FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. 16 (2001), 97-108

PARALLELIZING DESIGN OF APPLICATION TAILORED
NEURAL NETWORKS

Zoran Obradovié¢ and Rangarajan Srikumar

Abstract. In a companion paper, a constructive approach for designing feedfor-
ward neural networks using genetic algorithms is proposed [7, 8]. The algorithm
constructs networks with close to optimum size growing hidden layer units in
a problem specific manner and has very good generalization properties. In this
paper, in order to make the constructive design algorithm computationally effi-
cient, a two stage speed up method is proposed: (1) parallel genetic search for
hidden layer units construction; and (2) the dynamic pocket algorithm for learn-
ing the hidden to output layer weights. The proposed parallel method achieves
significant computational speed-up over the sequential method and is suitable
for distributed implementation. In addition, the dynamic pocket algorithm can
be used to speed up various other neural network constructive design methods.

1. Introduction

Determining the appropriate size of a neural network is one of the most
difficult tasks in its construction. One of the main drawbacks of many neural
network learning algorithms (e.g. backpropogation [10]) is that the archi-
tecture of the network must be pre-specified. Even for feedforward neural
networks with a single hidden layer it is quite challenging to pre-specify the
appropriate number of hidden units (usually decided based on the developers
intuition).

An attempt to overcome the fixed architecture problem are constructive
learning algorithms that grow or shrink the network in an application specific
manner. In [7, 8] a two step constructive learning method is proposed. First

Received November 26, 1998.
2000 Mathematics Subject Classification. Primary 68Q70; Secondary 08A60, 08A70,
20M35.

97

98 Z. Obradovié¢ and R. Srikumar

a genetic algorithm is used as a tool for constructing hidden layer units
along with the appropriate connection strengths. The pocket algorithm [3]
is then used to learn the connection strengths between the hidden and the
output layer. The algorithm generates a small network (close to optimum
number of hidden units) with good generalization abilities. A drawback of
this algorithm is that it is highly computation intensive, which makes it
inappropriate for large scale problems. The goal of this work is to speed up
the existing algorithm by parallelization, and thereby make it applicable to
large real life problems.

A short description of the sequential algorithm is given in Section 2.
A parallel version of the algorithm is proposed in Sections 3 and 4. The
parallelization of the hidden layer construction is discussed in Section 3, and
that of the hidden to the output layer learning in Section 4.

2. The Sequential Algorithm

The goal of the constructive learning algorithm proposed in [7, 8] is to
design a small feedforward neural network with one hidden layer of threshold
units that classifies well training set examples for a given m dimensional bi-
nary classification problem. Alternatively, it can be interpreted as a two step
process: (1) construction of a small set of hyperplanes in Re™ (correspond-
ing to hidden units of a neural network with a single hidden layer) which
partition the training examples into regions each containing only training
examples from a single class; and (2) learning of the hidden to output layer
weights.

In the first step of the design process, pairs of training examples are
formed, each pair consisting of two examples from opposite classes. Obvi-
ously, for perfect classification of training examples, for each of those pairs
there must be a hyperplane separating the pair. The distance between points
in a pair is discretized to k equal segments. One can visualize a slide that
can occupy one of k discrete positions; each position from the midpoint of
one segment to the midpoint of the next. For a perfect classification there
must be a position of the slide such that the separating hyperplane sepa-
rates the slide. For practical purposes the hyperplane can be assumed to
pass through the center of the slide (for sufficiently large resolution k, size of
the slide is sufficiently small). A hyperplane in Re™ is uniquely determined
by m points. So, the equation of a separating hyperplane is defined by m
appropriately positioned slides. We use a genetic algorithm to determine
m appropriately positioned slides that define a good separating hyperplane

Parallelizing Design of Application Tailored Neural Networks 99

Subregion |

Subregion 1

F1a. 1: The exclusive OR function realized by a neural network with two hidden
units. The figure shows slides on the dotted lines between the points from the
opposite classes. The slides can be in one of the k different positions on the dotted
line.

(see Figure 1).

