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AN ARCHITECTURE FOR PARALLEL INTERPRETATION
OF ABSTRACT MACHINE LANGUAGES

Mark L. Manwaring and Veljko D. Malbaša

Abstract. An innovative central processor architecture is described that exploits
the innate parallelism found in the machine language interpretation process. A
new instruction encoding method, that facilitates the design of pipelines, is used
to design the instruction sets of the controller, memory, and execution units.
The problem of incorporating pipelined parallelism with other forms of implicit
parallelism is discussed. Performance profiles of nine benchmark programs, ob-
tained by using a cycle-level simulator, show the advantages of the described
architecture for parallel over an equivalent architecture for serial interpretation.
Performance measurements of representative benchmark programs show that a
speed up of about two is achieved compared to the traditional sequential machine
language interpretation on a single processor.

1. Introduction

Traditional computer architectures impose two serious problems: (i) in-
efficient support for a complex interpretation phase and (ii) classic inter-
pretation techniques, based on a sequential fetch-execute model, are not
very suitable for interpreting higher level, or abstract, machine languages,
because of the phenomenon of “interpretive overhead” [2]. We propose a par-
allel model of interpretation to overcome the limitations of the traditional,
inherently sequential, interpretation model. We also describe an architecture
that supports parallel model of interpretation. This type of the architecture
shares some commonality with a class of decoupled computer architectures,
[10].

Received November 16, 1997.
2000 Mathematics Subject Classification. Primary 68M07.

75



76 M. L. Manwaring and V. D. Malbaša

Program execution is a process which takes the high level language pro-
gram as input and produces the results implied by the semantics of the
program. Program execution is usually divided into two phases. In the first,
compilation, phase each statement in the high level language program is
translated into a semantically equivalent sequence of code in the instruction
set of the processor. In the next, interpretation, phase the processor executes
the sequence of code generated by compilation to produce the final results.

Certain features of the present generation of programming languages
make them more amenable to interpretation than compilation. For exam-
ple, if program execution is dominated by the compilation phase, then most
of the binding is done during the compile time. Although it is effective in
traditional imperative languages like Pascal or Fortran, the binding during
the compilation cannot be applied with the same degree of success to a large
number of modern languages. Collection oriented ([13]) and object oriented
languages are examples that fall in this category of languages.

A complex interpretation phase is involved in the interactive systems
that are becoming an increasingly important asset of many modern com-
puter applications. In an interpretive environment, every time a program
element is reached, its binding to the environment is established, used and
then destroyed. In an interactive system, where the programming language
is provided with conversational mode and edit statements can be formulated
within the source language, fixed bindings can be counterproductive because
they impede fast and flexible changes of parts of the source program, and
normally require a recompilation of the whole program. Thus efficient sup-
port of interactive environments requires an extensive interpretation phase.

Even though a complex interpretation phase is preferred in the applica-
tions which require extensive runtime support and resource management,
traditional computer architectures are very inefficient in providing support
for the complex interpretation phase. One reason for this is that because rel-
atively low semantic contents of the instruction sets of contemporary RISC-
and even CISC-type processors causes the bus bandwidth bottleneck in com-
puter system, [11]. Cache technology is extensively used to mitigate the effect
of high instruction traffic.

However, the increasing cache size or changing cache organization will
not always provide an effective solution to this problem because: (i) it can
not reduce the high instruction count, (ii) the push for higher performance
by issuing more than one instruction per clock cycle exacerbates the bus
bandwidth problem, and (iii) the increasing disparity between on chip and
off-chip access time, resulting from the slower growth in DRAM compared
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to processor performances, [12]. These three factors establish a cut-off point
after which cache technology becomes ineffective in offsetting the disadvan-
tages of larger code size in RISC systems.

In the proposed architecture the interpretation process is decomposed into
concurrent processes which are executed in parallel on a number of special-
ized processors which are connected by fast queues. The speedup resulting
from the parallel operation is designed to counterbalance the penalty of in-
terpretive overhead. This is a form of user transparent implicit parallelism.
High semantic contents of an high level instruction set leads to a proportion-
ately smaller code size and therefore imposes less stringent requirements on
the processor-memory traffic.

The performance of the described architecture can be enhanced by in-
corporating other forms of parallelism, such as pipelining. Furthermore, for
various reasons, pipelined architecture for parallel interpretation is much
easier to implement than, for example, pipelined superscalar architecture.
In the paper we also deal with the design and performance of a pipelined
version of an architecture for parallel interpretation.

A cycle level simulator for an example of the machine for parallel inter-
pretation of abstract machine languages has been written. The simulator
executes programs written in the machine code. Various architectural fea-
tures, component speeds and queue lengths can be specified in a parameter
file which is read by the simulator. The simulator generates various sets of
data characterizing the execution process. These includes total parallel and
serial execution time, execution time of each component, types and num-
ber of pipeline stalls, address traces et cetera. The estimate of serial time
is based on the execution time of the same program on an equivalent serial
machine. The benchmark programs that are run on the simulator are chosen
to represent different types of loads. The measurements of performances are
presented in comparison with some standard configurations.

The paper is organized in the following manner. The next section de-
scribes the architecture that provides the hardware support for parallel in-
terpretation. Section 3 presents the design of a pipelined version of an ex-
perimental architecture that embodies the principles espoused in Section 2.
Finally, selected performance profiles of both pipelined and non-pipelined
versions of the the architecture for parallel interpretation are presented and
analyzed.
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2. An Architecture for Parallel Interpretation

2.1. Approach to parallel interpretation

To explain a motivation for parallel interpretation consider a possible
sequence of instructions in pseudo-machine code that is equivalent to the
assignment statement in high level language: C := 3 + A + B.

