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ON THE NUMBER OF SOLUTIONS OF NONLINEAR
EQUATIONS

P. S. Milojević

Abstract. In this paper we study the existence and the finitness of the number
of solutions to nonlinear equations as well as semilinear equations involving
nonlinear perturbations of Fredholm maps of index zero.

1. Introduction

Let X and Y be Banach spaces and T : X → Y be a nonlinear map of
A–proper type. Under various conditions on T , we study in Section 2 the
surjectivity and the finitness of the solution set of the equation Tx = f .
In particular, we also look at nonresonant semilinear equations of the form
Ax + Nx = f where A is a Fredholm map of index zero and the nonlinear
map N is such that A + N is (pseudo) A–proper and is either nondiffer-
entiable or differentiable. We say that this equation is not at resonance if
A and N are are such that it is solvable for each f ∈ Y . Our results ex-
tend the corresponding ones of Seda [9] who assumed that N is a compact
(differentiable) map.

2. On the number of solutions of operator equations

In this section, we shall study the number of solutions of the equation
Tx = f . The unique (approximation) solvability of it has been studied in
detail in [8] using the A–proper mapping approach.

Recall the definition of (pseudo) A–proper maps.
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Definition 2.1. A map T : D ⊂ X → Y is (pseudo) A–proper w.r.t. a
scheme Γ = {Xn, Yn, Qn} with dimXn=dimYn on D if whenever {xnk

∈
D ∩Xnk

} is bounded and such that Qnk
Txnk

−Qnk
f → 0 for some f ∈ Y ,

then {xn} has a subsequence converging to x ∈ D (there is x ∈ D) with
Tx = f .

The classes of A–proper and pseudo A–proper maps are very general and
we refer to [3]–[7] for many examples of such maps.

2.1. Nonlinear equations. We say that a map T : X → Y satisfies
condition (+) if {xn} is bounded whenever Txn → f in Y . We need the
following result.

Proposition 2.1. Let T : X → Y be a continuous A–proper map that
satisfies condition (+). Then T is a proper map.

Proof. We have shown in [8] that the range R(T ) is a closed set. We also
know that T is proper when restricted to bounded closed subsets D of X, i.e.
T−1(K) ∩D is compact in X for each compact set K in Y . Next, let K be
a compact subset in Y . Then T−1(K) is a bounded set in X. Indeed, if we
had {xk} ∈ T−1(K) with ||xk|| → +∞, then Txk = yk for some yk ∈ K. We
may assume that yk → y ∈ K and so Txk → y ∈ K with {xk} unbounded,
in contradiction to condition (+). Hence, T−1(K) is bounded.

Next, we shall show that T−1 is closed. Let xk ∈ T−1(K) and xk → x
in X. Then Txk = yk ∈ K and we may assume that yk → y ∈ K. Since T
is continuous, Txk → Tx = y ∈ K and so x ∈ T−1(K). Hence, T−1(K) is
closed. Thus, T−1(K) is bounded and closed and therefore compact since T
is proper when restricted to bounded and closed subsets of X. �

Let Σ be the set of all points x ∈ X where T is not locally invertible and
cardT−1({f}) be the cardinal number of the set T−1({f}).
Theorem 2.1. Let T : X → Y be continuous, A–proper and satisfy condi-
tion (+). Then

(a) The set T−1({f}) is compact (possibly empty) for each f ∈ Y .

(b) The range R(T ) of T is closed and connected.

(c) Σ and T (Σ) are closed subsets of X and Y , respectively, and T (X \Σ)
is open in Y .

(d) cardT−1({f}) is constant and finite (it may be 0) on each connected
component of the open set Y \ T (Σ).

(e) If Σ = ∅, then T is a homeomorphism from X to Y .
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(f) If Σ �= ∅, then the boundary ∂T (X\Σ) of T (X\Σ) satisfies ∂T (X\Σ) ⊂
T (Σ).

