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ON THE SCHECHTER ESSENTIAL SPECTRUM ON
BANACH SPACES AND APPLICATION

Aref Jeribi

Abstract. This paper is devoted to the investigation of the stability of the
Schechter essential spectrum of closed densely defined linear operators A sub-
jected to additive perturbations K such that (λ−A−K)−1K or K(λ−A−K)−1

belonging to arbitrary subsets of L(X) (where X denotes a Banach spaces) con-
tained in the set J (X). Our approach consists principally in considering the
class of A-closable (not necessarily bounded) which contained in the set of A-
resolvent Fredholm perturbations which zero index (see Definition 3.5). They are
used to describe the Schechter essential spectrum of singular neutron transport
equations in bounded geometries.

1. Introduction

Let X and Y be two Banach spaces. By an operator A from X into Y
we mean a linear operator with domain D(A) ⊂ X and range R(A) ⊂ Y .
We denote by C(X,Y ) (resp. L(X,Y )) the set of all closed, densely defined
linear operators (resp. the Banach algebra of all bounded linear operators)
from X into Y . The subset of all compact operators of L(X,Y ) is designated
by K(X,Y ). If X = Y then L(X,Y ), K(X,Y ) and C(X,Y ) are replaced,
respectively, by L(X), K(X) and C(X).

Definition 1.1. An operator A ∈ L(X,Y ) is said to be weakly compact if
A(B) is relatively weakly compact in Y for every bounded subset B ⊂ X.

The family of weakly compact operators from X into Y is denoted by
W(X,Y ). If X = Y the family of weakly compact operators on X,W(X) :=
W(X,X), is a closed two-sided ideal of L(X) containing K(X) (cf. [4, 6]).
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Definition 1.2. Let X and Y be two Banach spaces. An operator A ∈
L(X,Y ) is called strictly singular if, for every infinite-dimensional subspace
M , the restriction of A to M is not a homeomorphism.

Let S(X,Y ) denote the set of strictly singular operators from X into Y .

The concept of strictly singular operators was introduced in the pioneer-
ing paper by Kato [21] as a generalization of the notion of compact operators.
For a detailed study of the properties of strictly singular operators we refer
to [6, 21]. For our own use, let us recall the following four facts. The set
S(X,Y ) is a closed subspace of L(X,Y ), if X = Y , S(X) := S(X,X) is
a closed two-sided ideal of L(X) containing K(X), if X is a Hilbert space
then K(X) = S(X) and the class of weakly compact operators on L1-spaces
(resp. C(K)-spaces with K a compact Haussdorff space) is nothing else but
the family of strictly singular operators on L1-spaces (resp. C(K)-spaces)
(see [36, Theorem 1]).

Let X be a Banach space. If N is a closed subspace of X, we denote
by πX

N the quotient map X → X/N . The codimension of N , codim(N), is
defined to be the dimension of the vector space X/N .

Definition 1.3. Let X and Y be two Banach spaces and S ∈ L(X,Y ). S is
said to be strictly cosingular fromX into Y , if there exists no closed subspace
N of Y with codim(N)=+∞ such that πY

NS : X → Y/N is surjective.

Let CS(X,Y ) denote the set of strictly cosingular operators from X into
Y . This class of operators was introduced by Pelczynski [36]. It forms a
closed subspace of L(X,Y ) which is, CS(X) := CS(X,X), a closed two-
sided ideal of L(X) if X = Y (cf. [41]).

For A ∈ C(X,Y ), we let σ(A), ρ(A) and N(A) denote respectively the
spectrum, the resolvent set and the null space of A. The nullity, α(A), of A
is defined as the dimension of N(A) and the deficiency, β(A), of A is defined
as the codimension of R(A) in Y . The set of Fredholm operators from X
into Y is defined by

Φ(X,Y ) =
{
A ∈ C(X,Y ) such that α(A) < +∞,

R(A) is closed in Y and β(A) < +∞
}
,

the set of bounded Fredholm operators from X into Y is defined by

Φb(X,Y ) = Φ(X,Y ) ∩ L(X,Y ),

and the set ΦA is defined by
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ΦA = {λ ∈ C such that λ−A ∈ Φ(X,Y )}.

If A ∈ Φ(X,Y ), the number i(A) = α(A)− β(A) is called the index of A. If
X = Y then Φ(X,Y ) and Φb(X,Y ) are replaced, respectively, by Φ(X) and
Φb(X).

Definition 1.4. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).
F is called a Fredholm perturbation if U + F ∈ Φb(X,Y ) whenever U ∈
Φb(X,Y ).

The set of Fredholm perturbations is denoted by Fb(X,Y ). This class
of operators is introduced and investigated in [5]. In particular, it is shown
that Fb(X,Y ) is closed subset of L(X,Y ), and if X = Y , then Fb(X) :=
Fb(X,X) is closed two-sided ideal of L(X). The following result was estab-
lished in [5, pp. 69–70].

Proposition 1.2 ([5, pp. 69–70]). Let X, Y and Z be three Banach spaces.
If at least one of the sets Φb(X,Y ) and Φb(Y, Z) is not empty, then

(i) F ∈ Fb(X,Y ), A ∈ L(Y, Z) imply AF ∈ Fb(X,Z);

(ii) F ∈ Fb(Y, Z), A ∈ L(X,Y ) imply FA ∈ Fb(X,Z).

