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NUMERICAL INTEGRATION OF FUNCTIONS WITH
LOGARITHMIC END POINT SINGULARITY∗

Gradimir V. Milovanović and Aleksandar S. Cvetković

Abstract. In this paper we study some integration problems of functions involv-
ing logarithmic end point singularity. The basic idea of calculating integrals over
algebras different from the standard algebra {1, x, x2, . . .} is given and is applied
to evaluation of integrals. Also, some convergence properties of quadrature rules
over different algebras are investigated.

1. Introduction

The basic motive for our work is a slow convergence of the Gauss-Legendre
quadrature rule, transformed to (0, 1),

I(f) =
∫ 1

0
f(x) dx � Qn(f) =

n∑
ν=1

Aνf(xν),(1.1)

in the case when f(x) = xx. It is obvious that this function is continuous
(even uniformly continuous) and positive over the interval of integration,
so that we can expect a convergence of (1.1) in this case. In Table 1.1 we
give relative errors in Gauss-Legendre approximations (1.1), rel. err(f) =
|(Qn(f)− I(f))/I(f)|, for n = 30, 100, 200, 300 and 400 nodes.
All calculations are performed in D- and Q-arithmetic, with machine

precision ≈ 2.22 × 10−16 and ≈ 1.93 × 10−34, respectively. (Numbers in
parentheses denote decimal exponents.)
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Table 1.1: The relative errors in Gauss-Legendre approximations Qn(xx) with n
nodes, in D- and Q-arithmetic

n 30 100 200 300 400
D-arthm. 3.74(−7) 3.14(−9) 1.98(−10) 3.93(−11) 1.24(−11)
Q-arthm. 3.74(−7) 3.14(−9) 1.98(−10) 3.93(−11) 1.24(−11)

From this table we can see that the quadrature rule (1.1) converges, but
the convergence is rather slow. The quadrature rule with 300 nodes gives
only 11 decimal digits precision in the result like with 400 points, but one can
also encounter that increasing in number of nodes after 100, the precision
of result increases very slowly. If we further increase the number of points
this fact becomes quite evident. We can also see that errors are the same
in D- and Q-arithmetic, which means that the problem does not lie in ill-
conditioning.

What is presented is a phenomenon called the saturation. We say that
the integration of the function x 	→ xx on (0, 1) is saturated with respect to
the Gauss-Legendre quadrature rule. We also note that this function has a
logarithmic singularity in its derivative at the point 0, and we can say that
the problem of slow convergence occurs because of this singularity.

In this paper we consider integration of functions with logarithmic sin-
gularities and present some problems involved with them. The next section
is devoted to present problem of saturation of Gaussian quadrature rules
and also develops theory needed for an application of quadrature rules over
different algebras. Section 3 is concerned with different ways to construct
three term recurrence coefficients of orthogonal polynomials over different
algebras and some examples are given as well. Section 4 is concerned with
orthogonal polynomials with respect to the measure xxχ(0,1)dx, three term
recurrence coefficients are given for orthogonal polynomials over algebras
generated by x and − log(x).

2. Saturation Problem and Müntz Systems

Let Λ = {λ0, λ1, λ2, . . .} be a real sequence. We consider Müntz polyno-
mials as linear combinations of the Müntz system {xλ0 , xλ1 , . . . , xλn}. By
Mn(Λ) we denote the set of all such polynomials, i.e.,

Mn(Λ) = span {xλ0 , xλ1 , . . . , xλn},

where the linear span is over the real numbers. The union of all Mn(Λ) is
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denoted by M(Λ), i.e., M(Λ) =
+∞⋃
n=0

Mn(Λ).

The first considerations of orthogonal Müntz systems were made by the
Armenian mathematicians Badalyan [1] and Taslakyan [14]. Recently, it was
rediscovered by McCarthy, Sayre and Shawyer [9]. A complete investigation
of such systems, including some inequalities of Markov type, was done by
Borwein, Erdélyi, and Zhang [3] (see also the book [2]).
Suppose that λk > −1/2 for every k ∈ N0 and let Λn = {λ0, λ1, . . . , λn}.

