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THE CONVERSE THEOREM OF APPROXIMATION
BY ANGLE IN VARIOUS METRICS
FOR NON-PERIODIC FUNCTIONS

Milos Tomié

Abstract. The modulus of smoothness and the best approximation by angle
of the derivative of a non-periodic function in the metric of L, are estimated
by the best approximations by angle from entire functions of exponential type
in the metric Lp, 1 < p < ¢ < 4o00. In addition, the representation theorem
of the derivative of a function is proved. The corresponding results for periodic
functions are given in [4].

1. Introduction and Preliminaries

In this paper results from [4] are extended to the case of non—periodic
functions defined on the space R™. The results that were obtained can be
used to establish embedding theorems of the space of functions which are
defined by the modulus of smoothness, or by the best approximations.

In this section we will give the notations and assertions which are used
to obtain the fundamental results of the paper. The entire functions of
exponential type are the basic tools used to obtain the results.

Let R™ denote an n—dimensional Euclidian space and let € = (z1,... ,x,)
denote its points. For a real-valued function f(x) it is supposed that | f(x)|P
is integrable with norm

=1l = ([ 1r@pdz) ™ 1<p<ro, [< [

Denote the set of all functions f for which || f|| < 400 by L, = L,(R™).
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Denote the mixed modulus of smoothness of order k;; with respect to the
variable z;, of function f, 1 <i; <n, 1 <j<m <n (see [3], [4]), by

Wk 1,,L(f) i1y Zm)pa

where k;; € N and §;; > 0.

Let g,, = gu,(1,... ,2,) € L, be an entire function of exponential type
v; with respect to the variable z;, but with respect to all other variables
Gu; € Ly it follows that g,, =0 for v; =0, 1 < p < 400 (see [2], 3.1, 3.2.2).

The best approximation by an m—dimensional angle of the function f € L,
with respect to the variables z;,,... ,2;,,,1<7; <n,1<j <m < n,is the
quantity (see [3])

‘ ’ ViZO-
p

(L1) Yiry ey (D = 0| £ = g0,
j=1

Like in the paper [3] we will be using the Fejer general integral, which for
a function f(x) of one variable z is given by the following equality

(1.2) Kxf = K fla /fa:—t )dt A>0, /—/_:o,
6)

where (see [1], 106; [2], 8.

COS U — COS 2U
(1.3) P(u) = — [®[[1 < +oo.

For a function of two variables f(x,y) € L,(R?) we form the integrals
Koo f = Koo f(@.y) = /fx—ty )w

K)\uf = K)\uf(mvy) = KAmeuf(:E,y) >

—+ o0
Where)\,,u>0,/:/ .

If we denote

(1.5) Ox(t) = —@(%t),
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(1.6) W(t, 1) = O ()0, (1)

then
(1.7) Ky, f(z,y) = flz =ty —u) Wy, (t,u) dtdu = Wy, * f.
Ro

Therefore, the function K, f(x,y) is the convolution of the functions Wy,
and f. The function W), belongs to the space Li(R?) and |[Wy,|1 < M
independent of A > 0, > 0.

We define
(1.8) Kooof =0, Keof =0, Kof=0, Kyf=0, Kop.f=0,

for A >0, > 0.

The function K)o f(z,y) is entire of exponential type A with respect to
x, and function K, f(x,y) is entire of exponential type with respect to y.
Function Ky, f(x,y) is entire of exponential type A with respect to z and of
type p with respect to y (see [1], [2]).

The two—dimensional angle from the Fejer integrals is the function

(1.9) Xopf = Koxoo f + Kocouf — Kaxouf -

The following result holds:

Lemma 1.1 ([3, Lemma 1]). For a function f(z,y) € L,(R?), 1 < p < 400,
and A >0, u > 0 the following holds

(1.10) |f - X,\#pr < CYnu(fp

where C is an absolute constant.

The best approximation of the function f(z,y) by a one-dimensional angle
is denoted by

(1~11) Y)\oo(f)p = YA(f)p ) Yoou(f)p = Yu(f)p'

It holds

(1.12) Yo (f)p = Yao(f)p »  Yoou(f)p = You(f)p-
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Note that
(1.13) Yooo (f)p = Yeoo(f)p = Yoo(f)p = Ifllp, s 1 <p<+o0.
We define the entire functions g;; = g5 f, 4,7 = 0,1,2,... as following
goo = Kaaof ,
go; = Kopit1 f — Koo f
(1.14) gio = Kaiv1af — Kaisf

Gij = Kaivigir1 [ — Koivrgi | — Koigitr [ + Kaigs f
= —{Xoioi f — Xaigj—1 [ — Xai—105 f + Xai-195-1 [},
where 7,5 =1,2,....
The function g;; f is entire of type 2T with respect to x and of type 277!
with respect to y. From Lemma 1.1 we deduce that the following holds
(115) HglijP < }/7[2"71][2]'*1](]0)17 ) Z?] :071727"' ’

where [2"71] =0 for k =0, [27!] = 2" for k => 1.

Instead of a < Cb we use a < b, where C' is a constant which does not
depend on a and b, a > 0, b > 0.

The function f(x,y) can be represented by the entire function g;; f = gi;.
It holds:

Lemma 1.2 ([3, Thm. 2]). For a function f(z,y) € L,(R?), 1 < p < 400,
in the sense of Ly, the following equality holds

+0o0 +0oo

(1.16) Fay) 23S gt

i=0 j=0
We also need the following result:

Lemma 1.3. For singular integrals Koxtioof, Kooan+1f of a function f,
f(z,y) € L,(R?), 1 < p < 400, in the sense of Ly, the following equalities
hold

A 4oo

(1.17) Koo 2 33 gsf . A=0,12,...,
i=0 j=0
) +oo p

(118) Koo2“+1f g Zzgl]fv M:0,1,2,....

i=0 j=0
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Proof. For a fixed number A note the sequence

A N
(1.19) Gav=Ganf =YY g;f, N=012....

i=0 j=0
In view of (1.14), we deduce that
(120) G)\Nf = K2>\+12N+1f.