Definition 1.5. Let X be a Banach space and R ∈ L(X). R is said to be
a Riesz operator if ΦR = C \ {0}.

For further information on the family of Riesz operators we refer to [1, 19]
and the references therein.

Remark 1.1. a) The family of Riesz operators is not an ideal of L(X) (see [1]).

b) In [38], it is proved that Fb(X) is the largest ideal of L(X) contained in the
family of Riesz operators.

Remark 1.2. Let X and Y be two Banach spaces. If in Definition 1.4 we
replace Φb(X,Y ) by Φ(X,Y ) we obtain the set F(X,Y ).

Definition 1.6. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).
F is called a upper (resp. lower) Fredholm perturbation if U+F ∈ Φb

+(X,Y )
(resp. Φb

−(X,Y )) whenever U ∈ Φb
+(X,Y ) (resp. Φ

b
−(X,Y )).

The sets of upper semi-Fredholm and lower semi-Fredholm perturbations
are denoted by Fb

+(X,Y ) and Fb
−(X,Y ), respectively. In [5], it is shown

that Fb
+(X,Y ) and Fb

−(X,Y ) are closed subset of L(X,Y ), and if X = Y ,
then Fb

+(X) := Fb
+(X,X) is a closed two-sided ideal of L(X).

The following identity was established in [26, Lemma 2.3(ii)].
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Lemma 1.1 ([26]). Let X be an arbitrary Banach space. Then F(X) =
Fb(X).

An immediate consequence of this result is that F(X) is a closed two-
sided ideal of L(X).

Remark 1.3. Let X and Y be two Banach spaces. In contrast to the result of
Lemma 1.1, whether or not F(X,Y ) is equal to Fb(X,Y ) seems to be unknown.

In general, we have the following inclusions:

K(X) ⊂ S(X) ⊂ Fb
+(X) ⊂ F(X) ⊂ J (X),

K(X) ⊂ CS(X) ⊂ Fb
−(X) ⊂ F(X) ⊂ J (X),

where Fb
−(X) := Fb

−(X,X) and J (X) denotes the set

J (X) =
{
F ∈ L(X) such that − 1 ∈ Φ0

F

}
,

where Φ0
F := {λ ∈ ΦF such that i(λ− F ) = 0}.

Remark 1.4. J (X) is not an ideal of L(X) (since I ∈ J (X)).

Definition 1.7. A Banach space X is said to have the Dunford-Pettis
property (for short property DP) if for each Banach space Y every weakly
compact operator T : X −→ Y takes weakly compact sets in X into norm
compact sets of Y .

It is well known that any L1 space has the property DP [3]. Also, if Ω
is a compact Hausdorff space C(Ω) has the property DP [7]. For further
examples we refer to [2] or [4, p. 494, 497, 508, and 511]. Note that the
property DP is not preserved under conjugation. However, if X is a Banach
space whose dual has the property DP then X has the property DP (see,
e.g., [7]). For more information we refer to the paper by Diestel [2] which
contains a survey and exposition of the Dunford-Pettis property and related
topics.

There are many ways to define the essential spectrum of a closed, densely
defined linear operator on a Banach space. Hence several definitions of the
essential spectrum may be found in the literature see, for example, [8, 37]
or the comments in [39, Chapter 11, p. 283], which coincide for self-adjoint
operators on Hilbert spaces. Throughout this paper we are concerned with
the so-called Schechter essential spectrum.
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Definition 1.8. Let X and Y be two Banach spaces and let A ∈ C(X,Y ).
We define the Schechter essential spectrum of the operator A by

σess(A) =
⋂

C∈K(X,Y )

σ(A+ C).

The following proposition gives a characterization of the Schechter essen-
tial spectrum by means of Fredholm operators:

Proposition 1.1 ([39, Theorem 5.4, p. 180]). Let X and Y be two Banach
spaces and let A ∈ C(X,Y ). Then

λ /∈ σess(A) if and only if λ ∈ Φ0
A.

One of the central questions in the study of the Schechter essential spec-
trum of closed densely defined operators on Banach spaces X consists of
showing what are the conditions that we must impose on K ∈ C(X) in order
that σess(A + K) = σess(A). Let A ∈ C(X). If K is a compact opera-
tor on Banach spaces then σess(A + K) = σess(A) (see Definition 1.8). If
K is a strictly singular on Lp-spaces then σess(A + K) = σess(A) (see [29,
Theorem 3.2]). If K is a weakly compact on Banach spaces which possess
the Dunford-Pettis property then σess(A + K) = σess(A) (see [24, Theo-
rem 3.2]). If K ∈ L(X) and (λ − A)−1K is strictly singular (resp. weakly
compact) on Lp spaces p > 1 (resp. on Banach spaces which possess the
Dunford-Pettis property), then σess(A + K) = σess(A) (see [12, 14]). In
[15], Jeribi extended this analysis of the Schechter essential spectrum to the
case of general Banach spaces. In fact, let I(X) be an arbitrary two-sided
ideal of L(X). If K(X) ⊂ I(X) ⊂ F(X), then σess(A + K) = σess(A) for
all K ∈ L(X) such that (λ − A)−1K ∈ I(X) or for all K ∈ L(X) such
that K(λ − A)−1 ∈ I(X). Recently, Jeribi [17] gives an extension of the
work [15] where a detailed treatment of the Schechter essential spectrum of
a closed densely defined linear operators A subjected to additive perturba-
tions K such that (λ−A)−1K or K(λ−A)−1 belonging to arbitrary subsets
of L(X) (where X denotes a Banach spaces) contained in the ideal of Fred-
holm perturbations. Our approach consists principally in considering the
class of A-closable (not necessarily bounded) which contained in the set of
A-resolvent Fredholm perturbations (see Definition 3.4). The aim of this pa-
per consists principally of considering the class of A-closable operatorK (not
necessarily bounded) which is contained in the set AJ (X), and of proving
that σess(A+K) = σess(A) for all K in any subset of operators in AJ (X).
More precisely, let A ∈ C(X). Then σess(A+K) = σess(A) for all K ∈ C(X)
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such that K is A-bounded and K(λ−A−K)−1 ∈ J (X) for all λ ∈ ρ(A+K).
Our results extend and improve many known ones in the literature (see [10],
[12], [14], [15], [16], [17], [18], [24], [25], [27] [29] and [31]).