If Γ is a simple contour surrounding all the zeros of the denominator in the
rational function

Wn(s) =
n−1∏
k=0

s+ λk + 1
s− λk

· 1
s− λn

(n ∈ N0),(2.1)

then the Müntz-Legendre polynomials are defined by (see [1, 2, 3, 9, 11, 14])

Pn(x) = Pn(x; Λn) =
1
2πi

∮

Γ

Wn(s)xs ds.(2.2)

In the case n = 0, an empty product in (2.1) should be taken to be equal
to 1. For the Müntz-Legendre polynomials (2.2) the following orthogonality
relation holds:

(Pn, Pm) =
∫ 1

0
Pn(x)Pm(x) dx =

δnm

2λn + 1
.

Returning now to saturation problems, we give the following definition:

Definition 2.1. We will say that some quadrature rule Qn is saturated of
order φn, where φn is positive zero converging sequence, if and only if

lim
n→+∞

‖I(f)−Qn(f)‖
φn

= C �= 0.

It is obvious for Gauss-Legendre quadrature rule applied to the function
f(x) = xx that respected sequence φn converging to zero very slowly.
This is not the first saturation problem encountered. Saturation problems

occur regularly in problems of polynomial approximation. A basic tool which
is constructed for solving saturation problems are Müntz polynomials or
some other kinds of generalized polynomials. A numerical algorithm for
the construction of generalized Gaussian quadratures was investigated by
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Ma, Rokhlin and Wandzura [8], but, in a general case, this algorithm is ill
conditioned.
Recently, one of us presented a stable numerical method for construct-

ing the generalized Gaussian quadratures for Müntz polynomials [12]. Our
constructive method is based on an application of orthogonal Müntz polyno-
mials, as well as on a numerical procedure for evaluation of such polynomials
with a high-precision [11]. However, such construction is not so easy as in
the algebraic case (cf. [5]). Usually, it cannot be constructed with a standard
software for algebraic Gaussian quadrature rules.
In some special cases, the standard software ([5]) for construction of

Gaussian quadrature rule can be applied. In the special case when λ0 =
λ1 = · · · = λ, i.e., Λ = Λ(λ) = {λ, λ, . . .}, (2.1) reduces to Wn(s) =
(s+ λ+ 1)n/(s− λ)n+1, so that (2.2) becomes

Pn(x; Λn) = xλLn(−(2λ+ 1) log x),
where Ln(x) is the Laguerre polynomial orthogonal with respect to e−x on
[0,+∞) and such that Ln(0) = 1. Thus, in this special case, Müntz poly-
nomials become Laguerre polynomials in (− log x). This gives a direction to
take an integration with respect to the Gauss-Laguerre quadrature rule. We
can either transform integral over (0, 1) to (0,+∞) or to take an integration
over (0, 1), in which case we have to transform nodes of the Gauss-Laguerre
quadrature rule (with the exponential weight e−x),

∫ +∞

0
g(t)e−t dt �

n∑
ν=1

Akg(τν),

from the interval (0,+∞) to (0, 1). Since ∫ +∞
0 g(t)e−t dt =

∫ 1
0 g(− log x) dx,

we get the quadrature formula
∫ 1

0
f(x) dx � QL

n(f) =
n∑

ν=1

Akf(xν), xk = e−τk , k = 1, . . . , n,(2.3)

which is exact for all f ∈ M2n−1(Λ(0))= span {1, log x, log2 x, . . . , log2n−1 x}.
In this case, our quadrature rule (2.3) is constructed with standard software
tools. An application of this quadrature to f(x) = xx gives results with
relative errors displayed in Table 2.1.
There is also a quadrature rule which can further decrease number of

points in which function is evaluated, but this quadrature rule requires al-
gebra different then algebra constructed over {(− log x)k, k ∈ N0}.
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Table 2.1: The relative errors in quadrature approximations QL
n(x

x) with n nodes
in D-arithmetic

n 40 50 60 70 80
D-arthm. 7.07(−11) 1.94(−12) 7.04(−14) 3.16(−15) 1.69(−16)

Our integrand can also be written in the form xx = ex log x, which is
entire function in x log x. If we calculate moments for algebra generated
by x log x, with respect to the Legendre measure, we can use the Cheby-
shev algorithm to construct the coefficients of three term recurrence rela-
tion, which can be used for construction of orthogonal polynomials in x log x
over (0, 1), with respect to Legendre measure. Using QR algorithm, the
Gaussian quadrature rule can be constructed. This formula is exact for all
f ∈ span {1, x log x, x2 log2 x, . . . , x2n−1 log2n−1 x}. Applying this quadra-
ture rule to the function f(x) = xx we have the rate of convergence given in
Table 2.2. The exact result in D-arithmetic is achieved with only 5 points
in the corresponding Gaussian quadrature rule.