Proof. Since T is proper by Proposition 2.1, it is a closed map. Since
X \Σ is an open set, Σ is a closed set. Hence (a)–(c) hold, where T (X \Σ) is
open since T is locally invertible on X \Σ. (d) follows from the Ambrosetti
theorem [1] and (e) follows from the global inversion theorem. Next, (b) and
(c) imply that

(2.1) T (X) = T (Σ) ∪ T (X \ Σ) = T (Σ) ∪ F (X \ Σ) = T (X) .

Moreover, ∂T (X \Σ) = T (X \ Σ)\T (X \Σ), which together with (2.1) imply
(f). �

As a consequence of Theorem 2.1, we have the following surjectivity result.

Corollary 2.1. Let T be continuous, A–proper and satisfy condition (+).
Then T is surjective if either one of the following conditions hold:

(a) T (Σ) ⊂ T (X \ Σ).
(b) Y \ T (Σ) is connected and T (X \ Σ) \ T (Σ) �= ∅.
Proof. Let (a) hold. Then (2.1) implies that T (X) = T (X \ Σ) and so

R(R) is open and closed subset of a connected space Y . Hence, T (X) = Y .

Next, let (b) hold. Then cardT−1({f}) = k ≥ 0 on Y \ T (Σ) by (d)
in Theorem 2.1. If k = 0, then T (X) = T (Σ) and T (X \ Σ) ⊂ T (Σ) a
contradiction to our assumption. Hence, k > 0 and T is surjective. �

Regarding the local invertibility property in Theorem 2.1, we have

Proposition 2.2 ([8]). If T : X → Y is an open A–proper map (in partic-
ular, if it has the invariance of domain property), then T is locally invertible
at x ∈ X if and only if T is locally injective at x.

Next, we shall look at another surjectivity result. Let J : X → 2X∗
be

the normalized duality map and G : X → Y be a bounded map such that
Gx �= 0 for all x with ||x|| ≥ r0 for some r0 > 0 and

(2.2) deg (QnG,B(0, r) ∩Xn, 0) �= 0

for each large r > 0 and for all large n.
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Theorem 2.2. Let T : X → Y satisfy condition (+), (2.2) hold and
(i) for each f ∈ Y there is an rf > 0 such that

(2.3) Tx �= λGx for x ∈ ∂B(0, rf ) , λ < 0 ,

(ii) H(t, x) = tTx + (1 − t)Gx is an A–proper w.r.t. Γ homotopy on
[0, 1]×X.

Then T is surjective. If T is also continuous, then T−1({f}) is compact
for each f ∈ Y and the cardinal number cardT−1({f}) is constant, finite
and different from zero on each connected component of the set Y \ T (Σ).

Proof. The surjectivity of T has been established in [7]. Moreover, T is
continuous and proper by Proposition 2.1. Hence, the other assertions of the
theorem follow from Theorem 2.1. �
Corollary 2.2. Let F,K : X → X be continuous ball–condensing maps and
T = I − F and G = I − K satisfy (2.2)–(2.3). Then the conclusions of
Theorem 2.2 hold for T .

Corollary 2.2 is also valid for general condensing maps (see [9]).
Our next result is based on the following continuation result ([5]–[6]).

Theorem 2.3. Let V be dense subspace of a Banach space X, D ⊂ X
be open and bounded subset, Y be a Banach space and a homotopy H :
[0, 1]× (D̄ ∩ V ) → Y be such that:

(i) H is an A–proper homotopy w.r.t. Γ = {Xn, Yn, Qn} on [0, ε]× (∂D∩
V ) for each ε ∈ (0, 1) and H1 is pseudo A–proper w.r.t. Γ,

(ii) H(t, x) is continuous at 1 uniformly for x ∈ ∂D ∩ V ,
(iii) H(t, x) �= f and H(0, x) �= tf for t ∈ [0, 1], x ∈ ∂D ∩ V ,
(iv) deg (QnH0, D ∩Xn, 0) �= 0 for all large n.
Then the equation H(1, x) = f is solvable in D̄ ∩ V .