This work is inspired by [15, 17, 29], where a detailed treatment of the
Schechter essential spectrum of a closed densely defined linear operators
A subjected to additive perturbations contained in the set of A-Fredholm
perturbations.

The purpose of the first part of this paper is to point out how, by means
of the concept of A-resolvent Fredholm perturbation which zero index and
the technique developed in [29] it is possible to improve the definition of
the Schechter essential spectrum, in the same way as in Theorem 2.1 of [15]
and Theorem 2.1 of [29]. Our results generalize many known ones in the
literature and, in particular, extend and unify those obtained in [10], [12],
[14], [15], [16], [17], [18], [24], [25], [27] [29] and [31].

In the second part of the paper we study the Schechter essential spectrum
of the following singular neutron transport operator

Aψ(x, v) = −v∂ψ
∂x

(x, v)− σ(v)ψ(x, v) +
∫

Rn

κ(v, v′)ψ(x, v′)dµ(v′)

with vacuum boundary conditions, i.e., ψ|Γ− = 0 with

Γ− = {(x, v) ∈ ∂D × R
n such that v.νx < 0},

where (x, v) ∈ D × R
n and νx stands for the outer unit normal vector at

x ∈ ∂D. Here D is an open bounded subset of R
n and dµ(.) is a positive

Radon measure on R
n. This operator describes the transport of particles

(neutrons, photons, molecules of gas, etc.) in the domain D. For the neu-
trons, the function ψ(x, v) represents the number (or probability) density of
gas particles having the position x and the velocity v. For the photons, ψ
describes the specific intensity of the light. For the molecules of gas, ψ de-
scribes the deviation of the number density of the gas molecules from their
equilibrium number density. For gas molecules, the transport equation is
obtained by linearization of the nonlinear Boltzmann equation or some non-
linear simplification of it (such as the Enskog equation or the BGK model)
about the equilibrium distribution. The functions σ(.) and κ(., .) are called,
respectively, the collision frequency and the scattering kernel and will be
assumed to be unbounded. More precisely, we will assume that there exist
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a closed subset O ⊂ R
n with zero dµ measure and a constant σ0 > 0 such

that

(1.1) σ(.) ∈ L∞
loc(R

n \ O), σ(v) > σ0 a.e.

(1.2)
[∫

Rn

(
κ(., v′)
σ(v′)1/p

)q

dµ(v′)
]1/q

∈ Lp(Rn),

where q denotes the conjugate exponent of p. These assumptions were mo-
tivated by free gas models (cf. [35, 40]) and were already used in [33] in
Lp spaces (see [34, Chapter 9] or [42]). The first part of the condition (1.1)
means that the singularities of the collision frequency are contained in a set
of zero dµmeasure. In fact, unbounded and nonnegative collision frequencies
act as strong absorptions which might lead to unbounded collision operators.

We organize the paper in the following way: The next section is devoted to
the Schechter essential spectrum of closed densely defined linear operators on
a Banach space. The main results of this section is Theorem 2.1. In Section
3 we extend a part of the results obtained in Section 2 to a large class of
perturbating operators containing J (X) which we denote by AJ (X). In
particular, it is proved that if A ∈ C(X) then σess(A + K) = σess(A) for
all K ∈ AJ (X). In Section 4 we apply the results obtained in the second
section to investigate the Schechter essential spectrum of singular neutron
transport equations in bounded geometries.

2. Invariance of Schechter Essential Spectrum

Let X be a fixed Banach space and let I(X) an arbitrary nonzero two-
sided ideal of L(X) satisfying the condition

(H1) K(X) ⊂ I(X) ⊂ F(X).

Remark 2.1. It should be observed that if I(X) is a nonzero two-sided ideal of
L(X) satisfying the condition I(X) ⊂ F(X), then F0(X) ⊂ I(X) ⊂ F(X), where
F0(X) stands for the ideal of finite rank operators. This follows from Lemma 1.1
and [5, Proposition 4 p. 70].