Table 2.2: The relative errors in quadrature approximations for I(xx) by the
quadrature formula obtained using algebra over x log(x)

n 3 4 5
D-arthm. 1.28(−9) 1.96(−13) 1.11(−16)

Let x 	→ ψ(x) be a continuous function defined over a closed interval
I, and such that all its powers (ψ(x))k, k = 0, 1, . . . , be mutually linearly
independent. Without loss of generality, we take I = [0, 1]. We can construct
an algebra of functions with mother function ψ(x) in the following manner
taking all powers of the function ψ(x) from 0 to n (∈ N0). Then, we take
all linear combinations over the set of powers with real numbers and obtain
a real vector space of dimension n, denoted by Un ≡ Un(ψ). If we take the

union of all such linear spaces over n ∈ N0 we get the linear space U =
+∞⋃
n=1

Un

in which the multiplication is a closed operation.

The set U can be understood as an algebra of polynomials in ψ(x). Since
all linear combinations over set of powers are in U , the elements in U are
polynomials in ψ(x). The algebra constructed in this manner is isomorphic
with standard polynomial algebra over power set {1, x, x2, x3, . . .} and the
linear mapping L(ψ(x)k) = xk, k ∈ N0, L(α1f1+α2f2) = α1L(f1)+α2L(f2),
constitutes this isomorphism.
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This means that we can use the Euclid’s algorithm for polynomial division
or to find a common divisor, etc. We can say that this isomorphism allows
us to have no difference between standard algebra of polynomials and alge-
bra U when we are interested only in properties with respect to arithmetic
operations of addition and multiplication.
Our interest is now in some approximation properties of our algebra U .

For this purposes we need the following theorem of Stone (see [4]):

Theorem 2.1. A function g ∈ C(I) is approximable by functions of real
algebra U if and only if
(a) h(x) = 0 for all h ∈ U implies g(x) = 0, and
(b) The algebra U separates any two points separated by g.

In our algebra U , there are no point x at which all h ∈ U are zero,
because we have in U the function ψ(x)0 = 1, which has no zeroes on any
closed interval I.
We say that function g separates two different points x and y, if and only

if g(x) is not equal with g(y). We say that algebra separates two different
points x and y, if and only if there is h ∈ U which separate points x and
y. To be approximable means that the function g can be approximated
arbitrarily close, with respect to uniform norm, with polynomials from the
algebra U .
This theorem states that if any two points of an interval are separated

by the algebra U and there is no point which is zero for all functions in
U , then the algebra is dense in C(I). A separation property of the algebra
U , constructed in the previous manner, for two points x and y, is exactly
the same as the question weather mother function ψ separates those points,
since the constant function ψ(x)0 does not separate any two points. In
another words, if our mother function separates any two points, then they
are separated by the algebra U , and if the algebra U separates any two points
then also the mother function separates them.
If our mother function does not separate all points in an interval I then

we still can approximate functions but only those functions which are in the
uniform closure of the algebra U , and which also do not separate points not
separated by the mother function ψ.
Let the uniform closure of U be denoted by C(U). Then by theorem of

Stone we can state that every function in C(U) is approximable by polyno-
mials in ψ. It is easy to check that C(U) is a Banach function space with
the uniform norm.
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Lemma 2.1. The function space C(U) is a Banach function space with
respect to the uniform norm.