In the proposed evolutionary algorithm, the population is a set of hy-
perplanes. In each generation each of the hyperplanes in the population is
evaluated for its fitness. If ; is the percentage of all the training examples
from class ¢ correctly classified by the hyperplane, then its fitness is defined
as the sum of 7; over all classes. A region is set of training examples de-
fined by a bounding set of hyperplanes. A region is said to be resolved if
all training examples falling in that region are of the same class, otherwise
the region is unresolved. Initially we start from a single unresolved region
which is our problem domain. Genetic search, for a pre-specify number of
generations is performed to construct the best hyperplane which is used to
partition the existing regions further. All the resolved regions are ignored
in future generations because we already have a set of hyperplanes that can
classify those regions correctly. The unresolved regions are maintained in a
linked list. We continue to generate hyperplanes using genetic search un-
til all the regions are resolved (the linked list is empty). The hidden layer
units and the connections from the input to the hidden layer can be easily
generated from the constructed hyperplanes.

The second step of the design process is to learn the connection strengths
between the hidden and the output layer. This task is performed using the

100 Z. Obradovié¢ and R. Srikumar

pocket algorithm [3] which is a modification of the perceptron algorithm able
to produce the optimal separation between non linearly separable classes.

3. Distributed Genetic Search

In the genetic search of the algorithm briefly summarized in Section 2
species in population correspond to hyperplanes in the problem domain and
their fitness is the percentages of examples of each class classified correctly
by the corresponding hyperplane. Genetic algorithm used in construction of
separating hyperplanes creates species with better generalization capability
from one generation to another. Thus, if a population consists of n species,
in each generation the fitness has to be evaluated for all n species. making
this evaluation the most expensive step in the algorithm. Our experiments
with n ranging between 50 to 200 show that in the sequential implementation
of the algorithm more than 80% of the time is spent computing the fitness.
It also appears that the cost of this evaluation grows exponentially faster as
compared to other costs. Fortunately, the estimation of the fitness value of
the species are independent of one another, and this makes it an appropriate
candidate for distributed computing. Given a network of n + 1 processors
(Main and n Fitness nodes), estimation of the fitness could be performed
concurrently, each on a different processor in a distributed environment (see
Figure 2). In the proposed distributed algorithm the Main node process

Main

|

FiG. 2: Distributed implementation of the constructive genetic algorithm

initially broadcast the unresolved region (the training set) to all Fitness
nodes. The Main node process executes the algorithm sequentially until
there is a need to evaluate species based on their fitness. At that point,
Main node process distributes n species (population) each to one of n Fitness
nodes that work in parallel, where each of them computes fitness of a string

Parallelizing Design of Application Tailored Neural Networks 101

assigned to it. Fitness values are computed using current list of unresolved
regions and returned back to the Main node process which then broadcast
the fittest hyperplane back to all the Fitness nodes. On receiving the fittest
hyperplane each of the Fitness nodes concurrently modifies its current list
of unresolved regions, partitioning unresolved regions further and discarding
the regions resolved by this new hyperplane. At the same time the Main
process continues sequential computation until there is a need to compare
fitness values of strings in the next generation. The process terminates when
all regions are resolved. If less than n + 1 processors (workstations) are
available then the estimation of fitness is evenly distributed among available
processors. It is easy to show the following;:

Theorem 3.1. Let Ty be the time spent in executing the algorithm described
in Section 2 on a sequential machine, and ¢ x Ty (0 < ¢ < 1) the time
spent computing the fitness. Then parallel execution time T, on a distributed
environment of n + 1 processors is given by

1
Tp:T5<1—c<1— —)) te,
n

where € is the communication overhead.

