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ALL GENERAL SOLUTIONS OF PREŠIĆ’S EQUATION

Dragić Banković

Abstract. S. Prešić ([6]) determined the all reproductive general solutions of
the equation r(x) = 1, where r was a unary relation of a given set T . In this
paper we determine the all general solutions of this equation.

S. Prešić ([6]) introduced the most general concept of equations. Namely,
he considered the equation of the form r(x) = 1, where r was a unary relation
of a non–empty set S. He gave the formula of the all reproductive general
solutions, supposing that a general solution of this equation was known. This
equation was also considered by Božić ([3]), Rudeanu ([8]), Banković ([1])
and Chvalinna ([4]).

S. Prešić ([5]) researched the finite equations i.e. the equations over a
finite set. In the paper [7] he introduced the finite equation, the coefficients
of which are from the set {0, 1} (one can prove that every finite equation is
equivalent to an equation of such type) and he described the all reproductive
general solutions of this equation, if particular solutions were given. The
descriptions of the all general solutions and all reproductive general solutions
of this equations were obtained by Banković ([2]). Rudeanu ([9]) provided
simpler characterizations of the general and reproductive general solutions.

Following Rudeanu’s idea from [9], we generalize, in this paper, Prešić’s
result on reproductive solutions ([6]), i.e. we describe the all general solutions
of the equation r(x) = 1, when a general solution of r(x) = 1 is given.

Let r be a unary relation of a non–empty set T , i.e. a mapping r : T →
{0, 1}. Denote by S the set of solutions of the equation r(x) = 1.
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Definition 1. Suppose equation r(x) = 1 is consistent (has a solution).
The formula x = f(t), where f : T → T , represents a general solution of the
equation r(x) = 1 if and only if

(∀t ∈ T )r(f(t)) = 1 ∧ (∀x ∈ T )(r(x) = 1⇒ (∃t ∈ T )(x = f(t))) .

In the other words, x = f(t) represents a general solution if and only if
f(T ) = S.

Definition 2. Suppose equation r(x) = 1 is consistent. The formula x =
f(t), where f : T → T , represents a general solution of the equation r(x) = 1
if and only if

(∀t ∈ T )r(f(t)) = 1 ∧ (∀t ∈ T )(r(t) = 1⇒ t = f(t)) .

In the other words, x = f(t) represents a general solution if and only if
f(T ) = S and f(t) = t for all t from S.

Theorem 1. Let r be a unary relation of a non-empty set T and let g :
T → T be a mapping such that the formula x = g(t) represents a general
solution of the equation r(x) = 1. The formula

(1) x = f(t)

represents the general solution of r(x) = 1 if and only if there exist mappings
a : T onto→ T and b : T → T , such that

(2) f(t) = r(a(t)) · a(t) + r′(a(t)) · g(b(t)) .

Proof. Suppose there exist mappings a : T onto→ T and b : T → T , such that
(2) holds. Let t ∈ T . If a(t) ∈ S, then the formula (2) gives f(t) = a(t) ∈ S.
If a(t) /∈ S, then the formula (2) gives f(t) = g(b(t)) ∈ S. Let x ∈ S. Since
a is “onto” there exists t such that a(t) = x. Then

f(t) = r(a(t)) ·a(t)+r′(a(t)) ·g(b(t)) = r(x) ·x+r′(x) ·g(b(x)) = 1 ·x+0 = x .

Conversely, let x = f(t) represents the general solution of r(x) = 1. Then
f(T ) = S. Since, for every y ∈ S, we can choose an element z ∈ f−1({y}),
then there exists, by axiom of choice, an injective mapping φ : S → T such
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that f(φ(y)) = y for all y ∈ S. Obviously, there exists a bijective mapping
ψ : T \ S → T \ φ(S). The mapping h : T → T determined by

h =
{
φ(t), t ∈ S

ψ(t), t /∈ S

is a bijection. Let a = h−1. We determine the mapping b : T \ φ(S)→ T in
the following way: let u be an arbitrary element of T \ φ(S) and

v = f(u), w ∈ g−1({v}), b(u) = w ,

i.e.

(3) g(b(u)) = g(w) = v = f(u) .

Extend the mapping b such that b : T → T .
Let t ∈ T and a(t) = y. Then a(t) ∈ S → t = φ(y) → f(t) = f(φ(y)) =

y = a(t), hence

r(a(t)) · a(t) + r′(a(t)) · g(b(t)) = 1 · a(t) + 0 = f(t)

and a(t) /∈ S → t = ψ(y)→ t ∈ T \ φ(S)→ g(b(t)) = f(t), hence

r(a(t)) · a(t) + r′(a(t)) · g(b(t)) = 0 + 1 · g(b(t)) = f(t) . �

Comment. If the mapping a, in Theorem 1, is not “onto,” then formula (1),
where g is given by (2), has not to represent the general solution. Namely, if for
some p ∈ S there doesn’t exist q such that a(q) = p, then r(a(t)) · a(t) �= p for all
t ∈ T . Then r(a(t)) · a(t) + r′(a(t)) · g(b(t)) could be equal to p if there exists t
such that g(b(t)) = p. However, if a(t) ∈ S and a(t) �= p, then we get

r(a(t)) · a(t) + r′(a(t)) · g(b(t)) = a(t) �= p .

Therefore, in that case, (1) is not “onto”.

Now it is easy to prove Prešić’s theorem.

Theorem 2. ([5]) Let r be a unary relation of a non–empty set T and let
g : T → T be a mapping such that the formula x = g(t) represents the
general solution of the equation r(x) = 1. The formula x = f(t) represents
the reproductive general solution of r(x) = 1 if and only if there exists the
mapping b : S → S such that

f(t) = r(t) · t+ r′(t) · g(b(t)) .
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appartiennent à un ensemble fini donné. C. R. Acad. Sci. Paris Ser. A 272
(1971), 654–657.
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