If A ∈ C(X) we define the sets:

GA(X) = {K ∈ L(X) such that (λ−A)−1K ∈ I(X) for some λ ∈ ρ(A)},

DA(X) = {K ∈ L(X) such that K(λ−A)−1 ∈ I(X) for some λ ∈ ρ(A)},
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OA(X) = {K ∈ L(X) such that (λ−A−K)−1K ∈ J (X)
for all λ ∈ ρ(A+K)},

VA(X) = {K ∈ L(X) such that K(λ−A−K)−1 ∈ J (X)
for all λ ∈ ρ(A+K)}.

Remark 2.2. (i) Observe that, in the definition of the sets GA(X) and DA(X),
if an operator satisfies the required condition for a fixed λ ∈ ρ(A), then it satisfies
it for every λ ∈ ρ(A).

(ii) We have the following inclusion:

K(X) ⊂ GA(X) ⊂ OA(X), K(X) ⊂ DA(X) ⊂ VA(X).

In fact, let K ∈ GA(X) (resp. K ∈ DA(X)) then (λ − A)−1K ∈ I(X) (resp.
K(λ − A)−1 ∈ I(X)) where I(X) is an arbitrary nonzero two-sided ideal of L(X)
satisfying the condition (H1).

Let µ ∈ ρ(A), we have

(2.1) (λ−A−K)−1K = [I + (λ−A−K)−1(µ− λ+K)](µ−A)−1K

and

(2.2) K(λ−A−K)−1 = K(µ−A)−1[I + (µ− λ+K)(λ−A−K)−1].

Using (2.1) (resp. (2.2)), and the fact that I(X) is a two-sided ideal of L(X), we
infer that (λ−A−K)−1K ∈ I(X) (resp. K(λ−A−K)−1 ∈ I(X)). So, K ∈ OA(X)
(resp. K ∈ VA(X)).

(iii) If we take A := I and K := I then (λ−A)−1K is not in an ideal I(X). But
(λ−A−K)−1K is in J (X). So, the set GA(X) (resp. DA(X)) is strictly included
in OA(X) (resp. VA(X)).

We define the right spectrum of A by

σr(A) =
⋂

K∈OA(X)

σ(A+K).

Similarly, we define the left spectrum of A by

σl(A) =
⋂

K∈VA(X)

σ(A+K).

The main result of this section is the following:
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Theorem 2.1. Let X be a Banach space and let A ∈ C(X). Then

σess(A) = σr(A) = σl(A).

Remark 2.3. a) Note that the sets OA(X) and VA(X) may characterize the
Schechter essential spectrum. Since K(X) ⊂ OA(X) and K(X) ⊂ VA(X), so K(X)
is then the minimal subset of L(X) (in the sense of inclusion) for which Theorem 2.1
holds true. Hence Theorem 2.1 provides an improvement of the definition of σess(.)
valid for a somewhat large variety of subsets of L(X). Also, it may be viewed as an
extension of, [12] Theorem 3.1, [18] Theorem 1, [14] Theorem 3.2, [9] Theorem 1,
[10] Theorem 2.1, [26] Theorem 3.4 and [15] Theorem 2.1 to general Banach spaces.

b) Note that in applications (transport operators, operators arising in dynamic
populations, etc. (see [14, 28, 29, 30, 11, 13])), the operator B is, in general, a
bounded perturbation of A ∈ C(Lp) by an integral operator on Lp-spaces p > 1.
The integral operator K := B−A is not compact. For some physical conditions on
K, the operator (λ−A)−1K or K(λ−A)−1 are compact on Lp-spaces p > 1. This
implies that (λ−A−K)−1K or K(λ−A−K)−1are compact on Lp-spaces p > 1.
So, K(X) ⊂�= OA(X) and K(X) ⊂�= VA(X).

c) For all K ∈ OA(X), σess(A+K) = σess(A).

d) For all K ∈ VA(X), σess(A+K) = σess(A).

Proof of Theorem 2.1. We first claim that σess(A) ⊂ σr(A) (resp. σess(A)
⊂ σl(A)). Indeed, if λ /∈ σr(A) (resp. λ /∈ σl(A)) then there exists K ∈
OA(X) (resp. K ∈ VA(X)) such that λ ∈ ρ(A+K), hence λ ∈ Φ(A+K) and
i(λ−A−K) = 0. Using the equality λ−A = (λ−A−K)(I+(λ−A−K)−1K)
(resp. λ−A = (I +K(λ−A−K)−1)(λ−A−K)) together with Atkinson’s
theorem ([32], Proposition 2.c.7.(ii), p. 77) one gets λ ∈ ΦA and i(λ−A) = 0.
Finally, the use of Proposition 1.1 shows that λ /∈ σess(A) which proves the
claim.

On the other hand, since K(X) ⊂ OA(X) (resp. K(X) ⊂ VA(X) ) we
infer that σr(A) ⊂ σess(A) (resp. σl(A) ⊂ σess(A) ) which completes the
proof of theorem.

Corollary 2.1. Let X be a Banach space, A ∈ C(X) and let T (X) and U(X)
be any subset of L(X) (not necessarily an ideal) satifying the condition

(2.3) K(X) ⊂ T (X) ⊂ OA(X),

(2.4) K(X) ⊂ U(X) ⊂ VA(X).
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Then

σess(A) =
⋂

K∈TA(X)

σ(A+K) =
⋂

K∈UA(X)

σ(A+K).

