A RESULT ON THE MAPPING H OF S. S. DRAGOMIR WITH APPLICATIONS

Mohamed Akkouchi

Abstract

In this paper, we establish a new result containing some inequalities for a convex and differentiable function f related to its associated mapping H introduced by S. S. Dragomir in the papers [4] and [5]. We give applications of this result to some special means.

1. Introduction

In the paper [5], S. S. Dragomir introduced two mappings associated to Hermite-Hadamard's inequalities connected to convex functions. Precisely, if $f:[a, b] \rightarrow \mathbb{R}$ is a convex function on the closed and finite interval $[a, b]$ of the real line then one can define the two following mappings on $[0,1]$ by setting:

$$
F(t):=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) d x d y
$$

and

$$
H(t):=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x .
$$

Concerning the mapping H, the following properties are known (see [4] and [5]):
$1^{\circ} H$ is convex;
$2^{\circ} H$ is monotonous nondecreasing.
Received May 15, 2002.
2000 Mathematics Subject Classification. Primary 26D15.

Therefore, we have:

$$
\inf _{t \in[0,1]} H(t)=H(0)=f\left(\frac{a+b}{2}\right)
$$

and

$$
\sup _{t \in[0,1]} H(t)=H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

The main aim of this paper is to prove for a convex differentiable mapping f some new inequalities involving the associated mapping H (see the result below). We give applications of these inequalities to some special means.

For other results in connection to Hermite-Hadamard's inequality see [1]-[16].

2. The Result

Theorem 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and differentiable. Then for all $t \in[0,1]$, we have the following inequalities:

$$
\begin{align*}
0 \leq & (1-t)\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right] \tag{2.1}\\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x \tag{2.2}\\
\leq & (1-t)\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right] \tag{2.3}\\
& \quad+t(1-t)\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right]
\end{align*}
$$

Proof. f being convex, for all $t \in[0,1]$ and $x \in[a, b]$, we have

$$
f\left(t x+(1-t) \frac{a+b}{2}\right) \leq t f(x)+(1-t) f\left(\frac{a+b}{2}\right)
$$

Integrating after x, we get $H(t) \leq t H(1)+(1-t) H(0)$, from which we obtain

$$
H(t)-H(1) \leq(1-t)(H(0)-H(1)) .
$$

By using Hermite-Hadamard's inequality,

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}
$$

we deduce

$$
H(1)-H(t) \geq(1-t)(H(1)-H(0)) \geq 0,
$$

and the inequalities (2.1) and (2.2) are proved.
In order to prove inequality (2.3), we observe by using the convexity and differentiability of f that for all $x \in[a, b]$ and $t \in(0,1]$ we have

$$
f\left(t x+(1-t) \frac{a+b}{2}\right)-f(x) \geq(1-t)\left(\frac{a+b}{2}-x\right) f^{\prime}(x)
$$

and

$$
f\left(t x+(1-t) \frac{a+b}{2}\right)-f\left(\frac{a+b}{2}\right) \geq t\left(x-\frac{a+b}{2}\right) f^{\prime}\left(\frac{a+b}{2}\right)
$$

Consequently,

$$
t f\left(t x+(1-t) \frac{a+b}{2}\right)-t f(x) \geq t(1-t)\left(\frac{a+b}{2}-x\right) f^{\prime}(x)
$$

and

$$
\begin{aligned}
(1-t) f\left(t x+(1-t) \frac{a+b}{2}\right) & -(1-t) f\left(\frac{a+b}{2}\right) \\
& \geq t(1-t)\left(x-\frac{a+b}{2}\right) f^{\prime}\left(\frac{a+b}{2}\right)
\end{aligned}
$$

By summing the above inequalities, we get

$$
\begin{aligned}
& f\left(t x+(1-t) \frac{a+b}{2}\right)-t f(x)-(1-t) f\left(\frac{a+b}{2}\right) \\
& \quad \geq t(1-t)\left(\frac{a+b}{2}-x\right) f^{\prime}(x)+t(1-t)\left(x-\frac{a+b}{2}\right) f^{\prime}\left(\frac{a+b}{2}\right) .
\end{aligned}
$$

By integrating after x, we get

$$
\begin{aligned}
H(t) & -t H(1)-(1-t) H(0) \\
& \geq \frac{t(1-t)}{b-a}\left[\int_{a}^{b}\left(\frac{a+b}{2}-x\right) f^{\prime}(x) d x+f^{\prime}\left(\frac{a+b}{2}\right) \int_{a}^{b}\left(x-\frac{a+b}{2}\right) d x\right] .
\end{aligned}
$$

Now, integrating by parts, we get

$$
\frac{1}{b-a} \int_{a}^{b}\left(\frac{a+b}{2}-x\right) f^{\prime}(x) d x=\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2} .
$$

