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ON THE DEGREE OF APPROXIMATION

Huzoor H. Khan and Govind Ram

Abstract. In the present paper we obtain the degree of approximation using the
Euler’s means, of functions belonging to Lip (ψ(t), p) class. It is also proved that
the order of approximation arrived at is best possible and is free from the means
generating sequences.

1. Introduction and Results

Let f be periodic with period 2π, and integrable in the sense of Lebesgue.
The Fourier series associated with f at the point x is given by

f(x) ∼ 1
2
a0 +

+∞∑
n=1

(an cosnx+ bn sinnx)(1.1)

Let

Sn(x) =
1
2
a0 +

n∑
v=1

(av cos vx+ bv sin vx)

denote the n-th partial sum of the Fourier series (1.1).

A 2π periodic function f(x) is said to belong to the class Lip (ψ(t), p),
p > 1, if

| f(x+ t)− f(x) |≤ M(ψ(t)t−1/p), 0 < t < π,

where ψ(t) is a positive increasing function and M is a positive number
independent of x and t.
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Let {Sn} be the sequence of partial sums of the given series
+∞∑
n=0

Un. Then,

for q > 0, the Euler (E, q) means of {Sn} are defined to be

Wn = (1 + q)−n
n∑
k=0

(n
k

)
qn−kSk.

The series is said to be Euler (E, q) summable to S provided that the
sequence {Wn} converges to S as n → +∞.
We write

φ(t) =
f(x+ t) + f(x− t)− 2f(x)

2
,

σn(f, x) = (1 + q)−n
n∑
k=0

(n
k

)
qn−kSk,

S(t) =
n∑
k=0

(n
k

)
qn−k sin

(
k +

1
2

)
t,

R(t) = sin
{
t

2
+ n tan−1

( sin t
q + cos t

)}
.

G. Alexits [1] proved the following theorem concerning the degree of ap-
proximation of a function f ∈ Lipα by the (C, δ) means of its Fourier series.

Theorem A. If a periodic function f ∈ Lipα, 0 < α ≤ 1, then the degree
of approximation of the (C, δ) means of its Fourier series for 0 < α < δ ≤ 1
is given by

max
0≤x≤2π

| f(x)− σδn(x) |= O
( 1
nα

)
and for 0 < α ≤ δ ≤ 1 is given by

max
0≤x≤2π

| f(x)− σδn(x) |= O
( log n

nα

)
,

where σδn(x) are the (C, δ) means of the partial sums of (1.1).

Later on Hölland, Sahney and Tzimbalario [2] extended Thereom A to
functions belonging to C∗[0, 2π], the class of 2π-periodic continuous functions
on [0, 2π], using Nörlund means of Fourier series. Their theorem is as follows:
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Theorem B. If w(t) is the modulus of continuity of f ∈ C∗[0, 2π] then the
degree of approximation of f by the Nörlund means of the Fourier series for
f is given by

En = max
0≤t≤2π

| f(t)− Tn(t) |= O

(
1
pn

n∑
k=1

Pkw (1/k)
k

)
,

where Tn are the (N, pn) means of Fourier series of f .

Hölland, Sahney and Tzimbalario [2] have shown that the Theorem B
reduces to the Theorem A if we deal with Cesáro means of order δ and
consider a function f ∈ Lipα, 0 < α ≤ 1.

H. H. Khan and A. Wafi [3] have given the answer to open problem (i)
imposed by Hölland, Sahney and Tzimbalario [2] by using a more general
operator (matrix means) of which (N, pn) is a special case for the Fourier
series. Their theorem may be stated as follows:

Theorem C. If {
λn,k}nk=0 is a non-negative and non-decreasing se-
quence with respect to k and if w(t) is the modulus of continuity of f ∈
C∗[0, 2π], then the degree of approximation of f by matrix means of the
Fourier series of f is given by

max
0≤t≤2π

| f(x)− σn(f, x) | = O

(
n∑
k=1


λn,n−kw (1/k)
k

)
,

where σn(f, x) are the matrix means of the Fourier series (1.1).