For a map M , define its quasinorm by |M | = lim sup
||x||→+∞

||Mx||/||x||.

Theorem 2.4. Let A : D(A) ⊂ X → Y be a linear densely defined map
and N : X → Y be bounded and of the form Nx = B(x)x +Mx for some
linear maps B(x) : X → X. Assume that there is a c > |M | and a positively
homogeneous map C : X → Y such that:

(2.4) ||Ax− (1− t)Cx− tB(x)x|| ≥ c||x|| , x ∈ D(A) \B(0, R) ,
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(i) Ht = A − (1 − t)C − tN is A–proper w.r.t. Γ = {Xn, Yn, Qn} for
t ∈ [0, 1) and A−N is pseudo A–proper,

(ii) for all r > R, deg (Qn(A− C), B(0, r) ∩Xn, 0) �= 0 for each large n.
Then the equation Ax−Nx = f is solvable for each f ∈ Y . If, in addition,

A − N is continuous and A–proper, then (A − N)−1({f}) is compact for
each f ∈ Y and card (A−N)−1({f}) is constant, finite and positive on each
connected component of the set Y \ (A−N)(Σ).

Proof. Regarding the surjectivity of A−N , it suffices to solve Ax−Nx = 0.
Define H(t, x) = Ax − (1 − t)Cx − tNx on [0, 1] ×D(A). Then there is an
r > 0 such that

(2.5) H(t, x) �= 0 for x ∈ ∂B(0, r) ∩D(A) , t ∈ [0, 1] .

If not, then there are xn ∈ H and tn ∈ [0, 1] such that ||xn|| → +∞ and
H(tn, xn) = 0. Let ε > 0 be small such that |M | ≤ (|M | + ε)||x|| for
||x|| ≥ R1 and |M |+ ε < c. For each xn with ||xn|| ≥ R1 we have that

c||xn|| ≤ ||Axn − (1− t)Cxn − tB(xn)xn|| ≤ (|M |+ ε)||xn|| .

Dividing by ||xn||, this leads to a contradiction and (2.5) holds. Hence, A−N
is surjective by Theorem 2.3. Next, it is easy to see that ||(A−N)x|| → +∞
as ||x|| → +∞ by (2.4). Hence, the other assertions follow Theorem 2.1. �

Let U be a convex subset of the set of positively homogeneous maps from
X to Y .

Corollary 2.3. Let A : D(A) ⊂ X → Y be a linear densely defined map and
N : X → Y be bounded and of the form Nx = B(x)x+Mx with B(x) ∈ U
for all x ∈ X and |M | sufficiently small. Let there exist δ > 0 such that

(2.6) ||Ax− Sx|| ≥ δ||x|| , x ∈ D(A) , S ∈ U .

Suppose that
(i) Ht = A − (1 − t)C − tN is A–proper w.r.t. Γ = {Xn, Yn, Qn} for

(X,Y ) for t ∈ [0, 1) and some C ∈ U and H1 = A−N is pseudo A–proper,
(ii) for each large r > 0, deg (Qn(A−C), B(0, r)∩Xn, 0) �= 0 for n large.
Then the conclusions of Theorem 2.4 are valid.

Proof. It suffices to show that (2.4) of Theorem 2.4 holds. Since the
maps S = (1 − t)C + tB(x) ∈ U for each x ∈ X, (2.6) implies (2.4) of
Theorem 2.4. �
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2.2. On nonlinear perturbations of Fredholm maps of index zero.
In this subsection we shall look at a class of nonlinear perturbations of Fred-
holm maps of index zero of the form A+N where A is a linear Fredholm map
of index zero and N is either nondifferentiable or a differentiable nonlinear
map.

When N is not differentiable, we have the following special case of Theo-
rem 2.2.