Proof. Follows directly from the observation that the time spent com-

1
puting the fitness in parallel is —cTs +e. O
n

In practice, the communication overhead ¢ is small since genetic search
consists of a constant number of generations and in each generation processes
communicate just once. Fraction of the sequential time ¢ spent computing
fitness depends on n, and our experiments for n ranging from 50 to 200 in-
dicate that 0.8 < ¢ < 1. Let us conservatively assume ¢ = 0.8 (meaning that
exactly 80% of sequential algorithm’s time is spent computing the fitness).
Then a speed up by a factor close to 5 can be attained by parallelizing the
genetic search as proposed. In fact, then

1 4
= T(1+2) +e

4. Dynamic Pocket Algorithm

In the sequential algorithm of Section 2 weights from hidden to the output
layer are learned using the pocket algorithm. Reason for this choice is the

102 Z. Obradovi¢ and R. Srikumar

fact that the hidden layer problem representation constructed by the genetic
algorithm is not necessarily linearly separable.

In non-linearly separable problems no set of weights in perceptron can
correctly classify all training examples. For such problems, it is desirable
to reach so called optimal set of weights which gives smallest number of
misclassification. The perceptron learning algorithm [2, 6, 9] is not well
behaved for non-linearly separable problems. While it will eventually visit
an optimal set of weights, it might not converge to any set of weights at
all. Even worse, the algorithm can go from an optimal set of weights to a
worst-possible set in one iteration, regardless of how many iterations have
been taken previously. The pocket algorithm [3] is a modification of the
perceptron algorithm, which makes perceptron learning an optimal set of
weights with high probability even for non-linearly separable problems.

The basic idea of the pocket algorithm is to run the perceptron algo-
rithm while keeping a backup hypothesis (weights assignment) “in pocket”.
Whenever the perceptron hypothesis has a better performance it replaces
the pocket hypothesis. The final pocket hypothesis is the output of the
algorithm. The drawback of the pocket algorithm is that the processes of
estimating the better of the two hypothesis (perceptron and pocket) is ex-
tremely costly in terms of computation time. This is especially true when
the training set is large.

To speed-up the pocket algorithm we propose replacement of the existing
pocket memory with another special perceptron called Slave. In our dynamic
pocket algorithm the perceptron, here called Master, and the Slave run in
parallel on the same input. The Slave is devoid of power to update its current
hypothesis, but in contrast to the original pocket algorithm it evaluates the
quality of the pocket hypothesis concurrently with the evaluation of the
Master’s hypothesis (see Figure 3).

The Slave in addition to its current hypothesis 7, keeps ¢ which is current
number of consecutive correct classification by m, and ¢ the maximum ¢ so
far. The Master on the other hand has its current hypothesis II, and keeps ®
which is current number of consecutive classification of the training samples
by II. Both the Master and the Slave start of with randomized Il and 7. The
indices ¢ and ® indicate the respective goodness of m and II at any particular
moment. When ® becomes greater that ¢, an estimate of goodness of m and
IT are made. If IT is found to be better, then previous 7 is replaced by II. The
training procedure goes on until the training samples are classified correctly
or a predetermined number of iterations are completed.

The Monitoring subsystem is responsible for estimating the quality of the

Parallelizing Design of Application Tailored Neural Networks 103

MONITORING
SYBSYSTEM

OUTPUT OUTPUT

WEIGHTS | WEIGHTS
! ! ! f SLAVE
MASTER : : : . PERCEPTRON
PERCEPTRON ! é d :
. WEIGHTS

INPUTS

F1G. 3: Schematic representation of the Dynamic Pocket Algorithm

Master and the Slaves hypothesis (i.e., II and m). If the Master hypothesis
is found to be better, the Monitor subsystem sends a reset signal R which
causes the replacement of Slaves weights by that of the Master. The dynamic
pocket algorithm can be described more formally as follows.

DYNAMIC POCKET ALGORITHM

Input: A set of training examples T = {(x*,y*)}. Here x* € {—1,1}™
is the vector of features including bias, and y* € {+1,—1} is the desired
response.

Temporary Data:

II = Master hypothesis, IT € Z™.
7w = vector of Slave hypothesis, m € Z™.

® = current number of consecutive correct classifications using Master
hypothesis II.

¢ = current number of consecutive correct classifications using Slave hy-
pothesis .

¢ = maximum number of consecutive correct classifications using Slave
hypothesis 7.

num_oky = total number of training examples that II correctly classifies.

num_ok,; = total number of training examples that 7 correctly classifies.