In this paper we have considered the problem of determining the degree
of approximation for yet another class, the so called Lip (ψ(t), p) class which
does include the Lipα class discussed by G. Alexits [1]. We use Euler’s
means instead of triangular means. It may be remarked that the order
of approximation arrived at is best possible and is free from the means
generating sequences. Our theorem is as follows:

Theorem 1.1. If f(x) is periodic with period 2π and belongs to the class
Lip (ψ(t), p) for p > 1, and if

{∫ 1/
√
n

0

(
ψ(t)
t1/p

)p
dt

}1/p

= O

(
ψ

(
1√
n

))
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and {∫ π

1/
√
n

(
ψ(t)
t1/p+2

)p
dt

}1/p

= O

(
ψ

(
1√
n

)
n

)
,

then

max
0≤x≤2π

| f(x)− σn(f, x) | = O

(
ψ

(
1√
n

)
(n)1/2p

)
.(1.2)

The inequality (1.2) is best possible in the sense that there exists a positive
constant K such that

max
0≤x≤2π

| f(x)− σn(f, x) | ≥ K

(
ψ

(
1√
n

)
n1/2p

)
.(1.3)

In order to prove the theorem we need the following lemma:

Lemma 1.1. If 0 < t ≤ π, then

(1 + q)−n(1 + q2 + 2q cos t)n/2 ≤ e−2qt2n/{π(1+q)}2
, 0 < t ≤ π.

Proof. We have

(1 + q)−2(1 + q2 + 2q cos t) = 1− 4q sin2(t/2)
(1 + q)2

≤ 1− 4qt2

π2(1 + q)2

≤ e−4qt2/{π(1+q)}2
,

since ex(1− x) < 1 when 0 < x < 1. Therefore

(1 + q)−n(1 + q2 + 2q cos t)n/2 ≤ e−2qt2n/{π(1+q)}2
,

which completes the proof of this lemma.

2. Proof of the Theorem

Since

Sk(x)− f(x) =
1
π

∫ π

0

sin(k + 1
2)t

sin t
2

φ(t)dt,
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we get

[
(1 + q)−n

n∑
k=0

(n
k

)
qn−k

{
Sk(x)− f(x)

}]

=
1

π(1 + q)n

∫ π

0

φ(t)
sin 1

2 t

{
n∑
k=0

(n
k

)
qn−k sin

(
k +

1
2

)
t

}
dt(2.1)

=
1

π(1 + q)n

∫ π

0

φ(t)
sin 1

2 t
S(t) dt

=
1

π(1 + q)n

[∫ 1/
√
n

0
+
∫ π

1/
√
n

]
φ(t)
sin 1

2 t
S(t)dt

= J1(x) + J2(x)

and

| S(t) |
(1 + q)n

≤ 1
(1 + q)n

∣∣∣∣
n∑
k=0

(n
k

)
qn−kei(k+

1
2
)t

∣∣∣∣= | q + eit |n
(1 + q)n

=
(1 + q2 + 2q cos t)n/2

(1 + q)n
≤ e−2qt2n/{π(1+q)}2

,

using Lemma 1.1.
Applying Hölder’s inequality and the fact that φ(t) ∈ Lip (ψ(t), p), we

have

|J1(x)| = O

{∫ 1/
√
n

0
|φ(t)|pdt

}1/p{∫ 1/
√
n

0

∣∣∣∣
[
(1 + q)−n

S(t)
sin t

2

] ∣∣∣∣
p′

dt

}1/p′

,

where p
′
= p/(p− 1). Further,

|J1(x)| = O

{∫ 1/
√
n

0

(
ψ(t)
t1/p

)p
dt

}1/p

O



∫ 1/

√
n

0


e−2qt2n/{π(1+q)}2∣∣∣ sin t

2

∣∣∣


p′

dt




1/p′

= O

(
1√
n

)
O

{∫ 1/
√
n

0
t−p

′
dt

}1/p′
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= O

[
ψ

(
1√
n

)
· ( 1√

n
)1/p

′−1

]

= O

(
ψ

(
1√
n

)
· (√n)1/p

)
.

For evaluating J2(x), we have

|J2(x)| = O

{∫ π

1/
√
n

| φ(t) |
sin 1

2 t
[(1 + q)−n(1 + q2 + 2q cos t)n/2]· | R(t) | dt

}

= O

{∫ π

1/
√
n

| φ(t) |
sin 1

2 t
(1 + q)−n(1 + q2 + 2q cos t)n/2dt

}

= O

{∫ π

1/
√
n

| φ(t) |
sin 1

2 t
e(−2nqt2)/(π(1+q))2dt

}
(by Lemma 1.1)

= O

[
1
n

∫ π

1/
√
n

ψ(t)
t1+1/p · sin 1

2 t

{
∂

∂t

(
−e(−2qnt2)/(π(1+q))2

)}]
dt.