Remark 2.4. a) Note that any subset T (X) and U(X) of L(X) (not necessarily
an ideal) satisfying the condition (2.3) and (2.4) may characterize the Schechter
essential spectrum.

b) For all K ∈ TA(X), σess(A+K) = σess(A).

c) For all K ∈ UA(X), σess(A+K) = σess(A).

Proof of Corollary 2.1. Set

Z :=
⋂

K∈TA(X)

σ(A+K) and Z ′ :=
⋂

K∈UA(X)

σ(A+K).

We already know from (2.2) and (2.3) that K(X) ⊂ TA(X) ⊂ OA(X) and
K(X) ⊂ UA(X) ⊂ VA(X). From this we infer that σr(A) ⊂ Z ⊂ σess(A) and
σl(A) ⊂ Z ′ ⊂ σess(A). Now, the result follows from Theorem 2.1.

By Lemma 4.1 of [23] and Theorem 2.1 we have:

Corollary 2.2. Let X be a Banach space, I(X) an arbitrary nonzero two-
sided ideal of L(X) satisfying the hypothesis (H1) and let A ∈ C(X). Then

σC(A) ⊂ σr(A) and σR(A) ⊂ σr(A),

σC(A) ⊂ σl(A) and σR(A) ⊂ σl(A),

where σC(A) (resp. σR(A)) denotes the continuous spectrum (resp. the
residual spectrum) of A.

The following result provides a characterization of the right and left spec-
trums on a Banach space X.

Corollary 2.3. Let X be a Banach space and let A ∈ C(X). Then

λ /∈ σr(A) if and only if λ ∈ ΦA and i(λ−A) = 0,

λ /∈ σl(A) if and only if λ ∈ ΦA and i(λ−A) = 0.

Proof. This corollary immediately follows from Theorem 2.1 and Propo-
sition 1.1.
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Corollary 2.4. Let X be a Banach space and let A ∈ C(X) such that
σess(A) = ∅ (i.e., σ(A) = σP (A) where σP (A) denotes the point spectrum
of A). If K ∈ OA(X) or K ∈ VA(X) then σ(A+K) = σP (A+K).

Proof. This corollary immediately follows from Corollary 2.2 and Remark
2.3 c) d).

3. Extention to Unbounded Perturbations

Let X be a fixed Banach space. Unless otherwise stated in all that follows
I(X) will denote an arbitrary nonzero two-sided ideal of L(X) satisfying the
condition

(H2) K(X) ⊂ I(X) ⊂ J (X).

Let A ∈ C(X). Then it follows from the closedness of A that D(A)
endowed with the graph norm ‖.‖A (i.e., ‖x‖A := ‖x‖+ ‖Ax‖) is a Banach
space. LetXA denote (D(A), ‖.‖A), in this new space the operator A satisfies
‖Ax‖ ≤ ‖x‖A, and this prove that A is a bounded operator from XA into
X (i.e., A ∈ L(XA, X)). Let J ∈ L(X). If D(A) ⊂ D(J), then J will be
called A-defined. If J is A-defined, we will denote by Ĵ its restriction to
D(A). Moreover, if Ĵ ∈ L(XA, X), we say that J is A-bounded. One checks
easily that if J is closed (or closable) (cf. [22, Remark 1.5, p. 191]) then J
is A-bounded.

Definition 3.1. An operator J is called A-closed if xn → x, Axn → y,
Jxn → z for (xn)n ∈ D(A) implies that x ∈ J and Jx = z. It will be called
A-closable if xn → 0, Axn → 0, Jxn → z implies z = 0.

Remark 3.1. (i) If J is bounded, then J is A-bounded.

(ii) If J is closed then J is A-closed.

(iii) If J is closable then J is A-closable.

(iv) If A is closed then by [37, Lemma 2.1] we have J is A-closed if and only if
J is A-closable if and only if J is A-bounded.

Let A ∈ C(X) and let J be an A-bounded operator on X. Let λ ∈ ρ(A).
Since J is A-bounded, according to Lemma 2.1 in [37], J(λ − A)−1 is a
closed linear operator defined on all of X and therefore bounded, by the
closed graph theorem. We define the set σa(A) by
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σa(A) =
⋂

K∈NA(X)

σ(A+K),

where NA(X) = {J ∈ C(X) such that J is A-bounded and J(λ−A−J)−1 ∈
J (X) for all λ ∈ ρ(A+ J)}.

Remark 3.2. Note that any arbitrary nonzero two-sided ideal I(X) of L(X)
realizes the condition I(X) ⊂ NA(X).

We have the following result:

Theorem 3.1. Let X be a Banach space and let A ∈ C(X). Then

σess(A) = σa(A).

Remark 3.3. a) Note that the set NA(X) may characterize the Schechter
essential spectrum. Since K(X) ⊂ NA(X), K(X) is the minimal subset of C(X)
(in the sense of inclusion) for which Theorem 3.1 holds true. Hence Theorem 3.1
provides an improvement of the definition of σess(.) valid for a somewhat large
variety of subsets of C(X). Also, it may be viewed as an extension of [12, Theorem
3.1], [18, Theorem 1], [14, Theorem 3.2], [9, Theorem 1], [10, Theorem 2.1], [26,
Theorem 3.4], [15] and [17, Theorem 2.1] to unbounded linear operators.

b) For all K ∈ NA(X), σess(A+K) = σess(A).