Also,

$$
\int_{a}^{b}\left(x-\frac{a+b}{2}\right) d x=0
$$

Therefore,

$$
H(t)-t H(1)-(1-t) H(0) \geq t(1-t)\left[H(1)-\frac{f(a)+f(b)}{2}\right] .
$$

From the above inequality, we deduce that

$$
H(1)-H(t)+(1-t)[H(0)-H(1)] \leq t(1-t)\left[H(1)-\frac{f(a)+f(b)}{2}\right]
$$

which is equivalent to say that

$$
H(1)-H(t) \leq(1-t)[H(1)-H(0)]+t(1-t)\left[\frac{f(a)+f(b)}{2}-H(1)\right],
$$

and this is the inequality (2.3).
Remarks. Let f be as above. In [7], S. S. Dragomir proved the following inequalities:

$$
\begin{equation*}
0 \leq H(1)-H(t) \leq(1-t)\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right] \tag{2.4}
\end{equation*}
$$

for all $t \in[0,1]$. Thus, our result provides a better left bound for $H(1)-H(t)$. It is also possible to compare the right bounds of this expression given in (2.4) and in our theorem. Indeed, let us denote

$$
C:=\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right) \quad \text { and } \quad D:=\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

By using Theorem 2.1 and the inequalities (2.4), we recapture the well known inequalities $0 \leq C \leq D$. We remark that if $0<C<D$, then our right bound is less than the right bound of (5) for all $t \in[0,1-C / D]$.

Corollary 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be convex and differentiable. Then we have

$$
\begin{aligned}
0 & \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right] \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{2}{b-a} \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} f(x) d x \\
& \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right]+\frac{1}{4}\left[\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right]
\end{aligned}
$$

3. Applications to Some Special Means

The means considered here are recalled in the next subsection.
3.1. Recalls. 1° The arithmetic mean

$$
A=A(a, b):=\frac{a+b}{2}, \quad a, b \geq 0
$$

2° The geometric mean:

$$
G:=G(a, b):=\sqrt{a b}, \quad a, b \geq 0
$$

3° The harmonic mean:

$$
H=H(a, b):=\frac{2}{\frac{1}{a}+\frac{1}{b}}, \quad a, b \geq 0
$$

4° The logarithmic mean:

$$
L=L(a, b):=\left\{\begin{array}{cl}
a & \text { if } a=b, \\
\frac{b-a}{\log b-\log a} & \text { if } a \neq b, a, b>0
\end{array}\right.
$$

5° The identric mean:

$$
I=I(a, b):= \begin{cases}a & \text { if } \quad a=b \\ \frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 / b-a)} & \text { if } \quad a \neq b, a, b>0\end{cases}
$$

6° The p-logarithmic mean:

$$
L_{p}=L_{p}(a, b):= \begin{cases}{\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{1 / p}} & \text { if } a \neq b \\ a & \text { if } a=b\end{cases}
$$

where, $p \in \mathbb{R} \backslash\{-1,0\}, a, b>0$.
The following inequalities involving these means are known in the literature

$$
H \leq G \leq L \leq I \leq A
$$

We recall also that the mean L_{p} is increasing in p with $L_{0}=I$ and $L_{-1}=L$.
3.2. Applications. 1° Consider the function $f: x \mapsto x^{p}$ with $p>1$ on any subinterval $[a, b]$ of $[0,+\infty)$, with $a<b$. We have $H(1)=L_{p}^{p}(a, b)$, $H(0)=[A(a, b)]^{p}$, and by easy computations, we have

$$
H(t)=L_{p}^{p}\left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right)
$$

By application of Theorem 2.1, we get the following inequalities:

$$
\begin{aligned}
0 & \leq(1-t)\left[L_{p}^{p}(a, b)-A^{p}(a, b)\right] \\
& \leq L_{p}^{p}(a, b)-L_{p}^{p}\left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right) \\
& \leq(1-t)\left[L_{p}^{p}(a, b)-A^{p}(a, b)\right]+t(1-t)\left[A\left(a^{p}, b^{p}\right)-L_{p}^{p}(a, b)\right]
\end{aligned}
$$

for all t in $[0,1]$.
2° Consider the convex and differentiable function $f: x \mapsto 1 / x$ on any subinterval $[a, b]$ of $] 0, \infty)$, with $a<b$. We have $H(1)=L^{-1}(a, b), H(0)=$ $A^{-1}(a, b)$, and by easy computations, we have

$$
H(t)=L^{-1}\left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right)
$$