Applying Hölder’s inequality and the fact that φ(t) ∈ Lip (ψ(t), p), we have

|J2(x)| = O

[
1
n

∫ π

1/
√
n

(
ψ(t)
t1/p+2

)p
dt

]1/p

×

×
[∫ π

1/
√
n

{
∂

∂t

(
−e(−2qnt2)/(π(1+q))2

)}p′
dt

]1/p′

= O

(
ψ

(
1√
n

)
(
√
n)1/p

)
.

Therefore,

σn(f, x)− f(x) = O

(
ψ

(
1√
n

)
(
√
n)1/p

)
,

which completes the proof of the first part of the theorem.
To prove the second part, that (1.2) is the best possible, we suppose that

δ is a small positive number less than π/4.
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Following condition (2.1), we have

| σn(f, x)− f(x) | =
∣∣∣∣
∫ π

0

n∑
k=0

φ(t)
sin t

2

(1 + q)−n
(n
k

)
qn−k sin

(
k +

1
2

)
t dt

∣∣∣∣
=
∣∣∣∣
{∫ 1/n

0
+
∫ δ

1/n
+
∫ π

δ

}
φ(t)
sin t

2

n∑
k=0

(1 + q)−n
(n
k

)
qn−k sin

(
k +

1
2

)
t dt

∣∣∣∣,
i.e.,

|σn(f, x)− f(x)| = |I1(x) + I2(x) + I3(x)|
≥ |I2(x)| − |I1(x)| − |I3(x)|.(2.2)

Applying Hölder’s inequality and the fact that φ(t) ∈ Lip (ψ(t), p), p > 1,
and proceeding in the same way as in J1(x), we have

max
0≤x≤2π

|I1(x)| ≤ K1ψ

(
1
n

)
(n)1/p,

where K1 is some constant.
Similarly for I3(x), we have

max
0≤x≤2π

|I3(x)| = O

[
1
n

∫ π

δ

ψ(t)
t2+1/p

{
∂

∂t

(
−e(−2qnt2)/(π(1+q))2

)}
dt

]
.

Applying Hölder’s inequality and the fact that φ(t) ∈ Lip (ψ(t), p), p > 1,
and proceeding in the same way as in J2(x), we have

max
0≤x≤2π

|I3(x)| = O

(
1
n

)
.

Therefore,

max
0≤x≤2π

|I3(x)| < K3

n
,

where K3 is a constant, different from the constant K1.
Now for evaluating I2(x), we have

|I2(x)| ≥
∣∣∣∣ 2
∫ δ

1/n

φ(t)
t
(1 + q)−n(1 + q2 + 2q cos t)n/2R(t) dt

∣∣∣∣
−
∣∣∣∣
∫ δ

1/n
φ(t)

{
cosec

t

2
− 2

t

}
(1 + q)−n(1 + q2 + 2q cos t)n/2R(t)}dt

∣∣∣∣
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= 2|I2,1(x)| − |I2,2(x)| (say).

Now

max
0≤x≤2π

|I2,2(x)| = O

(∫ δ

1/n

ψ(t)
t1/p−1

(1 + q)−n(1 + q2 + 2q cos t)n/2dt

)

= O

(
1
n

∫ δ

1/n

ψ(t)
t1/p

{
∂

∂t

(
−e(−2qnt2)/(π(1+q))2

)}
dt

)
(using Lemma 1.1).

Applying Hölder’s inequality and the fact that φ(t) ∈ Lip ( ψ(t), p), p > 1,
we have

max
0≤x≤2π

|I2,2(x)| = O

[
1
n

∫ δ

1/n

(
ψ(t)
t1/p

)p
dt

]1/p

×

×
[∫ δ

1/n

{
∂

∂t

(
−e(−2qnt2)/(π(1+q))2

)}p′
dt

]1/p′

= O

(
1
n

)
,

and therefore

max
0≤x≤2π

|I2,2(x)| < K2,2

n
,

where K2,2 is any constant.

Now by (1.2), there exists a constant K4 > 0 such that

−K4
ψ(t)
t1/p

< φ(t) < K4
ψ(t)
t1/p

.