R1 ← MEM(x) {x is the address of A}
R2 ← MEM(y) {y is the address of B}
R3 ← ADD R1 R2

R4 ← ADD R3 #3

MEM(z) ← R4 {z is the address of C}

In the machine language all the mappings have already been resolved,
and the very primitive nature of each of the operations precludes any con-
current processing of individual elements. However, if we were interpreting
the assignments directly, we would have to execute a number of operations,
like mapping the symbolic names A, B, and C to their locations, evaluating
the expression, and storing the result. Note also that if we had two units,
a name mapper and an execution unit, some of the operations could be
done in parallel. For example, the mapping of C could be done in parallel
with the evaluation of the expression. If we further assumed that our execu-
tion unit can perform two additions at the same time we could have further
overlapped the operations by having the name mapper unit fetch B while
the execution unit was involved with the first addition. Thus, by retaining
the abstractions provided by the language at the machine level, it becomes
possible to find concurrency in their execution.

The processor architecture that realizes parallel interpretation of high
level machine language is called a Minimally Synchronized Architecture. In
this section we present a structural model of an MSA, its operational prin-
ciples, and the relationship between its performance characteristics and ar-
chitectural parameters.

A minimally synchronized architecture (MSA) M is a two-tuple:

M = (IP,CC)

where IP is a finite non-empty set of information processors and CC is a
finite non-empty set of communication channels, see Fig. 1. An information
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processor IP is a two-tuple:

IP = (A,S)

where A is a finite non-empty set of tasks or actions and S is a dimensionless
scalar quantity that characterizes the normalized speed of the given IP. A
communication channel CC is a two-tuple:

CC = ((IPi, IPj), C)

The ordered pair (IPi, IPj) represents a one way communication channel
between information processors IPi and IPj , and C is dimensionless scalar
quantity that characterizes the capacity of the communication channel.

Fig. 1: MSA: an architecture for parallel interpretation

A task A is a 3-tuple:

A = (In,Out, Tex)

In and Out are finite non-empty subsets of IPs, and Tex is the execution
time of that task, measured in cycles of a global clock. If IPi appears in
the In set of a task A that is assigned to the IPj then this implies that
there should be a communication channel from IPi to IPj . Similarly, if
IPi appears in the Out list of a task B that is assigned to the IPj then
this entails a communication channel from IPj to IPi. The presence of an
instruction processor in the In set of a task implies that the task must receive
information from the IP before it can start activity. In the same vein, the
IPs in the Out set of a task receive the results generated by the task. A task
can not terminate if the transfers are not completed.



80 M. L. Manwaring and V. D. Malbaša

The MSA can be conceived as a collection of specialized processors which
run concurrently and have well defined points of synchronization. The se-
quential process of interpretation is thus decomposed into a collection of
concurrent cooperating processes. Each component of the system executes
a pre-allocated component of the interpretation process. The process of the
distribution of the tasks is done during the design phase of the MSA, and,
once defined, becomes fixed. During its operation a particular machine might
produce a data structure that is required by another machine, or it might
need to consume data that is produced by another machine. The exchange
of data takes place through buffered communication channels implemented
as FIFO queues. The produce-consumer relation among different component
IPs introduces synchronization points among the different units. For max-
imal concurrency the number of synchronization points must be minimal,
hence the appellation “Minimally Synchronized Architecture.”

2.2. The architecture of an example MSA

In this section we present an example MSA that illustrates the concepts
developed. The MSA is designed to interpret a Pascal like language. The
main reason for the choice is that Pascal and related languages have been ex-
tensively studied, and benchmark programs from these languages are widely
available. These languages also provide a number of abstraction facilities:
name space abstraction, the ability to specify an object by a symbolic name,
data abstraction, the ability to define a relationship over a set of data, and
procedural abstraction, the ability to abstract over any syntactic clause that
can be written in-line in a program. In all compiler based implementations
of such languages the mapping of the abstractions to the primitive machine
language constructs is effected during compile time. However, in the pro-
posed MSA these “high” semantic contents of these abstractions provide the
opportunity for their parallel processing. Of course, in the framework of
a predominantly static language, the rationality of resolving the mapping
dynamically is questionable. The goal here, however, is to study some basic
properties of MSA machines, and in this context the choice of the language
is justified.

The proposed architecture consists of three IPs: the controller unit, the
memory unit, and the execution unit, see Fig. 2. The controller IP communi-
cates with the memory and execution IP via the CMQ (Control to Memory
Queue) and CEO (Control to Execution Queue), respectively, and receives
the results from the memory unit through the MCQ (Memory to Controller
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Queue). At each cycle a 32-bit instruction parcel is brought in from the
instruction cache to the instruction register (IR). If this is a leading parcel,
the first byte of the instruction (the opcode) is copied over to the decode
register. In case of a dependent parcel only the first four bits are copied
on to the last four bits of the decode register. The content of the decode
register is decoded and the controller instruction produces instructions for
the memory and execution units.

Fig. 2: Example of the MSA

A controller instruction can be decomposed into at maximum three mem-
ory and execution instructions. This consists of one address unit instruc-
tion and two execution unit instructions. These are written into the ad-
dress instruction register ADREG and two execution registers EXREG1 and
EXREG2, respectively.

The architectures of the controller, memory, and execution units, as well
as the other details of the proposed architecture are given in [15].

3. Pipelined Architecture for Parallel Interpretation

3.1. Pipelining

Pipelining increases computer performance by overlapping the execution
of multiple instructions, [5]. This feat is accomplished by dicing each in-
struction into basic operations and dedicating individual processing units
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(called stages) to each segment. The stages are connected with each other,
usually via a staging register, and for a pipe. The number of stages present
in a pipeline is called the depth of the pipeline. Assuming that the execution
time in each pipeline stage is equal, the lower bound of the execution time of
each instruction in the pipelined unit, called the ideal execution time is equal
to the time per instruction on equivalent non-pipelined machine divided by
the number of the pipe stages.

Hazards are pathological conditions in the operation of a pipeline where
an instruction is prevented from executing at its designated clock cycle.
Three kinds of hazards can be identified: Data, Structural, and Control
hazards.

A data hazard occurs whenever some data object within the computer
(e.g., register, memory locations, flag) is accessed or modified by two separate
instructions that are close enough for their execution to be overlapped in
the pipeline. Let the domain Di of an instruction i be the set of all objects
(registers, memory locations, flags, etc.) whose contents may affect the
execution of the instruction i, and range Ri be the set of all objects whose
contents may be modified by the execution of the instruction I. Three types
of data hazards are distinguished between an instruction i and a successive
instruction i + 1.