Proof of Theorem 3.1. By hypothesis (H2) and Remark 3.2 we have
K(X) ⊂ NA(X). So, σa(A) ⊂ σess(A). Conversely, let λ /∈ σa(A) then
there exists J ∈ NA(X) such that λ ∈ ρ(A + J), hence λ ∈ Φ(A+J) and
i(λ − A − J) = 0. Since J ∈ NA(X) we infer that I + J(λ − A − J)−1 is
a Fredholm operator and i(I + J(λ − A − J)−1) = 0. Using the equality
λ−A = (I + J(λ−A− J)−1)(λ−A− J) together with Atkinson’s theorem
([32, Proposition 2.c.7.(ii), p. 77]) one gets λ ∈ ΦA and i(λ−A) = 0. Finally,
the use of Proposition 1.1, shows that λ /∈ σess(A) which completes the proof
of theorem.

Corollary 3.1. Let X be a Banach space, A ∈ C(X) and let M(X) be any
subset of J (X) (not necessarily an ideal) satisfying the condition

K(X) ⊂M(X) ⊂ J (X).(3.1)

Then

σess(A) =
⋂

K∈HA(X)

σ(A+K),
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where HA(X) = {J ∈ C(X) such that J is A-bounded and J(λ−A−J)−1 ∈
M(X) for all λ ∈ ρ(A+ J)}.

Remark 3.4. a) Note that any subsetM(X) of L(X) (not necessarily an ideal)
satisfying the condition (3.1) may characterize the Schechter essential spectrum.

b) For all K ∈ HA(X), σess(A+K) = σess(A).

Proof of Corollary 3.1. Set Z :=
⋂

K∈HA(X)

σ(A +K). We already know

from (3.1) that K(X) ⊂ HA(X) ⊂ NA(X). From this we infer that σa(A) ⊂
Z ⊂ σess(A). Now, the result follows from Theorem 3.1.

By Lemma 4.1 of [23] and Theorem 3.1 we have:

Corollary 3.2. Let X be a Banach space and let A ∈ C(X). Then

σC(A) ⊂ σa(A) and σR(A) ⊂ σa(A).

The following result provides a characterization of the set σa(.) on a
Banach space X.

Corollary 3.3. Let X be a Banach space and let A ∈ C(X). Then

λ /∈ σa(A) if and only if λ ∈ ΦA and i(λ−A) = 0.

Proof. This corollary immediately follows from Theorem 2.1 and Propo-
sition 1.1.

Corollary 3.4. Let X be a Banach space and let A ∈ C(X) such that
σess(A) = ∅ (i.e., σ(A) = σP (A)). If K ∈ NA(X) then σ(A + K) =
σP (A+K).

Proof. This corollary immediately follows from Corollary 3.2 and Remark
3.3 (b) .

Let J be an arbitrary A-bounded operator. Hence we can regard A and J
as operators from XA into X. They will be denoted by Â and Ĵ respectively.
These belong to L(XA, X). Furthermore, we have the obvious relations


α(Â) = α(A), β(Â) = β(A), R(Â) = R(A),

α(Â+ Ĵ) = α(A+ J),

β(Â+ Ĵ) = β(A+ J) and R(Â+ Ĵ) = R(A+ J).

(3.2)
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Definition 3.2. Let X be a Banach space, A ∈ C(X) and let F be an A-
defined linear operator on X. We say that F is an A-Fredholm perturbation
if F̂ ∈ Fb(XA, X). F is called a upper (resp. lower) A-semi-Fredholm
perturbation if F̂ ∈ Fb

+(XA, X) (resp. F̂ ∈ Fb
−(XA, X)).

The sets of A-Fredholm, upper A-semi-Fredholm and lower A-semi-Fred-
holm perturbations are denoted by AF(X), AF+(X) and AF−(X), respec-
tively.

Definition 3.3. Let X be a Banach space, A ∈ C(X) and let J be an A-
defined linear operator on X. We say that J is A-compact (resp. A-weakly
compact, A-strictly singular, A-strictly cosingular) if Ĵ ∈ K(XA, X) (resp.
Ĵ ∈ W(XA, X), Ĵ ∈ S(XA, X), Ĵ ∈ CS(XA, X)).

Let AK(X), AW(X), AS(X) and ACS(X) denote, respectively, the sets
of A-compact, A-weakly compact, A-strictly singular and A-strictly cosin-
gular on X.

Remark 3.5. If J is A-defined and compact (resp. weakly compact, strictly
singular, strictly cosingular) then J is A-compact (resp. A-weakly compact, A-
strictly singular, A-strictly cosingular).

Definition 3.4. Let X be a Banach space, A ∈ C(X), ρ(A) �= ∅ and let
F be an A-defined linear operator on X. We say that F is an A-resolvent
Fredholm perturbation if (λ− Â)−1F̂ ∈ Fb(XA) for some λ ∈ ρ(A).

Let ARF(X), designate the set of A-resolvent Fredholm perturbation.

Remark 3.6. Observe that, in the definition of the set ARF(X), if an operator
satisfies the required condition for a fixed λ ∈ ρ(A), then it satisfies it for every
λ ∈ ρ(A).