It is a linear space, and it is subset of the space C(I). This means that
any sequence of functions from C(U) converge to some function from C(I)
in the uniform norm. Since the convergence is in uniform norm, for any
given x ∈ I, any sequence of points ψk(x) converge to ψ(x) pointwise. If
the algebra U does not separate points x and y, then from the poinwise
convergence it is obvious that the function ψ cannot separate points x and
y. The previous means that our space is closed.
We also need an interpolation property of our set of powers. Let the closed

interval [minψ(x),maxψ(x)] be denoted by F , where min and max is taken
over interval I. Then we can think of our interpolation problem for polynomi-
als in ψ(x) as an interpolation problem for polynomials of standard algebra
over the interval F . Since the system of functions {1, x, x2, x3, . . . , xn} is
a Haar system on any closed interval F , the interpolation problem has the
unique solution.
This situation can be further elaborated in the following manner. Two

sets of interpolation points {xk}, {yk}, k ∈ K, are called equivalent if sets
{f(xk)| k ∈ K} and {f(yk)| k ∈ K} are the same. It is evident that if
the interpolation problem has a solution over either set of points that it has
solution over other set of points.
Also, it is obvious that if some set of interpolation points has two points

x and y which are not separated by ψ, then the interpolation problem has
no a solution or this solution is not given uniquely. If we take the set of
interpolation points xk of n points which has no points which are not sep-
arated by function ψ, then set of points ψ(xk) has also n different points
which all belong to the interval F and because the system of functions
{1, x, x2, x3, . . . , xn} is a Haar system over any closed interval, we have fol-
lowing lemma:

Lemma 2.2. For every set of interpolation points, which has no points not
separated by function ψ, the interpolation problem has a unique solution.

This lemma gives an opportunity to construct the Lagrange interpola-
tion polynomial over algebra U . Further, we can construct an interpolatory
quadrature rule for our algebra U , which can have U -algebraic degree of
exactness. Since there is an isomorphism between the polynomial algebra
and our algebra U , we can also construct a sequence of orthogonal polyno-
mials with respect to some linear functional over C(U), if such polynomials
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exist. They satisfy a three term recurrence relation, because of the isomor-
phism. Thus, if we have the coefficients in three term recurrence relation,
we are able to construct Gaussian quadrature rules, because operations have
the same algebraic property as they have for the traditional set of powers
{1, x, x2, x3, . . .}. We can use the standard software for this construction,
too. This means that the construction of Gaussian quadrature rules over
algebra U can be done using QR algorithm (see [7]).

One can also wonder weather our quadrature rule constructed for some
linear functional over C(U) converge to the value of linear functional. The
answer to this question can be found in a modification of standard theorems
which solve the question of convergence in the standard quadrature rules.
So, we have the following lemma:

Lemma 2.3. Let C(U) denote the uniform closure of the algebra U over
a closed interval I. Further, let the quadrature rules Qn converge to the
value of the linear functional L for every element of the algebra U and let
all functionals Qn are uniformly bounded over C(U). Then and only then
the sequence Qn(f) converges to L(f) for every f ∈ C(U).

This can be proved using Banach-Steinhaus theorem over Banach space
C(U).

The main advantage of using algebras instead of Müntz polynomials for
saturation problems is the existence of software which can construct Gaus-
sian quadrature rules, easily. We can use, for example, the Chebyshev algo-
rithm to construct three term recurrence coefficients from the moments and
then use QR algorithm to construct the Gaussian quadrature rule.

In this paper, we consider algebras generated with mother functions
ψ(x) = xp(− log x)q, where p, q ≥ 0 and p+ q > 0. We see that our mother
function, for p, q > 0, cannot separate all points from the interval [0, 1]. It
can be easily shown that in these cases there are pairs of points x and y
which are not separated. The only point which is separated is a point for
which the mother function achieves the maximum value, since the minimum
value, which is 0, is achieved in two points 0 and 1 at the both ends of
interval [0, 1].

