whose derivative is in L, [a, b] .

Corollary 2.2. Assume that f : [a,b] — R is an absolutely continuous
function so that f' € L, [a,b], p > 1. Then one has the inequality

f(Sa:-b) +f(a—ng) 1 b (b
2.13 — d
(213) : o [t <] o

S N

Q\H »a\»a

where % + % =1.
The constant 1/4 is the best possible in the sense that it cannot be replaced
by a smaller constant.

Proof. The inequality follows by Theorem 2.2 and Remark 2.3 on choosing
_ 3a+b
.

To prove the sharpness of the constant, assume that (2.13) holds with a
constant £ > 0, i.e.,

3a+b a3b
(2.14) |f( :);f“ /f £ dt

(b
(q+1

< O,

»Q\»—\ u:\)-

Consider the function f : [a,b] — R,

3a+b

xr —

‘ if ze [a, “+b],

f ) =

‘x—a+3b‘ if z¢€ (aT%,b].

Then f is absolutely continuous and f’ € Ly [a,b], p > 1. We also have

) (o 2 fron-2
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17 laiy = 0= @)
and then, by (2.14), we obtain:

b—a <E (b— al)
8 (¢+ 1)1
/
giving £ > % for any ¢ > 1, i.e., E > 1/4, and the corollary is
proved. [

If one is interested in obtaining bounds in terms of the 1—norm for the
derivative, then the following result may be useful.

Theorem 2.3. Assume that the function f : [a,b] — R is absolutely con-
tinuous on [a,b]. If M () is as in equation (2.2), then we have the bounds

219) @) < (522 ) 1 s
atb _ x r—a
G T =)

]Hf’l
r—a\® atb _ 2\
2<b—a> +(§—a>

_ 3a+b

Z
b—a

[a,b],1

Q=

< - 1
B8
(0 g+ 10 g + 10
- 1 1
if a>1, a'+'B =1,
b—3a
T+
?2 max [Hf/”[a,m],l ) Hle[m,a+bfa:},1 ) Hf/”[aerfz,b],l] :

The proof is as in Theorem 2.1 and we omit it.

Remark 2.6. By the use of Theorem 2.2, for x = a, we get the trapezoid inequal-
ity (see for example [2, p. 55])

b
(2.16) ‘f(a”f(b)—bia/f(t)dt

1 /
5 < 5 1 o
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If in (2.15) we also choose = = (a + b)/2, then we get the mid point inequality (see
for example [2, p. 56])

(2.17) ’f(a;rb>—b_la/:f(t)dt

The following corollary also holds.

1.
< 3 1 a1 -

Corollary 2.3. With the assumption in Theorem 2.2, one has the inequal-
1ty

218 ‘f (Sa:—b) +f (azsb) - bia /bf(t) ”

1
! < 1 -

3. A Composite Quadrature Formula

We use the following inequalities obtained in the previous section:

f 3a+b +f a+3b 1 b
(3.1) ‘ (% )2 (45 )—b_a/f(t)dt
1 / : /
SO= 1 e I F € Lolasl];
1
1 (b—a)a .
< 4()1”f,H[a,b},p if f/ELP[a7b]7p>17 1%4—%:1,
(q+1)a
1 .
HI e it '€ Lo,
Let I, : a = ¢ < 21 < +++ < ZTp_1 < T, = b be a division of
the interval [a,b] and h; = zj11 — 2, ¢ = 0,1,...,n — 1, and v (I,) =

max{h;|i=0,1,...,n—1}.
Consider the composite quadrature rule

n—1
52 Q=S [f (W) L <ﬂf+439«"+1” hi.

1=0

The following result holds.