• RAW (Read-After-Write) hazard is possible is Ri
⋂
Di+1 �= ∅. RAW

hazards occurs when the instruction i + 1 attempts to read an ob-
ject which is modified by the instruction i before the modification is
complete.

• WAR (Write-After-Read) hazard is possible if Di
⋂
Ri+1 �= ∅. WAR

hazard is possible if instruction i+ 1 modifies some object before it is
read by the instruction i.

• WAW (Write-After-Write) hazard is possible if Ri
⋂
Ri+1 �= ∅. This

type of hazard occurs when both instructions i and i + 1 attempt to
modify the same object but the instruction i’s modification occurs after
that of the j’s.

The simplest technique to resolve the data hazards is to “stall” the
pipeline if a hazard is found, i.e. if the instruction i + 1 is found to have
a hazard possibility with a previously issued instruction i then the issuing
of i + 1, and all subsequent instructions is halted until such time when the
hazard condition ceases to exist. A more ambitious solution is to stall the
instruction i + 1, but let subsequent instructions i + 2, i + 3, . . . proceed, if
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they are free of potential hazards. A solution specific to RAW hazards, is
to directly forward the data produced by the instruction i, which is required
by the instruction i + 1, to the instruction i + 1 before the execution of the
instruction i is complete. This is called forwarding or short circuiting and
requires extra hardware for its implementation.

A structural hazard might rise in a situation where two or more in-
structions compete for the same hardware resources at a given clock cycle.
For example, at a given clock cycle, the instruction i might want to write a
result to the register bank, while the instruction i + 1 might need to read
the contents of a register. The usual solution is to let on of the competing
instruction proceed while stalling the others. Depending on the frequency
of a particular hazard, the designer might want to duplicate the resource of
contention.

The control hazards happen in the presence of branch and jump in-
structions that disrupt the sequential flow of the instruction execution. The
problem is that the target of a branch instruction become available only af-
ter the instruction is well into the pipeline. At this point several subsequent
instructions have also been issued to the pipeline under the assumptions of
linearity of execution. However, if the branch is now taken, this would re-
quire that the pipeline be “flushed” and the effects (if any) of the instructions
already in the pipe, be undone, before the execution can be resumed from the
new address. The simplest solution to this problem is to freeze the pipeline
as soon as a branch or jump instruction is detected, which usually occurs
during the decode stage. A more sophisticated technique involve predicting
the outcome of the branch instruction and continuing the execution from a
point based on the prediction. In case of a false prediction the pipeline has
to be flushed.

A generic RISC pipeline consists of five stages: instruction fetch, instruc-
tion decode, execute, memory access, and write back, [3]. All types of the
hazards are involved. A typical CISC type pipeline consists of six stages:
instruction fetch, instruction decode, address generation, operand fetch, ex-
ecution, and operand store or write back, [9]. The potential for hazards in
this pipeline is enhanced because of the increased depth of the pipeline and
the complexity of the instructions.

3.2. Pipelined MSA

Pipelined and superscalar architectures were both conceived to augment
processor performance by exploiting implicit parallelism. the nature of the
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parallelism that each exploits is, however, very different. Pipelining offers
an economical way to realize the temporal parallelism, that is inherent in
the process of instruction execution, by segmenting the process into consec-
utive subprocesses. Superscalar architectures, on the other hand, are said
to exploit spatial parallelism, i.e., instruction level parallelism. These two
orthogonal approaches can also be combined in the same processor to pro-
vide a higher degree of potential parallelism. An example which carries this
to the extreme is the SIMP processor, [6] and [7], which consists of four
identical instruction pipelines, each of which consists of five pipe stages thus
enabling the processor, in theory, to attain an overall speedup of 20.

The parallelism exploited by an MSA is very different in flavor from that
of temporal or spatial parallelism, and can be termed structural parallelism.
It exploits the parallelism inherent in the structure of the interpretation
process. The performance of an MSA architecture can also be enhanced by
incorporating other forms of parallelism within its architecture: superscalar
MSA or pipelined MSA. Furthermore, for various reasons, pipelined MSAs
are much easier to implement than pipelined superscalar architecture. In
a pipelined superscalar architecture, the detection of pipeline hazards are
made more complicated, and their effect on processor performance is further
exacerbated by multiple instruction issue and out of order execution. This
is specially true for control hazards, which has been blamed for the poor
performance of the SIMP processor.

The combination of structural and temporal parallelism in pipelined MSA
is more benign because in machines that realize structural parallelism, the
logical ordering of instructions is violated during execution. Structural and
data hazards are not compounded by the presence of multiple pipelined
units because (i) each pipeline is separate physical entity and do not share
any common resources and(ii) the source and destinations of each pipeline
are logically separated. Control hazards still impose a hefty penalty on the
performance by introducing pipeline stalls, but this can be alleviated by a
combination of software (delayed branches, software branch prediction etc.)
and hardware (speculative execution, boosted execution etc) solutions.

Note that in all of the three pipelines the range and domain of the instruc-
tions do not overlap. The following table gives the domain and range objects
for the three units. In the table IC stands for Instruction Cache, MCQ for
Memory to Controller Queue, CMQ for Controller to Memory Queue, CXQ
for Controller fo Execution unit Queue, DC for Data Cache, XMQ for Ex-
ecution unit to Memory Queue, and MXQ for Memory to Execution unit
Queue, see Fig. 3 and Fig. 4, [15].
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pipeline domain range
controller IC, MCQ CMQ, CXQ
memory DC, CMQ, XMQ MXQ, MCQ, DC
execution CXQ, MXQ XMQ

The consequences of the logical and physical separation of the range and
domain structures are profound, because it implies that there are no data
hazards in these pipelines, and thus they do not suffer from the crippling
effect of this type of hazards.