In the sequel, we give three term recurrence coefficients for orthogonal
polynomials in ψ(x) = xp(− log x)q over (0, 1), with respect to the weight
function x 	→ xα(− log x)β, α, β > −1, and also we solve some integrals
using Gaussian quadrature rules over this algebras.
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For this purpose the following integral is needed
∫ 1

0
xr(− log x)sdx = Γ(s+ 1)

(r + 1)s+1
, r, s > −1,(2.4)

which can be evaluated by using an exponential transformation for the vari-
able x to the interval (0,+∞).
All moments with respect to the weight x 	→ xα(− log x)β (α, β > −1)

can be expressed in the following manner

µk =
∫ 1

0
xα(− log x)β [xp(− log x)q]k dx(2.5)

=
∫ 1

0
xα+pk(− log x)β+qkdx =

Γ(β + qk + 1)
(α+ pk + 1)β+qk+1

.

The special case for p = 0 and q = 1 corresponds to the generalized
Laguerre polynomials. Namely, we have

∫ 1

0
xα(− log x)βLβ

n(−(1 + α) log x)Lβ
k(−(1 + α) log x)dx = 0, k �= n,(2.6)

where Lβ
n denotes the monic generalized Laguerre polynomial of degree n

and with parameter β. In this special case, three term recurrence coeffi-
cients are known. The convergence of the quadrature rules is assured from
the convergence of respective Gauss-Laguerre quadrature rules, which are
introduced taking substitution x = e−t.
In [5], the weight x 	→ xσ(− log x) is considered, also numerical values

for three term recurrence coefficients are given, since analytical expressions
are not known. Our weight function is more general and analytical expres-
sions for three term recurrence coefficients are known, if polynomials are
constructed over the algebra (− log x)k, k ∈ N0.
We illustrate now the efficiency of a such quadrature rule.

Example 2.1. In this example we take the entire function f(x) = ex.
For the weight with parameters α = 2 and β = 10, the relative errors in
quadrature approximations for n = 10, 20, 30 are given in Table 2.3. We get
results with the machine precision in D-arithmetic with 30 points.

Example 2.2. This example involves function with a logarithmic singu-
larity. We evaluate integral of function f(x) = xx with respect to weight
x3(− log x)10. The corresponding results are given in Table 2.4.
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Table 2.3: The relative errors in quadrature approximations for I(x2(− log x)10ex)

n 10 20 30
D-arthm. 2.11(−8) 2.97(−13) 1.11(−16)

Table 2.4: The relative errors in quadrature approximations for I(x2(− log x)10xx)

n 10 20 30
D-arthm. 8.75(−9) 1.47(−13) 1.11(−16)

Later it is shown that there is more efficient Gaussian quadrature rule,
for solving this integral, namely the machine precision can be achieved with
only five points.

Example 2.3. We consider a function with singularity in the complex plain
near the interval of integration, i.e., f(x) = 100/(100x2 + 1), with respect
to the weight function x3(− log x)2. The corresponding relative errors are
presented in Table 2.5.

Table 2.5: The relative errors in quadrature approximations for
I(x3(− log x)2f(x)), f(x) = 100/(100x2 + 1)

n 30 40 50 60 70 80 90
D-arthm. 2(−9) 2(−11) 1(−12) 2(−13) 5(−15) 2(−15) 1(−16)

As we can see the saturation is evident. This means that our algebra is
not suitable for integration of this function.
Now, a comparison is given between Gauss-Legendre quadrature rule and

quadrature rule in (− log x), with α = 0 and β = 0, for the previous func-
tion. For Gauss-Legendre quadrature rules the results are given in Table 2.6.
The corresponding results for Gauss-Laguerre quadrature rules are given in
Table 2.7.
As we can see, our quadrature rule is saturated but not as heavily as

the Legendre quadrature rule (see Table 1.1). This also suggests that there
are no quadrature rule which has well behavior for all types of integrals in
saturation sense.
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Table 2.6: Gauss-Legendre quadrature rule

n 30 40 50
D-arthm. 3.87(−12) 3.79(−16) 2.22(−16)

Table 2.7: Gauss-Laguerre quadrature rule

n 40 70 100 200 300
D-arthm. 5.28(−6) 3.20(−8) 1.07(−8) 2.45(−12) 3.88(−15)

3. Three term recurrence coefficients

Except for β = 0, p = 1, q = 0, when we have another special case which
is connected with Jacobi polynomials, for general moments given by (2.5),
we are not able to calculate three term recurrence coefficients in an analytic
form.