Theorem 3.1. Let f : [a,b] — R be an absolutely continuous function on
[a,b]. Then we have

b
(3.3) / () dt = Qn (Ls f) + R (I, f)
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where Qp, (In, f) is defined by formula (3.2), and the remainder satisfies the
estimates

;

1 n—1 )
g Hf/”[a,b],oo 20 h7,2 Zf f, € LOO [a’7b] ;

(3.4) |Ro (I, f)| < —Hf/u[ab (z hq“) e,
4(qg+1)s i=0

1 1 _ 1.
p>1’5+6_1’

1
L 1 ||f/||[a,b],1 v (In).

Proof. Applying inequality (3.1) on the intervals [z;, x;11] , we may state

that
[ (252 ()
(R0 o
< 4(qj—1)2h2+; ”fIH[Zi,xiH},W p>1, %+ % —1;
AT

for each i € {0,...,n — 1}.
Summing the inequality (3.5) over i from 0 to n — 1 and using the gener-
alised triangle inequality, we get

(1 n—1 o 11 e
Q Z hl Hf ||[;E“ajl+1]700
(3.6) | R (In, f)| < o );Z QWWMW¢WP>L%+%:L
7 i=0
1 n—
35 e

Now, we observe that

n—1
AT
1=0

n—1
[z3,2541],00 < Hf/H[a,b],oo Zﬂ h12
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Using Holder’s discrete inequality, we may write that

1
n—1 n—1 q [/n—1 P
1+1 1+1)q\ ¢ P
Z’—O hi Hf/‘ [zi,2i41],p < (Z—O hi( q) ) (Z—O Hf/‘ ][Dwi:%ﬂ],p dt)

% n—1 Tit1 P
hz“) (Z / »f’<t>!”dt>
i=0 “ ¥

1
q
th) 17l

3
—

i
|

n—1
sl < i:m%{hi} ; Hf"

0

3
—

=0

N

Also, we note that

n—1
> hillf]
=0

Consequently, by the use of (3.6), we deduce the desired result (3.4). O

[zi,zit1],1 =V (In) Hf/H[a,b],l :

For the particular case where the division I,, is equidistant, i.e., I, : x; =
a+i(b—a)/n,i=0,1,...,n, we may consider the quadrature rule:

57) O (f) m bgnanz_;{f [a+ (41'447; 1) (b— a)}

The following corollary will be more useful in practice.

Corollary 3.1. With the assumption of Theorem 3.1, we have

b
(3.8) / () dt=Qu(f) + Ru(f).

where Qy (f) is defined by (3.7) and the remainder R, (f) satisfies the esti-

mate:
(b—a)
n

1 /
S 17

[a,b],00

b—a 1+§
T el

(b—a)

n

(3.9) [Rn (In, f)] < %
4(g+1)a

1 !
1Hf|

[a,b],1
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4. Applications for P.D.F.’s

Summarising some of the results in Section 2, we may state that for
f : ]a,b] — R an absolutely continuous function, we have the inequality

(41) \i[g<x>+g<a+b—x>]—b_la/abfa)dt\

s\ T (0 —a)[19'll{q,4],00 - if ¢ € Lo [a,0];
1
1 q+1l] q
24 T —a q+1 atb _ €T 1
if p>1, L +1=1, and g € Lyla,b];
1 T — 3a+b
[4 + Té Hg/H[a,b]J?

for all z € [a, (a +b)/2].

Now, let X be a random variable taking values in the finite interval
[a, b] , with the probability density function f : [a,b] — [0, 400) and with the
cumulative distribution function F (z) = Pr(X <) = [ f (¢) dt.

The following result holds.

Theorem 4.1. With the above assumptions, we have the inequality

(4.2) ‘;[F(x)+F(a+b—x)]—b_£fQ‘
( 1 4 _ Batb\ 2
3 T2 (b—é) (0 —a)[[fllap),00 » if f € Lo a,b];

IA

Q=

1
2% I —a q+1 aT—H; o g+1] ¢ .
(q+ 1) b_ a + b_a (b_ a)q Hf”[a,b],p?

=1, and f € Lya,b];

for any x € [a, (a + b)/2], where E (X) is the expectation of X.
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Proof. Follows by (4.1) on choosing g = F' and taking into account that
b b
B (X) :/ LF (t) = b—/ Fl)dt. O
a a

In particular, we have:

Corollary 4.1. With the above assumptions, we have

1 3a+b a+ 3b b— E(X)
a9 |5 17 (50) e ()] - e
1 .
] (b—a) Hf||[a,b],oo, if f € Loo [a,b];
1
1 (b—a)a .
= 4()1!f\[a,b],pwfp>1,},+;:1, and f € Ly [a,b];
(g+ 1)«
1
\ 4’
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