A quick inspection of the pipeline also reveals that these pipelines are
devoid of structural hazards. The controller unit accesses the instruction
cache only during one stage in the pipeline. Similarly, the memory unit has
a single read/write access to the data cache at a given clock cycle. Memory
accesses therefore can not cause structural hazards. At a given clock cycle
the controller unit can perform at most three write operations, on to the
memory queue and two writes to the execution queue. The memory queue is
provided with one write and one read port, while the execution queue is pro-
vided with two write and one read port. This precludes any possible struc-
tural hazard resulting from access to the resources. Most multiple-pipelined
superscalar architectures, in contrast, are characterized by an aggravation
in the complexity of data and structural hazards when compared to their
scalar counterparts.

Control hazards, however, are still present in this architecture, although
their effect on performance is less pronounced when compared to super-
scalar architectures. The two controller instruction that generate this type
of hazard in this architecture are the GOTO instruction, which denote an
unconditional transfer of control, and the LOOP instruction wich is a con-
ditional transfer instruction and whose outcome is predicated by the result
of a previously issued relational instruction. This relational instruction is
evaluated by the memory unit and its result is passed back to the controller
unit via the memory-to-controller queue MCQ. The GOTO instruction can
be detected in the ID stage of the pipeline and hence only the next instruc-
tion (which is in the IF stage) needs to be flushed from the pipeline. This
introduces a pipe stall of one clock cycle. The effect of the LOOP instruc-
tion is more severe. The instruction can be detected as early as the ID stage,
however the resolution of the branch is dependent on the evaluation of the
relational instruction in the memory unit, and in the case when the relational
instruction immediately precedes the branch instruction the evaluation can
take from six to thousands of clock cycles (in case of a data cache read miss
in the memory unit). These harsh effects can, however, be largely mitigated
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by code optimization techniques like delayed branch and loop unrolling. In
most cases the branch penalty can be reduced to 1 cycle. A further source
of branch penalty are the CALL and RETN instructions. In each case the
branch penalty is exactly one clock cycle.

The preceding discussion substantiates the claim that pipelined MSAs are
significantly less prone to pipeline hazards than superscalar architectures.

3.3. Distributed encoding scheme and pipeline design

In relevant literature and research community the concept of CISC has
been frequently equated to language-directed computer architecture and spe-
cially to any architecture that provides or is perceived to provide architec-
tural support for high level language constructs. The unfortunate conse-
quences of this misconceived identity is that there exists a tendency to brand
any processor that provides silicon based support (as opposed to compiler
based) for high level language constructs as “inefficient,’ because of estab-
lished inefficiencies of certain CISC processors.

We contend that increasing the abstraction level of an instruction set does
not inexorably lead to a more complex instruction set. To substantiate this
claim we will first analyze the nature of complexity of CISC type instructions.
There are two major sources of complexities in CISC type instruction sets.

A major source of inefficiency in CISC style implementations is the ab-
sence of a clean separation of abstraction levels. In CISC type machine,
both registers and memory locations are used as possible operand sources
in the instruction set. A register set forms the fastest storage medium in
the memory hierarchy, whose access time is comparable to the CPU cycle
time. Memory based operands, on the other hand, require a much larger
access latency. This disparity complicates the controller pipeline architec-
ture since the machine has to contend with operands whose operational
characteristics (access time, address encoding) are very diverse, [14]. The
presence of such disparities in encoding and execution times among differ-
ent instructions have serious repercussions on the design and performance of
the instruction pipeline. Registers and memory locations which constitute
different abstraction levels of the same entity (i.e. operand) are not concep-
tually and functionally separated at the processor level. This shortcoming
will be referred to as the abstraction complexity of the instruction sets.

CISC type instructions also exhibit structural complexity. This refers
to the high level of encoding of the instructions and their variable length.
Highly encoded instructions take longer to decode which prolongs the criti-
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cal delay path of the controller, thereby incriminating performance efficiency.
Yet another facet of complex instructions is their varying length. The in-
struction set of a CISC machine contains instructions whose operation time
can vary from a few cycles to hundreds of cycles. The impact of such multi-
cycle operations on the performance of the pipeline can be very debilitating,
[12].

Abstract instruction set of MSA avoids the pitfalls of CISC type instruc-
tions by (i) not overlapping the abstraction level of operands in the in-
structions, and (ii) using a Distributed Encoding Scheme (DES), [15], for
instructions to solve the problem of structural complexity.

Each component of an MSA is characterized by its own abstract instruc-
tion set. In mapping a high level language object to a machine resource, it is
usually necessary to map the object through a number of abstraction levels.
for example, a high level language variable is usually mapped to a memory
location, which can then be mapped to a register name. In an MSA each
component IP would handle operands only at a given level of abstraction.
For example, name abstraction could be handled on three different levels:
the first deals exclusively with variable names, the second understands the
concept of memory locations only, while the third is restricted to deal with
register level only. The mapping of the variable name to the register location
is effected by cooperative and concurrent operation of the three machines.
Each IP manipulates only one level or aspect of abstraction. The abstraction
complexity of CISC type instructions is thus avoided.

Another important aspect of pipeline design is the effect of the structural
complexity of an instruction set on pipeline performance. An instruction
encoding scheme, called Distributed Encoding Scheme (DES), that strives
to minimize structural complexity of MSA instruction set while retaining
the compactness of a complex instruction set is presented in this section.
The DES is derived from the observation that most complex instructions
consist of a number of operations which are executed in a sequential fashion
and which usually over-utilizes the resources of the pipeline. The central
idea in DES is to decompose a complex instruction into several constituent
parts, each of which encodes several operations from the operation set of the
complete instruction, and is complex enough to fully utilize the resources
of the pipeline. This structural unit of a complex instruction is called an
instruction parcel. So, an instruction parcel is a structural quanta of complex
instruction that can be fetched and issued as an independent instruction and
whose semantic content is sufficient to properly utilize the resources of the
pipeline. In DES, unlike conventional instruction formats where the opcode
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that identifies the functionality of the instruction is usually confined to the
leading bytes (one or two) of the encoding, the information is distributed
among the constituent instruction parcels.