By application of Theorem 2.1, we get the following inequalities:

$$
\begin{aligned}
0 & \leq(1-t)\left[L^{-1}(a, b)-A^{-1}(a, b)\right] \\
& \leq L^{-1}(a, b)-L^{-1}\left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right) \\
& \leq(1-t)\left[L^{-1}(a, b)-A^{-1}(a, b)\right]+t(1-t)\left[H^{-1}(a, b)-L^{-1}(a, b)\right]
\end{aligned}
$$

for all t in $[0,1]$.
3° Finally, let us consider the convex and differentiable function $f: x \mapsto$ $-\log (x)$ on any subinterval $[a, b]$ of the interval $(0,+\infty)$ with $a<b$. We have $H(1)=-\log I(a, b), H(0)=-\log A(a, b)$. By easy computations, for all $t \in[0,1]$, we get

$$
H(t)=-\log \left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right)
$$

By application of Theorem 2.1, we get the following inequalities:

$$
1 \leq\left[\frac{A(a, b)}{I(a, b)}\right]^{1-t} \leq \frac{I\left(\frac{a+b}{2}-t \frac{b-a}{2}, \frac{a+b}{2}+t \frac{b-a}{2}\right)}{I(a, b)} \leq\left[\frac{A(a, b)}{I^{1-t}(a, b) \cdot G^{t}(a, b)}\right]^{1-t}
$$

for all t in $[0,1]$.
In particular, if we choose $t=1 / 2$, then we get

$$
I(a, b) \leq A(a, b) \leq \frac{I^{2}\left(\frac{3 a+b}{4}, \frac{a+3 b}{4}\right)}{I(a, b)} \leq A(a, b) \sqrt{\frac{I(a, b)}{G(a, b)}}
$$

REFERENCES

1. S.S. Dragomir: Two refinements of Hadamard's inequalities. Coll. of Sci. Pap. of the Fac. of Sci., Kragujevac (Yougoslavia) 11 (1990), 23-26.
2. S.S. Dragomir, J.E. Pec̆arić and J. Sándor: A note on the JensenHadamard's inequality. Anal. Numer. Theor. Approx. 19 (1990), 21-28.
3. S.S. Dragomir: Some refinements of Hadamard's inequality. Gaz. Mat. Metod. (Romania) 11 (1990), 189-191.
4. S.S. Dragomir: A mapping connected with Hadamard's inequalities. An. Öster. Akad. Wiss. Math.-Natur. (Wien) 123 (1991), 17-20.
5. S.S. Dragomir: two mappings in connection to Hadamard's inequalities. J. Math. Anal. Appl. 167 (1992), 49-56.
6. S.S. Dragomir and N.M. Ionescu: Some intgral inequalities for differentiable convex functions. Coll. of Sci. Pap. of the Fac. of Sci., Kragujevac (Yougoslavia) 13 (1992), 11-16.
7. S.S. Dragomir: Some intgral inequalities for differentiable convex functions. Contributions, Macedonian Acad. of Sci. and Arts 13 (1) (1992), 13-17.
8. S.S. Dragomir: On Hadamard's inequalities for convex functions. Math. Balkanica 6 (4) (1992), 215-222.
9. S.S. Dragomir: A refinement of On Hadamard's inequality for isotonic linear functionals. Tamkang J. Math. 24 (1993), 101-106.
10. S.S. Dragomir: A note On Hadamard's inequalities. Mathematica (Romania) 35 (1) (1993), 21-24.
11. S.S. Dragomir, D.M. Milošević and J. Sándor: On some refinements of Hadamard's inequalities and applications. Univ. Beograd Publ. Elek. Fak. Ser. Math. 4 (1993), 21-24.
12. S.S. Dragomir, D. Barbu and C. Buse: A probabilistic argument for the convergence of some sequences associated to Hadamard's inequality. Studia Univ. "Babeş-Bolyai" Math. 38 (1) (1993), 29-33.
13. S.S. Dragomir: Some remarks on Hadamard's inequalities for convex functions. Extracta Math. 9(2) (1994), 88-94.
14. S.S. Dragomir, Y.J. Cho and S.S. Kim: Inequalities of Hadamard's type for Lipschitzian mappings and their applications. J. Math. Anal. Appl. 245 (2000), 489-501.
15. J.E. Pečarić and S.S. Dragomir: On some integral inequalities for convex functions. Bull. Inst. Pol. Iasi. (Romania) 36 (1990), 19-23.
16. J.E. Pečarić and S.S. Dragomir:, A generalization of Hadamard's inequality for isotonic linear functionals. Radovi Mat. (Sarajevo) 7 (1991), 299-303.

Département de Mathématiques
Université Cadi Ayyad
Faculté des Sciences-Semlalia
Bd. du prince My. Abdellah B.P 2390
Marrakech, Morocco
e-mail: makkouchi@hotmail.com