Definition 3.5. Let X be a Banach space, A ∈ C(X), F be an A-defined
linear operator on X and ρ(A + F ) �= ∅. We say that F is an A-resolvent
Fredholm perturbation which zero index if (λ− Â− F̂ )−1F̂ ∈ J (XA, XA+F )
for all λ ∈ ρ(A+ F ).

Let AJ (X) designate the set of A-resolvent Fredholm perturbation which
zero index.

Remark 3.7. (i) For all λ ∈ ρ(A + F ), the operator (λ − Â + F̂ )−1 ∈
L(X,XA+F ). In fact, let x ∈ X and put y = (λ − A + F )−1x. It follows from
the estimate

‖y‖A+F = ‖y‖+ ‖(Â+ F̂ )y‖
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= ‖y‖+ ‖λy − x‖

= ‖(λ− Â− F̂ )−1x‖+ ‖λ(λ− Â− F̂ )−1x− x‖

≤
(
1 + (1 + |λ|)‖(λ− Â− F̂ )−1‖

)
‖x‖

that

(3.3) (λ− Â− F̂ )−1 ∈ L(X,XA+F ).

(ii) If F is an A-Fredholm perturbation then F is an A-resolvent Fredholm
perturbation (see [17, Remark 1.6 (ii)]).

(iii) If F is an A-resolvent Fredholm perturbation then F is an A-resolvent Fred-
holm perturbation which zero index. In fact, let I denote the imbedding operator
which maps every x ∈ XA onto the same element x ∈ XA+F . Clearly we have
N(I) = {0} and R(I) = XA+F . So, the estimate

‖I(x)‖XA+F
= ‖x‖A+F ≤ ‖x‖+ ‖Ax‖X + ‖Fx‖X

≤
(
1 + ‖F‖L(XA,X)

)
‖x‖XA

, ∀x ∈ XA,

leads to

I ∈ Φb(XA,XA+F ) and i(I) = 0.

Let µ ∈ ρ(A), we have

(3.4) (λ− Â− F̂ )−1F̂ = [I + (λ− Â− F̂ )−1(µ− λ+ F̂ )](µ− Â)−1F̂

Since (µ− λ+ F̂ ) ∈ L(XA,X), applying (3.3) we infer that

(λ− Â− F̂ )−1(µ− λ+ F̂ ) ∈ L(XA,XA+F ),

and therefore

I + (λ− Â− F̂ )−1(µ− λ+ F̂ ) ∈ L(XA,XA+F ).

Using (3.4), F is an A-resolvent Fredholm perturbation and Proposition 1.2 (i) we
infer that (λ−Â−F̂ )−1F̂ ∈ Fb(XA,XA+F ). This proves that F ∈ AJ (XA,XA+F ).

(iv) A consequence of Definition 3.5, Remark 3.7 (ii) (iii) and the inclusions in
[5, p. 69] that

AK(X) ⊂ AS(X) ⊂ AF+(X) ⊂ AF(X) ⊂ ARF(X) ⊂ AJ (X),

AK(X) ⊂ ACS(X) ⊂ AF−(X) ⊂ AF(X) ⊂ ARF(X) ⊂ AJ (X).

The inclusion AS(X) ⊂ AF+(X) (resp. ACS(X) ⊂ AF−(X)) was established in
[21] (resp. [41]).
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Theorem 3.2. Let X be a Banach space, A ∈ C(X). Then

σess(A) =
⋂

J∈AJ (X)

σ(A+ J).

Remark 3.8. (i) This theorem may be viewed as an extension of [24, Theorem
4.2], [25, Theorem 2.2], [31, Theorem 2.2] and [17, Theorem 2.3].

(ii) For all K ∈ AJ (X), σess(A+K) = σess(A).

Proof of Theorem 3.2. Set O :=
⋂

J∈AJ (X)

σ(A + J). We first claim that

σess(A) ⊂ O. Indeed, if λ /∈ O then there exists J ∈ AJ (X) such that
λ ∈ ρ(A+ J).

Since λ ∈ ρ(A+ J), it follows from (3.2) and Remark 3.7 (iii) that

(3.5) (λ− Â− Ĵ) ∈ Φb(XA+J , X) and i(λ− Â− Ĵ) = 0.

Writing λ− Â in the form λ− Â = (λ− Â− Ĵ)(I + (λ− Â− Ĵ)−1Ĵ) and
using (3.4), (3.5) and the Atkinson’s theorem ([32, Proposition 2.c.7.(ii), p.
77]) one gets λ− Â ∈ Φb(XA, X) and i(λ− Â) = 0. Now using (3.2) we infer
that λ ∈ ΦA and i(λ − A) = 0. Finally, the use of Proposition 1.1, shows
that λ /∈ σess(A) which proves the claim.

On the other hand, since K(X) ⊂ AJ (X) we infer that O ⊂ σess(A)
which completes the proof of theorem.

We close this section by the following result:

Corollary 3.5. Let X be a Banach space, A ∈ C(X) and let M(X) be any
subset of AJ (X) (not necessarily an ideal) satisfying the condition

K(X) ⊂M(X) ⊂ AJ (X).

Then

σess(A) =
⋂

K∈M(X)

σ(A+K).