The instruction parcels can be differentiated into two categories, which
are called leading and dependent parcels. The leading instruction parcel is
the first instruction parcel in a multi-parcel instruction. Subsequent parcels
in the instruction fall in the category of dependent parcels. A single bit in
the encoding differentiates between the two types. The encoding of a lead-
ing instruction parcel consists of the two fields, the major opcode field that
identifies the instruction, and when decoded, provides the relevant semantic
information that determines the operations to be performed on the operands
specified in the second operand field. A dependent instruction parcel also
consists of two fields. The leading field is called the minor opcode field,
which is usually smaller than the major opcode field, and when combined
with a specified segment of the corresponding major opcode field, provides
the information required to process the operands that are provided in the
operand fields that follow. The leading and dependent instructions have a
fixed field encoding which facilitates their decoding.

DES offers a good combination of compactness of code and ease of de-
coding. Decoding complexity is alleviated by the fixed field encoding of the
instruction parcels. A reasonable compactness is also maintained by making
the minor opcode field considerably smaller than the major opcode field.
Pipeline efficiency is not, however, compromised because the instructions
are processed parcel by parcel each of which is designed for efficient use of
pipeline resources.

The DES concept is illustrated by an example design of the instruction
PEXPR, that specifies a polish expression, and that is the most complex
instruction in the MSA instruction set. The expression can be arbitrary long,
and can consist of an arbitrary combination of operands and operators in
arbitrary order. It is assumed that 4 bits are required to specify an operator
and that 24 bits are required to specify a literal values or the address of
an operand. The major opcode is specified by 8 bits, the last four bits of
which is combined with the 4 bit minor opcode to yield the working opcode
for dependent parcels. The instruction parcel is 32 bit long, which is the
usual length for modern RISC type instructions. The instruction parcels
for PEXPR that can be formulated under these constraints are given in the
following table, where for each instruction the mnemonic name and the name
and type of operand fields are given.
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opcode field 1 field 2 description

PSWR VAR leading parcel, variable operand
PSVI VAR leading parcel, indirect var. operand
PSVL VAL leading parcel, literal operand
PAVR BASE leading parcel, structured variable
POVL OPER VAL dependent parcel, operator and literal
PVLO VAL OPER dependent parcel, literal and operator
POVR OPER VAR dependent parcel, operator and operand
PVRO VAR OPER dependent parcel, variable and operator
POVI OPER VAR dep. parcel, operator and indirect operand
PVAL VAL dependent parcel, literal operand
PVAR VAR dependent parcel, variable operand
PVRI VAR dependent parcel, indirect variable
POPP OPER OPER dependent parcel, two operators
PAOD VAL dep. parcel, literal offset for string operand
PAOV VAR dep. parcel, variable offset for string operand

Note that the first four are leading instruction parcels while the rest
belongs to the dependent category. A polish expression will be encoded
as a combination of these parcels with the proviso that the encoding must
start with on of the four possible leading parcels. Note that while a certain
amount of independence can be ascribed to a parcel, it is not an independent
instruction because its import is only valid in the context of the complete
instruction of which it is a part.

As an example, the encoding of the representative polish expression:

(A + B) � C � D � E

in the compact PEXPR form is given as PEXPR AB + C � DE � � and in
the DES format as:

PSVR A
PVRO B +
PVRO C +
PVAR D
PVAR E
POPP + +

If the size of the variables is 24 bits, and size of the operators is 4 bits, then
the code size for the compact PEXPR form is 24 · 5 + 4 · 4 = 144 bits, and
the corresponding size for DES form requires 192 bits, that is about 32%
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more than the compact form. This overhead in code size is quite acceptable
when compared to the more than twofold increase in RISC code size over
that of CISC code size. More importantly, the performance of the pipeline
has not been compromised because each instruction parcel exhibits the same
structural simplicity that distinguishes RISC type instructions.

A detailed description of the pipelined MSA controller instructions is
given in [15].

3.4. Controller unit

The architecture details of the controller unit of the proposed pipelined
MSA is presented in the Fig. 3, and the instruction set is detailed in the
reference [15].

Fig. 3: The pipelined controller unit of the MSA

It is important to note that all of the three processors, the controller,
the memory, and the execution unit, are pipelined. The structure of the
pipelines have been discussed in the previous section. In this and following
sections the overall architecture of the units will be discussed, which also
includes the instruction set of the units. The instruction set architecture of
each unit was designed in accordance with the DES concept.
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The controller communicates with the memory and execution processor
via the CMQ and CEQ queues, respectively, and receives the results of re-
lational operations from the memory unit through the MCQ. At each cycle
a 32-bit instruction parcel is brought in from the instruction cache to the
instruction register (IR). If this is a leading parcels, the first byte of the in-
struction, i.e. the opcode, is copied over to the decode register. In the case
of a dependent parcel, only the first four bits are copied on to the last four
bit of the DR. The contents of the DR is decoded by the PLA. When de-
coded, a controller instruction produces instructions for the memory and the
execution units. The maximum number of memory and execution instruc-
tions that a controller instruction can be decomposed into is three, which
includes on address unit instruction and two execution unit instructions.
These are written into the address instruction register (ADREG) and the
two execution instruction registers (EXREG1 and EXREG2), respectively.

The instructions are formed in the following fashion. The output of the
PLA consists of up to a maximum of three fields, each of which is copied on
to one of the three registers. The operand field of these registers are copied
from the operand field of the IR. When a controller instruction is in the
write stage the contents of the non-empty ADREG, EXREG1 and EXREG2
are copied to the CMQ and CEQ.

3.5. Memory unit

The architecture of the memory unit is presented in the Fig 4, and some
of its instructions are described in Table 3.1.

The memory unit receives its instruction from the controller unit trough
the CMQ. At each clock cycle an instruction is fetched from the CMQ and
copied to the memory instruction register (MIR). If the queue is empty,
an NOP instruction is generated. The address part of the instruction is
copied onto the memory address register (MAR). If the instruction requires
a memory read, then the data is read from the data cache (DC) to the
load memory data register (LMDR), and is subsequently written into MXQ.
If memory write is indicated, the contents of store memory data register
(SMDR) is written to the DC. The value in the SMDR has been copied from
the MIR during an earlier cycle (ID).