Therefore,

K4
ψ(t)
t1/p

< φ(t) + 2K4
ψ(t)
t1/p

and hence

|I2,1(x)| >
∣∣∣∣
∫ δ

1/n

φ(t) + 2K4

(
ψ(t)

t1/p

)
t

(1 + q)−n(1 + q2 + 2q cos t)n/2R(t) dt
∣∣∣∣

−2K4

∣∣∣∣
∫ δ

1/n

ψ(t)
t1/p+1

(1 + q)−n(1 + q2 + 2q cos t)n/2R(t) dt
∣∣∣∣

= |I2,1,1(x)| − 2K4|I2,1,2(x)| (say).
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Since
ψ(t)
t1/p+1

(1 + q)−n(1 + q2 + 2q cos t)n/2 is a positive non-increasing

function in [1/n, δ], therefore by the Second Mean value theorem, we get

I2,1,2(x) =
ψ(1/n)

(1/n)1+1/p
(1 + q)−n

(
1 + q2 + 2q cos

(
1
n

))n/2 ∫ θ

1/n
R(t) dt

for 1/n ≤ θ ≤ δ, i.e.,

I2,1,2(x) = O

(
ψ

(
1
n

)(
1
n

)−p)
.

Therefore,

max
0≤x≤2π

2K4|I2,1,2(x)| < K2,1,2ψ

(
1
n

)(
1
n

)−p
,

where K2,1,2 is any constant.
Now by the First mean value theorem, we get

|I2,1,1(x)| =
∣∣∣∣ R(t′)

∫ δ

1/n

φ(t) + 2K4

(
ψ(t)

t1/p

)
t

(1 + q)−n(1 + q2 + 2q cos t)n/2 dt
∣∣∣∣

for 1/n ≤ t′ ≤ δ, i.e.,

|I2,1,1(x)| ≥ |R(t′)|
∣∣∣∣
∫ δ

1/
√
n

φ(t) + 2K4

(
ψ(t)

t1/p

)
t

(1 + q)−n(1 + q2 + 2q cos t)n/2dt
∣∣∣∣

≥ |R(t′)|
∣∣∣∣
∫ δ

1/
√
n

(
ψ(t)
t1/p+1

)
(1 + q)−n(1 + q2 + 2q cos t)n/2dt

∣∣∣∣ .
Now since,

sin−1

(
2
√
q

1 + q
sin

t

2

)
= sin−1

(
2
π

π
√
q sin t/2
(1 + q)

)
≤ π

√
q

1 + q
sin

t

2

≤ π

2

√
qt

1 + q
≤ β

(
0 < t ≤ 4β

π

)
,

where β is strictly less than π/2, and

cos
(

π
√
qt

2(1 + q)

)
> exp

[
−π2/2

(
qt2 sec2 β
4(1 + q)2

)]
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and so,

|I2,1,1(x)| > K4 |R(t′)|
∫ δ

1/
√
n

(
ψ(t)
t1+1/p

)
e[−(qnπ2t2)/(2(1+q))2] dt,

> K2,1,1ψ

(
1√
n

)(
1√
n

)−1/p

,

where the constant K2,1,1 depends upon |R(t′)| and other parameters. How-
ever the integral I2,1,1 is not zero, therefore, the constant K2,1,1 is positive.

Now (2.2) will be

max
0≤x≤2π

π | f(x) − σn(f, x) |≥ K2,1,1ψ

(
1√
n

)(
1√
n

)−1/p

−(K1 +K2,1,2)ψ
(
1
n

)(
1
n

)−1/p

− K3 +K2,2

n

≥ K2,1,1 ψ

(
1
n

)(
1
n

)−1/p

− K1 +K3 +K2,2 +K2,1,2

n

= ψ

(
1
n

)(
1
n

)−1/p [
K2,1,1 − K1 +K3 +K2,2 +K2,1,2

ψ (1/
√
n) (n)1+1/(2p)

]
.

And for any given constant K ′ such that

K2,1,1 −K ′ > 0,

we can find a positive number n0 = n0(K ′) such that

(K1 +K3 +K2,2 +K2,1,2)n1−1/p ψ

(
1√
n

)
< K ′ for n > n0.

Therefore, there exists a positive constant K, depending on K2,1,1 and
K ′ such that

max
0≤x≤2π

|f(x)− σn(f, x)| ≥ Kψ

(
1√
n

)
(n)1/2p,

and hence the inequality (1.3) is the best possible.
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