Table 3.1: Three term recurrence coefficients in the case α = β = 0, p = q = 1

k αk βk

0
1
4

1

1
7
40

5
432

2
1734889
9561160

239029
27000000

3
22475172255011606232763363
122962945260847134939751360

14468256301374835983
1680464869595202250000

It is, however, easy to calculate three term recurrence coefficients using
some programming language such as Mathematica which can compute
with rational numbers and symbols. We give some exact values for three
term recurrence coefficients. In the case α = 0, β = 0, p = 1, q = 1, the
three term recurrence coefficients are given in Table 3.1.
It can be seen that three term recurrence coefficients are rational num-

bers, which numerators and denominators increase very fast with k. Similar
behavior can be seen for any other combination of α, β, p and q, when they
are integers, but when some or all of them are rational, then according to
(2.5), the moments cannot even be calculated as rational numbers.
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Table 3.2: Three term recurrence coefficients for α = β = 0, p = q = 1

k αk βk

0 .2500000000000000 1.0000000000000000
1 .1750000000000000 .01157407407407407
2 .1814517276146409 .008852925925925926
3 .1827800416404630 .008609674955513954
4 .1832701352351433 .008538162504297512
5 .1835041444127862 .008507622973183079
6 .1836338776671062 .008491794720322833
7 .1837132309050915 .008482542087505247
8 .1837652815357174 .008476668007965964
9 .1838012574120895 .008472707068501194
10 .1838271555258116 .008469910324691129
11 .1838464161023932 .008467862508424024
12 .1838611274586809 .008466318278465908
13 .1838726168568256 .008465125115133252
14 .1838817606155675 .008464184154779261
15 .1838891562089048 .008463429033512966
16 .1838952223385164 .008462813860948587
17 .1839002594805140 .008462306083234165
18 .1839044877920375 .008461882088706323
19 .1839080715605580 .008461524414527530
20 .1839111353914029 .008461219920776388
21 .1839137751766370 .008460958567166738
22 .1839160656830992 .008460732575356799
23 .1839180659000882 .008460535843948855
24 .1839198228719387 .008460363532677109
25 .1839213744869127 .008460211762089140
26 .1839227515350129 .008460077393463645
27 .1839239792458009 .008459957865369290
28 .1839250784511384 .008459851070797856
29 .1839260664738652 .008459755263755947
30 .1839269578138276 .008459668987511629
31 .1839277646823939 .008459591018943195
32 .1839284974225275 .008459520324989171
33 .1839291648415835 .008459456028283241
34 .1839297744769544 .008459397379825226
35 .1839303328096127 .008459343737088712
36 .1839308454369102 .008459294546363598
37 .1839313172132825 .008459249328422600
38 .1839317523654927 .008459207666815415
39 .1839321545875477 .008459169198254124
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If we use the fact that max machine number for D-arithmetic is of order
10308, it is evident that even if analytic expressions are known for three term
recurrence coefficients, they cannot be used for exact calculations. We can
still use Chebyshev algorithm, which is, however, ill-conditioned.
We have used Chebyshev algorithm in arithmetic with 90 decimal digits

arithmetic to obtain the first 40 three term recurrence coefficients with 34
decimal digits precision, for the case α = 0, β = 0, p = 1, q = 1, the results
are shown in Table 3.2.

Example 3.4. We use the three term recurrence coefficients from Table 3.2
to evaluate some integrals. The results are presented in Table 3.3.

Table 3.3: Some integrals calculated using algebra generated by ψ(x) = x(− log x)

f(x) n = 5 n = 10 n = 15 n = 25

xx

100x2x + 1
8.49(−15) 1.11(−16) 1.11(−16) 1.11(−16)

x(− log x)
100x2x + 1

9.47(−13) 1.11(−16) 1.11(−16) 1.11(−16)
sin(x(− log x))
100x−2x + 1

2.79(−7) 1.85(−15) 2.22(−16) 2.22(−16)
sin(100x(− log x))
100x−2x + 1

1.52(0) 5.37(−2) 7.43(−5) 3.55(−15)

The convergence is really fast and we need only 25 first three term recur-
rence coefficients to evaluate almost all of these integrals. This means that
in a wide variety of applications, the Chebyshev algorithm is enough if it is
used in Q-arithmetic, and also for some integrals it would be enough to use
it in D-arithmetic if convergence is extremely fast, like in the first case in
Table 3.3.