In both cases, the address of the load/store operation is fetched from the
MAR. The second category of instructions that the memory unit handles is
the comparison instructions. In this case the instructions are fetched from
the CMQ, the relation evaluated by the memory unit comparator, and the
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Fig. 4: The pipelined memory unit of the MSA

result is written back to the controller via the MCQ. The third category of
instructions that is handled by this unit are the subroutine call and return.
The processing of these instructions involves the creation or deletion of data
stack frames and will be explained later.

3.6. Execution unit

The execution unit fetches its instruction from the CEQ. As in the case
of the memory unit, an empty CEQ generates a NOP. The instruction set
of the execution unit is shown in the following table.

instruction action implied
IVAL VAL push value operand on the expression stack
QVAL push a pointer to QITEM on the expression stack
OPER <OPERATOR> execute the operation specified by the OPERATOR

field on the first two items on the expression stack
SEND send the value in RESREG to the EMQ
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3.7. Address encoding

MSA supports two types of memory objects: (i) simple scalar objects and
(ii) structured objects. All simple variable operands are encoded by a pair of
values which are combined together to form the address of the variable, i.e.
to bind the variable to a memory location. The 24 bit address consists of a
four bit display field and a 20 bit offset field. The display field determines the
environment in which the variable is defined. The display field is decoded
to point to a display register in the memory unit which contains the base
address of this environment. The actual address is calculated by adding the
20 bit offset to the base address specified by the relevant display register.
Since the offset field is 20 bit long this implies that at most 220 local variables
are allowed in each environment. A 4 bit value for the display register implies
that a maximum static nesting of 16 levels are supported by the MSA.

Structured variables are characterized by a base address, display and
dimension. Each component of a structured object is further specified by
an offset. The address of a component of a structured object is formed by
adding three components: (i) base address of the data frame which contains
the object and which is determined by the display register, (ii) base address
of the object, and (iii) offset of the component. In accordance to the DES
principle, the base address and the display level of the structured object
is specified by a leading parcel, and the offset is specified by a dependent
parcel.

3.8. Procedure abstraction

The instruction set of MSA has been augmented to support the proce-
dure abstraction. A distributed version of the Johnston’s Contour model
has been adopted for this purpose, [1], [4]. The management of the run-time
environment necessary for this feature is distributed between the controller
and memory units. The conventional activation stack is split into two stacks
in the MSA. The control stack, which stores the return addresses, is main-
tained by the controller unit, and the data stack, which provides the space
for the local variables is managed by the memory unit. Access to non-local
variables is provided through the display mechanism. The displays are main-
tained in 16 display registers (DR.1 - DR.16) in the memory unit. Apart
form the display registers, the memory unit also contains a HIGHMEM reg-
ister, which points to the top of the data stack, and a CURDISP register
which points to the display register associated with the current environment.
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The layout of the activation record of a procedure in the data stack is
organized in the following way. The first entry contains the old value of
the display register m which was saved at this location when the frame
was created. The rest of the frame consists of parameters passed to the
procedure and local variables, which includes both scalar and array type
variables. Heap type storage is not required because dynamic variables are
not supported in the MSA.

3.9. Control transfer instructions

Both unconditional and conditional control transfer instructions are pre-
sent in the instruction repertoire of the MSA. GOTO implements control
transfer. The conditional control transfer statement is formed of two sets of
instructions, the LOOP instruction and the relational instructions transfer
statement. First the condition on which the transfer is predicated must be
evaluated. Once the value is known, actions pertaining the execution of con-
trol transfer can be undertaken, if required. The relational instructions are
responsible for the evaluation of the branch condition. This set of instruc-
tions is DES encoded to alleviate structural complexity. The two leading
parcels are RLS1 (for relation of the type VAR REL VAL) and RLS2 (for
the relations of the type VAR REL VAR). The rest of the instructions specify
the kind of relational operation and the second operand of the expression.
the interpretation of the second operation (variable or literal value) is contin-
gent upon the preceding parcel. Also included in the category of relational
instruction are four single word instructions which compare the immediate
operand for equality with 0 or 1.

4. Performance Characteristics

The goal of this part of the project was to come up with some performance
measures and to study the effects of the variation of different and significant
architectural parameters on both the pipelined and the non-pipelined MSA
machines. The measures are not presented in absolute metrics, because these
measurements are highly dependent on technological factors and hence are
more applicable to either finished products or those at the last stages of de-
velopment. The goal is to study the effects of the variation of different and
significant architectural parameters on machine performance. Machine per-
formance is measured in units of speedup over an equivalent serial machine
and the proposed machine.
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4.1. Performance indicators

The measurements of performance are presented in comparison with some
standard configurations. An equivalent serial machine of a pipelined MSA
is a serial machine whose instruction set is identical to the instruction set
of the controller unit of the MSA, and for which the execution time of each
instruction is defined by the sum of the execution times of the semantic
actions activated by the controller instruction in the MSA. Therefore, the
equivalent serial machine does not incur the penalty of synchronization of an
MSA. A base MSA is a machine, all of whose component IPs have a speed of
unity and all the queues of which are of length one. A metric that measures
the effectiveness of the MSA configuration is the ratio of execution time of
a serial equivalent machine to that of a base MSA.

A component speedup is the speedup factor of a given component. This
is an architectural attribute specified as a design parameter. The compo-
nent speedup characterizes the computational capability of the component
which can be augmented by different mechanisms, e.g. by investing more
silicon in the unit (pipelined unit, faster circuits etc.) or by using a dif-
ferent technology (ECL, GaAs). The parameter component speedup thus
denotes a quantitative characterization of the increase in the computational
capabilities.

A System speedup for an MSA of a given configuration is the ratio of the
execution time of a program on a base machine to the execution time of the
same program on an MSA of the given configuration.