4. Application to Transport Equations

In this section we are concerned with the Schechter essential spectrum of
singular transport operators
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Aψ(x, v) = −v.∇xψ(x, v)− σ(v)ψ(x, v) +
∫

Rn

κ(v, v′)ψ(x, v′)dµ(v′)

with vacuum boundary conditions, i.e., ψΓ− = 0 with

Γ− = {(x, v) ∈ ∂D × R
n such that v.νx < 0},

where νx stands for the outer unit normal vector at x ∈ ∂D.

Here x ∈ D and v ∈ R
n where D is an open bounded subset of R

n, dµ(.)
is a bounded positive Radon measure on R

n. The functions σ(.) and κ(., .)
represent, respectively, the collision frequency and the scattering kernel and
will be assumed to be unbounded and satisfies the conditions (1.1)–(1.2).

We introduce the different notions and notations which we shall need in
the sequel. Let us first make precise the functional setting of the problem:

Let Xp := Lp(D × R
n, dxdµ(v)), 1 ≤ p < +∞,

Xσ
p := Lp(D × R

n, σ(v)dxdµ(v)) and Lσ
p (R

n) := Lp(Rn, σ(v)dµ(v)).

We define the partial Sobolev space Wp by

Wp = {ψ ∈ Xp such that v.∇x ∈ Xp}.

Next we introduce the following subspace of Wp by

W o
p =

{
ψ ∈Wp such that ψ|Γ− = 0

}
.

Now, we define the streaming operator T by

{
Tψ(x, v) = −v.∇xψ(x, v)− σ(v)ψ(x, v), ψ ∈ D(T ),

D(T ) =W o
p ∩Xσ

p .

The transport operator A can be formulated as follows A = T +K, where
K is the following collision operator

K : ψ −→ Kψ(v) :=
∫

Rn

κ(v, v′)ψ(x, v′)dµ(v′) ∈ Lp(Rn),

with Lp(Rn) := Lp(Rn, dµ(v)). It follows from the assumption (1.3) that
K ∈ L(Lσ

p (R
n), Lp(Rn)) and

‖K‖L(Lσ
p (Rn),Lp(Rn)) ≤

∥∥∥∥∥
[∫

Rn

(
κ(., v′)
σ(v′)1/p

)q

dµ(v′)
]1/q

∥∥∥∥∥
Lp(Rn)

.
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Moreover, using the boundedness of D we find that K ∈ L(Xσ
p , Xp), with

‖K‖L(Xσ
p ,Xp) ≤

∥∥∥∥∥
[∫

Rn

(
κ(., v′)
σ(v′)1/p

)q

dµ(v′)
]1/q

∥∥∥∥∥
Lp(Rn)

.

Note that a simple calculation using the assumption (1.1) shows that Xσ
p is

a subset of Xp and the embedding Xσ
p ↪→ Xp is continuous.

Let ϕ ∈ Xp and λ ∈ C such that Reλ > −σ0. We seek ψ in D(T ) satisfying

(4.1) (λ− T )ψ = ϕ

The solution of (4.1) reads as follows

ψ(x, v) =
∫ t−(x,v)

0
e−(λ+σ(v))sϕ(x− sv, v)ds,

where t−(x, v) = sup{t > 0, x − sv ∈ D, 0 < s < t}. So, we have {λ ∈
C such that Reλ > −σ0} ⊂ ρ(T ), where ρ(T ) denotes the resolvent set of T .

Since σ(.) is bounded below by σ0, a similar reasoning as in [20, Corollary
12.11, p. 272] shows that

σ(T ) = {λ ∈ C such that Reλ ≤ −σ0}.

In fact, by [20, Chapter 12] we can easily check that σ(T ) is reduced to
σC(T ) (the continuous spectrum of T ), i.e., σ(T ) = σC(T ). Consequently,
it follows from Corollary 3.2 and Theorem 3.1 that

σess(T ) = σC(T ) = {λ ∈ C such that Reλ ≤ −σ0}.

For the details we refer to [31].

Lemma 4.1 ([31, Proposition 4.1]). Let D be a bounded subset of R
n and

1 < p < +∞. If, the hypotheses (1.1) and (1.2) are satisfied, the measure dµ
satisfies {

the hyperplanes have zero dµ measure, i.e.,

for each e ∈ Sn−1, dµ{v ∈ R
n, v.e = 0} = 0

where Sn−1 denotes the unit sphere of R
n and the collision operator K :

Lσ
p (R

n) −→ Lp(Rn) is compact, then for any λ satisfying Reλ > −σ0, the
operator K(λ− T )−1 is compact on Xp.
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Theorem 4.1. Assume that the hypotheses of Lemma 4.1 are satisfied.
Then

(i) For all λ ∈ ρ(T +K) we have K(λ− T −K)−1 is compact on Xp;

(ii) σess(A) = σess(T ) = {λ ∈ C such that Reλ ≤ −σ0}.

Proof. (i) Let λ ∈ ρ(T +K) and µ ∈ ρ(T ), we have

(4.2) K(λ− T −K)−1 = K(µ− T )−1[I + (µ− λ+K)(λ− T −K)−1].

Using Lemma 4.1 and Eq. (4.2) we have K(λ−T −K)−1 is compact on Xp.

(ii) The hypothesis on K together with Theorem 4.1 (i) implies that
K ∈ NT (Xp). Now the result follows from Theorem 3.1 and Remark 3.3
(b).
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