Example 3.5. For delicate integrals from Table 3.4, we use only three term
recurrence coefficients obtained using Chebyshev algorithm in Q-arithmetic.
Here, Jk denotes the Bessel function of the first kind and order k. For the
weight function w(x) = (− log x)3 and ψ(x) = x(− log x), the relative errors
are given in Table 3.4.

Example 3.6. We consider now some examples when p and q in the func-
tion ψ(x) = xp(− log x)q are not integers. The corresponding relative errors



70 G.V. Milovanović and A.S. Cvetković

Table 3.4: The case w(x) = (− log x)3 and ψ(x) = x(− log x)

f(x) n = 5 n = 10 n = 15 n = 20

sin(70xx)
100xx + 1

6.24(0) 7.05(−5) 4.45(−10) 3.55(−15)
sin(70 sin(x(− log x)))

100xx + 1
4.34(0) 6.87(−4) 2.34(−8) 3.55(−16)

J0

(x(− log x)
200− xx

)
1.16(−16) 1.16(−16) 1.16(−16) 1.16(−16)

J20

(x(− log x)
200− xx

)
0.25(0) 3.53(−11) 1.11(−16) 1.11(−16)

in such examples are given in Table 3.5, for w(x) = (− log x)10 and p = 1/10,
q = 1/20. We emphasize that the three term recurrence coefficients, obtained

Table 3.5: The case w(x) = (− log x)10, p = 1/10, q = 1/20

f(x) n = 5 n = 10 n = 15 n = 18

sin((
√
x(− log x))1/10)

x1/10(− log x)1/5
1.22(−1) 2.34(−6) 3.50(−12) 5.68(−14)

sin(30x1/20(− log x)1/10)
100x1/10(− log x)1/5 + 1

5.97(0) 4.13(−4) 2.79(−10) 2.14(−13)

x−x(−3/10)(− log x)−7/10

30(cos(x1/20(− log x)1/10))2 + 1
5.92(−7) 1.57(−14) 2.22(−16) 2.22(−16)

J0(x1/20(− log x)1/10
)

30(cos(x1/20(− log x)1/10))2 + 1
2.84(−2) 2.55(−7) 1.17(−14) 1.50(−16)

in Q-arithmetic, are exact with 17 decimal digits till 18-th coefficient. For
more then 18-point quadrature rule, the Chebyshev algorithm must be run
in arithmetic with more decimal digits precision than it is Q-arithmetic.

Example 3.7. We give, also, some examples with p = q = 1 and α =
3, β = 10. In this case we have relative errors as in Table 3.6. For the first
function in Table 3.6, we get the machine precision only with 5-point rule,
which is less then 30 points we needed when α = 3, β = 10, p = 0 and
q = 1.
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Table 3.6: The case w(x) = x3(− log x)10, p = q = 1

f(x) n = 5 n = 10 n = 15 n = 20

xx 1.11(−16) 1.11(−16) 1.11(−16) 1.11(−16)
sin(70x(− log x))
100x10x + 1

2.83(1) 1.26(−2) 6.31(−8) 2.84(−14)

J10(70x(− log x)) 8.17(−1) 7.80(−5) 3.31(−10) 7.35(−15)

4. Weight Function w(x) = xx on [0,1]

We tried to evaluate three term recurrence coefficients for the weight
function w(x) = xx using Stieltjes and Lanczos algorithm, with Laguerre
measure as a discretization measure (see [5], [10], [6]).

For the sake of completeness, we recall that in Stieltjes algorithm, the
integrals representing three term recurrence coefficients

αk =
∫
wxp2

kdx∫
wp2

kdx
, βk =

∫
wp2

kdx∫
wp2

k−1dx
,(4.1)

are calculated using some approximation by a quadrature rule. The main
point is to find some weight ŵ, which is not very different from w, for which
a quadrature rule can be constructed easily. Then we approximate the inte-
grals in (4.1), by quadrature rules with respect to ŵ, i.e.,

∫
wpdx =

∫
ŵ
w

ŵ
pdx ≈

n∑
k=1

Aŵ
k

(w
ŵ
p
)
(xŵ

k ).(4.2)

The measure of these quadrature rules is called, usually, the discretized
measure. The Lanczos algorithm performs something similar, but in some
cases it shows a better numerical stability.