4.2. Benchmark programs

The workload of the simulation of the non-pipelined MSA consists of
two programs. The first program is a differential equation program, and
involves a large number of floating point operations. This is a fourth or-
der Runge Kutta solution to the equation dy/dx = y + xy. The solution
was calculated for x = x0 to x = xfinal with a step size of h. These the
parameters were given as inputs to the program. The second program cal-
culates the number of prime numbers between 1 and 100 five times using the
Eratosthenes Sieve algorithm. This program is dominated by control flow
statements with minimum computations. The programs have been chosen
to create an asymmetric load for the MSA in the sense that for each program
either the execution unit (program #1) or the memory unit (program#2)
is predominantly used. Therefore it conjectured that this program driven
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minimal concurrency would provide estimates on the lower bound of the per-
formance of this class of machines. For each program several architectural
attributes (component speedup, queue length, for example) were varied to
measure their impact on the machine performance.

The workload of the simulation of the pipelined MSA consists of seven
programs chosen to represent different types of workloads. The first five
Livermore loops represent a load characterized by intensive floating point
processing, and results in a high degree utilization of the execution unit,
and also provide a moderate level of loading of the memory units. Loops
1 and 2 involve evaluation of long expressions which augments the level of
parallel execution of the memory and execution units through the mechanism
of use order renaming. The next benchmark program involves the evaluation
of the Ackerman’s function. It is a memory intensive program, characterized
by deep recursive calls and in which the execution unit is almost never used
and results in a completely unbalanced loading of the components. The
last program is a list insertion routine which inserts several data items in a
doubly linked list. This program is characterized by shallow calling depths
and heavy utilization of the memory unit at the expense of the execution
unit, although not to the extent of the previous program.

4.3. Simulator

To provide a testbed for exploring the performance of the proposed ar-
chitecture a cycle level simulator of the described pipelined MSA has been
implemented, [15]. The overall structure of the simulator is given in Fig. 5.
The simulator reads a hardware specification file which defines various archi-
tectural attributes of the machine to be simulated. Parameters that can be
specified include the various queue lengths and relative speeds of the different
units. The program consists of four main modules, three of which simulate
the controller, memory and execution units, and the fourth, the scheduler,
coordinates the activities of the different units and also collects the data at
every clock cycle. Several utility programs are also provided. A compiler
translates the high level language programs into controller machine language
programs. Several result analyzers process the large data files generated by
the simulator and compute the performance parameters.

The simulator executes programs written in the machine code. The sim-
ulator generates various sets of data characterizing the execution process.
These includes total parallel and serial execution times, execution time of
each component, types and number of pipeline stalls, address traces, etc.
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Fig. 5: The structure of the simulator

The estimate of serial time is based on the execution time of the same pro-
gram on an equivalent serial machine.

4.4. Results of performance measurements

System speedup: pipelined MSA. The speedup of the base machine
over the equivalent serial machine for different benchmark programs is given
in the following table.

benchmark: Livermore loops Ackerman List
#1 #2 #3 #4 #5 insertion

speedup 1.72 2.37 2.83 2.93 2.5 2.56 2.1

Variation of the queue length: pipelined MSA. For this set of
experiments the length of the different queues were varied over a range of
1 to 10 with increments of 1. The effects of the instruction queues (CMQ
and CEQ) were studied with unbounded MXQ and XMQ, and vice versa,
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the effects of the MXQ and XMQ were studied with unbounded CMQ and
CEQ. This was done in order to decouple the effects of the various queues
on performance. The results obtained, with minor variations, were almost
identical for all the programs in the benchmark suite.

Varying the length of the instruction queues from the minimum (1) to
the maximum (10) value results in an improvement of the performance by
a factor of 1.05 over the base machine. Moreover, this value was reached by
a queue size of 3, after which increasing the queue size had no effect on the
performance. This observation was mirrored in the case of study involving
the other set of queues. The maximum speedup obtained was 1.2, and the
saturation point was reached by a queue length of 3.

The reason for this minimal increase is easily explained. The controller
unit for each instruction it executes produces data items (instructions) that
must be processed by the execution and memory units. Therefore, a close
lock-step type synchronization is established between the controller and the
other two units which minimizes the effect of the capacity of the communi-
cation channels.

Variation of the component speedup: pipelined MSA. This set
of experiments shows the effect of varying the speed of the memory and
execution units over a range of 1 to 16 (with the controller speed as the base
speed) on the program execution time.

Different combinations of memory and execution unit speed are consid-
ered. An example of a typical diagram obtained running this set of exper-
iment is given in Fig 6 that shows the system speedup versus the memory
unit speedup. The Livermore loop programs are characterized by intensive
floating point computations and as such the greatest benefit is reaped by
enhancing the processing power of the execution unit. This observation is
completely corroborated by the system speedup curves. Compared to the
gain obtained by increasing the speed of the execution unit, the net gain in
processing time obtained by increasing the processing power of the memory
unit is relatively small.

The Ackerman benchmark and the List insertion benchmark provide a
different workload and therefore radically different performance profiles. The
base speedup in the case of the Ackerman function is 2.1 and for list is 1.9,
considerably larger that the first Livermore loops (1.73). In view of the fact
that both this benchmark create a highly unbalanced load this result might
seem surprising. The reason for this apparent discrepancy can be explained
by the fact that the exclusion of the execution unit from the processing also
excludes all the various stalls associated with this unit and results in a con-
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Fig. 6: System speedup vs memory unit speedup (Livermore #1)

figuration where the controller and memory units operate very much like a
two stage pipeline which results in the doubling of the combined throughput
of the system. The same observation applies to the case of the List insertion
program, albeit to a lesser extent.

System speedup: non-pipelined MSA. The value for the concur-
rency index obtained for the differential equation program (program #1) is
1.9 and for the program that calculates the prime numbers (program #2) is
1.5, as shown in the following table.

benchmark program program #1 program #2

concurrency index 1.9 1.5

The base concurrency that can be exploited in these programs is limited
by the unbalance load. In program #1 the detrimental The base concurrency
that can be exploited in these programs is limited by the unbalanced load.
In program #1 the detrimental effect of this asymmetry is mitigated by the
parallel execution of the memory and the execution units in the evaluation
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of polish expressions. In the program #2 the more stringent synchronization
barriers reduce the concurrency index to 1.5.