Corollary 2.4. Let A : X → Y be a linear Fredholm map of index zero and
N : X → Y be nonlinear such that the map T = A + N satisfy conditions
(+), (2.2) and (i)–(ii) of Theorem 2.2 for some G. Then T is surjective.
If T is also continuous, then T−1({f}) is compact for each f ∈ Y and
cardT−1({y}) is constant, finite and different from zero on each connected
component of the set Y \ T (Σ).

Next, we shall look at the case of differentiable N . Recall that if D is a
nonempty open subset of X and T : D → Y is differentiable, then x0 ∈ D
is a regular point of T if T ′(x0) is a linear homeomorphism of X onto Y . If
x0 is not a regular point of T , then it is a singular point of T . A singular
value of T is the image by T of a singular point. If T : X → Y and S is the
set of all singular points of T , then T (S) is the set of all singular values of
T and RT = Y \ T (S) is called the set of all regular values of T . Hence, for
each y ∈ RT either T−1({y}) is empty or it consists solely of regular points
of T . Next, a set S in a topological space Z is residual if it is a countable
intersection of dense open subsets of Z. By the Baire theorem, if Z is a
complete metric space or if Z is a locally compact Hausdorff topological
space, then a residual set S is dense in Z.

A map T ∈ C1(D,Y ) is a Fredholm map if its Frechet derivative T ′(x) is
a linear Fredholm map at each x ∈ D. If D is connected, hence a region in
X, then the difference dimN(T ′(x))−codimR(T ′(x)) has a constant value in
D. Thus, the index ind T of T is well defined by the equality

indT = dimN(T ′(x))− codimR(T ′(x)) , x ∈ D .

In case of a Fredholm map T of index zero, x0 is a singular point of T if and
only if T ′(x0)h = 0 has a solution h �= 0.

The following result provides a large class of nonlinear Fredholm maps of
index zero.

Proposition 2.3. Let T = A + N : X → Y be such that A is a linear
Fredholm map of index zero and N is continuously Frechet differentiable
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such that A + tN ′(x) : X → Y is A–proper w.r.t. Γ for each x ∈ X and
t ∈ [0, 1]. Then

(a) T ∈ C1(X,Y ) is a Fredholm map of index zero.

(b) If S = {x ∈ X | T ′(x)h = 0 has a solution h �= 0}, then S is the set
of all singular points of T and the set RT = Y \T (S) of all regular points of
T is dense in Y .

Proof. (a) Since A+ tN ′(x) is a continuous linear A–proper map for each
t ∈ [0, 1], it is proper when restricted to closed bounded subsets of X. Hence,
A + tN ′(x) ∈ Φ+(X), the set of semifredholm maps (cf. [2]) for t ∈ [0, 1]
and each x ∈ X. Thus, ind(A+N ′(x)) =indA for each x ∈ X and therefore
T is a Fredholm map of index zero.

(b) Note that T ′(x) : X → Y is a linear homeomorphism if and only if
it is bijective. Since T ′(x) is a Fredholm map of index zero, it is bijective
if and only if it is injective. Hence, x is a singular point of T if and only if
x ∈ S. Since T is C1 and proper when restricted to closed bounded subsets
of X, hence σ–proper, the set RT of all regular values of T is residual in Y
by the Smale–Quinn theorem. Thus, RT is dense in Y . �

Now, Propositions 2.1 and 2.3 and the main theorem on nonlinear proper
Fredholm maps (Theorem 29.E in [10], p. 665) imply the following result.

Theorem 2.5. Let T = A + N : X → Y satisfy condition (+) and be A–
proper and such that A is a linear Fredholm map of index zero, and N is
continuously Frechet differentiable such that A+tN ′(x) : X → Y is A–proper
w.r.t. Γ for each x ∈ X and each t ∈ [0, 1]. Then

(a) T is a proper C1–Fredholm map of index zero.

(b) cardT−1({y}) is constant and finite (it may be zero) on each connected
component of the open and dense subset RT of Y .

(c) T is a local C1–diffeomorphism at x for each x in the open set X \S.