Since we use the Laguerre measure as a discretized measure ŵ, it is obvi-
ous that this discretization procedure uses an algebra over ψ(x) = (− log x),
in order to evaluate integrals in powers of x. We cannot evaluate integrals
efficiently in Stieltjes procedure, because of saturation problem. It happens
that, if we have nodes and weights of the Gauss-Laguerre quadrature, for
example, with 16 decimal digits precision, we can only construct the first 14
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T
able

4.1:
T
hree

term
recurrence

coeffi
cients

α
k ,
β

k ,
k
=
0,1,...,19,

for
the

w
eight

w
(x)

=
x

x
on
[0,1]

over
algebra

generated
by

ψ
(x)

=
x
(left)

and
ψ
(x)

=
−
log

x
(right)

k
α

k
β

k
α

k
β

k

0
.5144482362005029

7.834305107121344(−
1)

1.000000000000000
7.834305107121344(−

1)
1

.4910266828809244
9.034273259880220(−

2)
3.123988632158376

1.131472030307515
2

.5010811468982506
6.532422170358885(−

2)
5.065492874394690

4.109275203714620
3

.5002274192432331
6.398294411189513(−

2)
7.046670661021021

9.137614227774804
4

.5001097742225770
6.337428105285331(−

2)
9.038416364518349

1.615930292656526(1)
5

.5000619392155803
6.307148321180321(−

2)
1.103376873870124(1)

2.517395555615978(1)
6

.5000384116391916
6.290245968483624(−

2)
1.303055223587346(1)

3.618646786463015(1)
7

.5000254623819853
6.279868054508732(−

2)
1.502809201194203(1)

4.919844292536450(1)
8

.5000177418984606
6.273043434239860(−

2)
1.702612350326998(1)

6.421009204062693(1)
9

.5000128531031649
6.268317240486356(−

2)
1.902450682219748(1)

8.122135322370709(1)
10

.5000096073910574
6.264909512729829(−

2)
2.102315261616556(1)

1.002321802204323(2)
11

.5000073684406322
6.262371688303956(−

2)
2.302199905005075(1)

1.212425730399470(2)
12

.5000057742875211
6.260430952745989(−

2)
2.502100194331687(1)

1.442525585971080(2)
13

.5000046085827927
6.258913641984857(−

2)
2.702012914235859(1)

1.692621729794647(2)
14

.5000037365620693
6.257704941012625(−

2)
2.901935684755667(1)

1.962714521331669(2)
15

.5000030712879705
6.256726476410453(−

2)
3.101866712622798(1)

2.252804283309976(2)
16

.5000025549616926
6.255923266918557(−

2)
3.301804621856896(1)

2.562891294688314(2)
17

.5000021481367535
6.255255817912250(−

2)
3.501748337991205(1)

2.892975794430127(2)
18

.5000018232652519
6.254695166351771(−

2)
3.701697008299243(1)

3.243057988004892(2)
19

.5000015607129029
6.254219681578086(−

2)
3.901649946093514(1)

3.613138053574687(2)
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three term recurrence coefficients in D-arithmetic with the 600-point Gauss-
Laguerre quadrature rule.
Instead of the previous procedure, we use Chebyshev algorithm in Q-

arithmetic and we obtained the first 20 three term recurrence coefficients in
D-arithmetic with moments evaluated using the previous quadrature rules
(see Table 4.1(left)).
If we seek for three term recurrence coefficients with respect to the weight

w(x) = xx on (0, 1) over algebra generated by ψ(x) = (− log x), the Stieltjes
algorithm is quite stable. Applying Stieltjes algorithm we get the first 20
coefficients, which are shown in Table 4.1.

The recursion coefficients were created with the 200-point Gauss-Laguerre
quadrature rule, which is used as discretization rule in Stieltjes procedure
given in (4.2).
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