104 7. Obradovié¢ and R. Srikumar
Algorithm:

(1) initialize = and II to random set of weights.

(2) set p = & = num_okiy = num_ok, = ¢ = 0.

(3) randomly pick a training example x* (with corresponding classification
yr).

(4) if I correctly classifies x*, (i.e, sgn(IIx*) = sgn(y*)) then
(4a) set & = & 4 1.
else

(4bl) set & = 0.
(4b2) (Update step) Form a new Master hypothesis as IT = IT + y*x*.

(5) if 7 correctly classifies x* then

(hal) set p =p+1
(5a2) if ¢ > ¢ then
(5a2a) set ¢ = ¢
(5a2b) if all training examples are correctly classified (i.e ¢ = [{x*}|)
then stop; the training examples are separable.
else
(5b) set ¢ =0
(6) if ® > ¢ then

(6ba) randomly select a subset of 0.67 training examples.
(6ba) compute num_oky by checking every selected training example.
(6bb) if num_ok > num_ok, then

(6bba) set m = Pi

(6bbb) set p = ¢ =P

(6bbc) set num_ok, = num_oky

(7) end of this iteration. If the specified number of iteration has not been
performed then go to step 3. Otherwise output .

It is easy to to show the following result:

Parallelizing Design of Application Tailored Neural Networks 105

Theorem 4.2. Given a finite set of input vectors {x*} and corresponding
desired responses {yk} and a probability P < 1, there exists L such that
after | > L iterations of the dynamic pocket algorithm, the probability that
the pocket weights are optimal exceeds P.

Proof . A straightforward extension of optimality result of [4]. O

Note that in the dynamic pocket algorithm the threshold ¢ for evalua-
tion of the current hypothesis II is subject to dynamic updation unlike the
original pocket algorithm (i.e., ¢ increases to ¢ if ¢ > ¢). Thus, a significant
computing time is saved by reducing the number of useless quality evalua-
tions of the current master’s hypothesis. The experimental results consistent
with this observation are reported as follows.

Database Pocket Dynamic

onc Upoc deoc Udpoc

Soybean 85 6 20 8
Votes 11 9 9 8

Table 4.1: Comparison between the Pocket and the Dynamic Pocket Algo-
rithm

Window | W | Quapoc | Udpoc | Tw/TF
Soybean | 0.49 | 45 6 1
Votes 0.46 9 8 0.84

Table 4.2: Window size experiments for the Dynamic Pocket algorithm

TESTING RESULTS OF THE DYNAMIC POCKET ALGORITHM

The efficiency of the Dynamic Pocket algorithm was tested on two stan-
dard benchmark problems. First test was on the Soybean Database which
is a noisy domain consisting of 307 instances belonging to 19 classes where
each instance has 35 attributes. Based on the attribute values, the networks
was trained to predict if the soybean crop suffered from one of the nineteen
deceases. Second test was on the Votes Database. This data set includes
votes for each of the U.S House of representatives congressmen on the 16 key
votes identified by the Congressional Quarterly Almanac (CQA) [1]. The
CQA contains nine different types of votes: voted for, paired against, voted

106 Z. Obradovié¢ and R. Srikumar

against, and announced against. The database consisting of 435 instances
of 2 classes with each instance having 17 attributes.

The experimental comparisons between the pocket and the dynamic poc-
ket algorithms are shown in Table 4.1. The number of stops for quality
comparison between the current and the pocket hypothesis using the pocket
and dynamic pocket algorithm is denoted by Qpoc and Qgpoc respectively.
The number of useful stops for comparison for the pocket and the dynamic
pocket algorithm is denoted by Upoe and Ugp,. respectively. Reduction of
the number of useless stops using the dynamic algorithm is such a big gain
that in all our experiments even a sequential implementation of the dynamic
pocket algorithm runs faster than the original pocket algorithm. In particu-
lar, our sequential implementation of the Dynamic pocket algorithm learns
Soybean database in 29.4 seconds (CPU time on HP 9000/730) verses 71
seconds needed by the Pocket algorithm. In a parallel implementation the
Master and the Slave run in parallel thus reducing time further. Speedup of
parallel dynamic algorithm over the sequential dynamic algorithm is network
dependent (communication overhead is a function of network capabilities),
but in practice for non-trivial learning problems it is close to double.