(d) If S = ∅, then T : X → Y is a C1–diffeomorphism.

(e) The set T (S) of all singular values of T is closed and nowhere dense
in Y .

Corollary 2.5. Suppose that T is as in Theorem 2.5. Then

(a) If S �= ∅, then ∂T (X \ S) ⊂ T (S).

(b) If T (S) ⊂ T (X \ S), then R(T ) = Y .

(c) If Y \ T (S) is connected and X \ S �= ∅, then again R(R) = Y .
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Proof. Note that T (X) and T (S) are closed and T (X \ S) is open by (e)
and (c) of Theorem 2.5. Hence,

T (X) = T (S) ∪ T (X \ S) = T (S) ∪ T (X \ S) = T (X) .

This and (c) and (e) of Theorem 2.5 imply the corollary. �
Remark 2.1. If T ∈ C1(X, Y ), the fact that T is a local C1–diffeomorphism

at x if and only if x is a regular point of T implies that Σ ⊂ S. Moreover, if
dimY ≥ 3 and T : X → Y is a Fredholm map of index zero, it is known that if x is
an isolated singular point of T , then T is locally invertible at x. Hence, in general,
Σ �= S.

Corollary 2.6. Let T = A+N : X → Y be as in Theorem 2.5, dimY ≥ 3
and assume that each point x ∈ X is either a regular point or an isolated
critical point of T . Then T is a homeomorphism of X onto Y .

Proof. Since T is a C1–Fredholm map of index zero by Proposition 2.3,
the observations in Remark 2.1 imply that T is a locally homeomorphic map
from X into Y . Then T is a homeomorphism from X onto Y by the global
inversion theorem. �

Next, we shall extend Theorem 2.5 to closed linear maps A : D(A) ⊂
X → Y . Define the graph norm ||x||A = ||x|| + ||Ax|| on D(A). Then
XA = (D(A), ||.||A) is a Banach space.

Theorem 2.6. Let A : D(A) ⊂ X → Y be a linear closed Fredholm map of
index zero and N : D(N) ⊂ X → Y be a nonlinear map with D(A) ⊂ D(N)
that is continuously Frechet differentiable from D(A) into Y and A+tN ′(x) :
XA → Y is A–proper w.r.t Γ for each x ∈ XA and t ∈ [0, 1]. Then T = A+N
satisfies assertions (a)–(b) in Proposition 2.3 on XA. Moreover, if T also
satisfies condition (+) as a map from D(A) into Y , T : XA → Y is A–proper
and N maps bounded set in D(A) ⊂ X into bounded sets of Y , then all the
assertions of Theorem 2.5 hold for T : XA → Y .

Proof. It is clear that T : XA → Y is a continuous Fredholm map of
index zero. Since ||x|| ≤ ||x||A on XA, then each continuous linear map L :
D(A) ⊂ X → Y is also continuous from XA into Y . Hence, N ∈ C1(XA, Y )
as does A+N and therefore assertions (a)–(b) in Proposition 2.3 are true.

Next, in view of Theorem 2.5, it remains to show that T : XA → Y
satisfies condition (+). Let Txn = Axn + Nxn → f in Y . Then {xn} is
bounded in X and {Nxn} is bounded in Y by hypothesis. Thus, {Axn}
is bounded in Y . Since xn = x0n + x1n with x0n ∈ N(A), then {Ax1n}



On the Number of Solutions of Nonlinear Equations 85

is bounded in Y . Moreover, by the continuity of the partial inverse A−1 :
R(A) ⊂ Y → XA, we get that ||x1n||A ≤ ||A−1|| ||Ax1n|| ≤constant. Hence,
{x0n} is also bounded in XA since dimN(A) is finite and therefore {xn} is
bounded in XA. �
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6. P. S. Milojević: Solvability of semilinear and applications to semlinear hy-
perbolic equations. Nonlinear Functional Analysis (P.S. Milojević ed.), Lec-
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