Fig. 7: Execution unit efficiency vs memory unit speedup (program #1)

Variation of component speedup: non-pipelined MSA. The next
set of results demonstrates the effect of component speedup on the system
speedup and component efficiency. Fig. 7 and Fig. 8, obtained for program
#1, show that for a given value of speedup of the execution unit, increasing
the speed of the memory unit improves the efficiency of the execution unit
and reduces the efficiency of the memory unit. This result follows from the
observation that since the memory unit is, for a large fraction of the program
execution time, waiting on the execution unit, therefore any further increase
of the memory unit speedup factor would add on to the number of memory
unit waiting cycles, which translates into reduced efficiency. The converse
is the case for the execution unit: increasing the speedup factor of the ex-
ecution unit decreases the number of waiting cycles for the memory unit
and boosts its component efficiency index. Since the program #1 involves a
significant amount of floating point computation, the execution unit forms
the bottleneck of the system as both the memory and the controller units
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are perennially blocked waiting for the results of this unit.

Fig. 8: Memory unit efficiency vs memory unit speedup (program #1)

The deleterious effects of the execution unit bottleneck can be compen-
sated for by increasing its component speed as can be seen in Fig. 9. However,
for a given execution unit speedup, increasing the memory unit speed recre-
ates a dynamic load imbalance between the two units which is indicated by
the levelling off of the system speedup curves for higher memory speedup.

Similar results are obtained for benchmark program #2. In this case, be-
cause, of the preponderance of control transfer instructions, the memory unit
constitutes the bottleneck. The other components spend a major fraction of
the program execution time in the blocked state. It, therefore, follows that
augmenting the execution unit speedup has minuscule effect on the system
speedup. By the same token, increasing the memory unit speedup factor
has positive impact on the system speedup. However, the speedup factor is
limited to a maximum value of 2.2 because of the fact that the condition
evaluation operation is a simple operation (in terms of execution time) and
the number of cycles that can be saved by speeding up this operation is
relatively small. A very marginal increase in controller efficiency is observed
when varying the speedup factor of the components, and can be attributed
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Fig. 9: System speedup vs component speedup (program #1)

to the fact that the execution unit plays an insignificant role in the overall
computation.

Variation of the queue length: non-pipelined MSA. A set of sim-
ulations was performed to characterize the dependency of performance on
queue length for the benchmark programs. The results are presented in Ta-
ble 4.1 and Table 4.2. For program #1, changing the the queues length re-
sults in higher performance. The savings emanate from reducing the blocked
time of the memory unit, which can slip ahead of the execution unit because
of a more “spacious” buffer. For program #2, increasing the queue lengths
fails to demonstrate any tangible performance advantage, probably because
of the stringent synchronization requirements of the control dominated pro-
gram.

5. Conclusion

We have discussed a new class of architecture, called Minimally Syn-
chronized Architecture or MSA, that provides efficient hardware support for
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Table 4.1: Effect of MXQ/XMQ queue length on performance (program #1) (Pa-
rameters: CMQ = CEQ length = 40; memory unit speed = 8; execution unit speed
= 8)

MEQ/EQM length 1 2 3 4 5 8

Performance 211425 210086 210886 210886 210886 210886
(clock cycles)

Table 4.2: Effect of CMQ/CEQ queue length on performance (program #1) (Pa-
rameters: CMQ = CEQ length = 40; memory unit speed = 8; execution unit speed
= 8)

CMQ/CEM length 1 2 3 4 5 8

Performance 220740 212228 210887 210886 210886 210886
(clock cycles)

high level machine language interpretation, achieved by using structural par-
allelism. The structural parallelism exploits the parallelism inherent in the
structure of the interpretation process. The performance of an MSA can also
be enhanced by incorporating other forms of parallelism within its architec-
ture: superscalar MSA or pipelined MSA. Furthermore, for various reasons,
pipelined MSAs are much easier to implement than pipelined superscalar
architecture.

The paper presents the design details of a pipelined MSA with three
pipelined units: controller, memory and execution units. Note that in all of
the three pipelines the range and domain of the instructions do not overlap.
The consequences of the logical and physical separation of the range and
domain structures are profound, because it implies that there are no data
hazards in these pipelines, and thus they do not suffer from the crippling
effect of this type of hazards.

The pipelined units were designed by using the Distributed Encoding
Scheme (DES) that was derived from the observation that the most complex
instructions consists of a number of operations which are executed in a se-
quential fashion and which usually over-utilize the resources of the pipeline.
The DES retains structural simplicity of the instruction set at the cost of an
acceptable increase in code size.
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Three different groups of experiments were organized by using the cycle
level simulator. First group of the experiments demonstrate the effect of
component speedup on system speedup and component efficiency. For a
given value of speedup of the execution unit, increasing the speed of the
memory unit improves the efficiency of the execution unit and reduces the
efficiency of the memory unit. The converse is the case for the execution unit:
increasing the speedup factor of the execution unit decreases the number of
waiting cycles for the memory unit and boosts it component efficiency index.

A second set of simulations was performed to characterize the dependency
of performance on queue lengths. It was shown that expanding the queues
results in higher performance. For the program that calculates the number of
prime numbers between 1 and 100, increasing the sizes of the queues however
has minimal effect, because of the stringent synchronization requirements of
the control dominated program.

Finally, the third set of simulations shows the speedup relative to the
equivalent serial interpretation for five different benchmark programs. The
speedup in case of Ackerman function is 2.56, for the List insertion is 2.1,
and for the Livermore loops is about 2.5.

Performance measures show that the system speedup of about two is ob-
tained relative to the equivalent serial interpretation for five different bench-
mark programs. Analysis of the performance curves also reveals information
about the optimal speed configurations. For example, for the Livermore
loops, it can be seen that 90% of the maximal performance can be obtained
by controller/memory/execution unit speed ratio of 1/14/8. Further increase
in the component speed does not result in a proportionate increase in system
performance. Of course, the optimal speed configuration is dependent on the
load characteristics. In the case of the Ackerman function, the optimal speed
ratio would be 1/4/1/ which results in 95% of the maximal attainable speed.
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