The various experiments carried out with the dynamic pocket algorithm
indicate that a smaller data window for Master and Slave hypothesis com-
parison gives a fairly good approximation of the quality obtained with the
full training set. Using smaller data window each comparison takes less time
and consequently additional speedup can be achieved. The experimental
results on data window variations are shown in Table 4.2. The fraction of
training set considered for quality estimation is denoted as W. Last column
in the table :;—V; is the ratio of the time taken by the dynamic pocket algo-
rithm using W fraction of the training set for quality estimation to the time
taken using the full training set. In practice, window size varying between

half and three-fourths of the training set provides good prediction quality.

In summary, experiments from Tables 4.1 and 4.2 indicate that a speed
up by a factor near 4 can be attained using parallel dynamic algorithm with
window W = 0.67 (where T is the size of the full training set) over the
existing pocket algorithm.

5. Conclusion

A parallelization of our recent constructive neural network design algo-
rithm is proposed in this paper. It is shown that an almost optimal speedup
is achievable on parallelizing genetic search for hidden layer construction.

Parallelizing Design of Application Tailored Neural Networks 107

The additional speed up is achievable on the output layer learning using
parallel dynamic pocket algorithm. The dynamic pocket algorithm can also
be used instead of the traditional pocket algorithm in various constructive
algorithms including tower algorithm [4] and tiling algorithm[5]. In those
learning methods the pocket algorithm is used extensively to construct ev-
ery unit of the network. So, the dynamic pocket could indeed speed up these
existing constructive algorithms significantly. Further research is needed in
order to characterize the level of speedup achievable for other constructive
algorithms by using proposed dynamic pocket learning.

10.

REFERENCES

Congressional Quarterly Almanac, 98th Congress, 2nd session 1984, Vol-
ume XL: Congressional Quarterly Inc., Washington, D.C., 1985.

. R.O. DupA and P.E. HART: Pattern Classification and Scene Analysis.

New York, Wiley, 1973.

S. I. GALLANT: Optimal linear discriminant. In: Proc. Eight Int. Conf.
Pattern Recognition (Oct. 28-31, 1986, Paris, France), pp. 849-852.

S. I. GALLANT: Perceptron-based learning algorithms. IEEE Transaction
on Neural Networks 1, No. 2 (1990), 179-191.

M. MézARD and J. P. NADAL: Learning in feedforward layered networks:
The tiling algorithm. Journal of Physics 21 (1989), 2191-2204.

M. MiNSKY and S. PAPERT: Perceptrons: An Introduction to Computa-
tional Geometry. Cambridge, MA: MIT Press, 1969.

Z. OBRADOVIC and R. SRIKUMAR: FEvolutionary design of application
tailored neural networks. In: Proc. IEEE Int. Symp. on Evolutionary Com-
putation, Orlando, FL, 1994, pp. 284-289.

Z. OBRADOVIC, R. SRIKUMAR: (in review) Constructive neural networks
design using genetic optimization.

F. ROSENBLATT: Principles of Neurodynamics: Perceptrons and the the-
ory of brain mechanisms. Washington, D.C: Spartan Press, 1961.

P. WERBOS: Beyond Regression: New Tools for Predicting and Analysis in
the Behavioral Sciences. Harvard University, Ph.D. Thesis, 1974; Reprinted
by Willey & Sons, 1995.

108 Z. Obradovié¢ and R. Srikumar

School of Electrical Engineering

and Computer Science

Washington State University

Pullman, WA 99164-2752, USA
and

Mathematical Institute

Knez Mihailova 35

11000 Belgrade, Yugoslavia

Microsoft Corporation
3219 Building 16, One Microsoft Way

Redmond, WA 98052-6399, USA