Since
KQAJflOOf - K2A+12N+1f == K2>\+loo(f - K002N+1f)7

then using (1.20) and Lemma 1.1, we get
(1.21) [Kortioof = Gan f|,, < Yocan (f)y-

Since Yooon (f)p — 0 as N — 400 (see Theorem 1 in [3]), then in view of
(1.21) and (1.19) we deduce that (1.17) holds.

In the same way we prove equality (1.18).
Thus, Lemma 1.3 has been proved. [

To prove Lemma 1.4, which is greatly used to obtain the fundamental
results of the paper, we will use methods and facts concerning the space
which is wider than the space L,. That space is the space of generalized
functions (distributions).

Denote the set of all finite functions which are infinitely differentiable in
R™ by D = D(R™). The convergence in D is defined, so D is called the space
of test functions.

A linear continuous functional on the space of test functions I is called
a generalized function. The set of all generalized functions is denoted by
D’ = D'(R™).

Every function f(x) which is locally integrable on R™ defines the gener-
alized function by equality

(fr0) = / f@)p(@)de . peD,

and it is called regular generalized function. In that sense the inclusion
L, C I holds.
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The convolution fx*g of generalized functions f and g is defined in [5, 7.4].
The following assertion holds ([5, 7.5(c)]): If the convolution fxg exists, then
so do the convolutions D™ f x g and f * D*g with

D*(fxg)=D%fxg=fxD%

where @ = (aq,...,q,) i a vector with non-negative integer components
aj and D*f denotes the derivative

o ol flay, ... an
Do fla) = SR ) el —ar e tan,

Now we can prove the following result:

Lemma 1.4. Let f(z,y) € L,(R?), 1 < p < 400, and let 71, r2 be non—
negative integers. In the function f(x,y) has the derivative

ot +r2 f

(ri,r2) —
f ox™1 Qy"?

€ L,(R?),

then the convolution Ky, f = Wy, * f has the derivative (Kmf) (rar2) €L,
and almost everywhere the equality

(122) (K)\Nf>(rl’r2) — K)\Mf(Tl,’f?) , )\’ 0 Z 07

holds.

Proof. In view of the assertion above (see [5]), we deduce that

(1.23) ((wa)m,m)’@) — (EnafT17.0) , o €D,

holds.

Since f('"l’”) € L, and W), € L; we have K,\uf(“""?) € L,. Therefore
from equality (1.23) the equality (1.22) follows (Lemma of Du Bois Reymond,
[5, 5.6]).

Lemma 1.4 has been proved. [
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2. On Representation of the Derivative of a Function

In this section we derive the theorem which is used to represent the deriva-
tives of a function and derivatives of Fejer singular integrals of the function
using the series whose terms are entire functions. In fact, we generalize
Lemmas 1.2 and 1.3.

Theorem 2.1. Let f(z,y) € L,(R?), 1 < p < q < +oo. Let r; be non—
negative integers,

1 1 .
oi=ri+-——-, 1=1,2,
q
and
+00 +00
(2.1) DD 4+ D)7+ D)7ITYE(f), < +oo.
i=0 j=0

Then functions f(x,y), Kozt100f, Koou+1 f have derivatives

f(T177"2) 9 (K2>\+1oof) (7'1,7"2) 5 (KOO2;L+1f)(Tl7T2)

belonging to the space Lq and the following equalities hold (in the sense of
L,):

A +oo

(2.2) (Korirnef) 72 & SN g a=0,12,..,
i=0 j=0
‘oo p

(2.3) (Koogin f) 772 & SN gl p=0,12,.,
i=0 j=0
+o0 +o0

(2.4) flrirs) @ Z ggl,m‘

i=0 j=0

Proof. Taking into account Lemmas 1.2 and 1.3 and the fact that g;; are
entire functions of exponential type 2/*! with respect to  and 2/+! with
respect to y, and that for the entire functions and trigonometric polynomials
the same inequalities used in [4] hold, we can apply the method used to
prove the corresponding theorem for periodic functions (see [4, Thm. 3.1]).
Therefore in the proof of this theorem we will only give the main results
using the results obtained in [4].
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We will prove that equality (1.17) from Lemma 1.3 holds in L,. As in [4]
we denote

A P

(2.5) GfN:Z Z gij:G,\p—G,\N, P>N+1,
i=0 j=N+1

(2.6) A= |G}

Then (see [4, Egs. (3.14)—(3.54)])

A P
(2.7) A<<Z Z 2(“”)‘1(%_%)Y[gifl][m‘—l](f)p-

i=0 j=N+1

Using (2.7) and condition (2.1) we deduce that in the sense of L, equality
(1.7) holds, i.e.

A 4o

(2.8) Kor+1oo f @ Zzgij-

i=0 j=0

In the following step from equality (2.8) we derive equality (2.2). To
obtain that we use the method which was used in [4] to obtain equality (3.75)
from equality (3.58) and the corresponding inequality for entire functions of
exponential type.

Similarly equalities (2.3) and (2.4) are established.

Thus, Theorem 2.1 has been proved. [
Theorem 2.2. Let conditions of Theorem 2.1 hold for a function f(x,y).

Then

(2.9) (Kart1oof) (rira) _ K1 f172)
(2.10) (Kowatr £) 77 = Koo f072)
(2.11) (Xarg) 777 = Xy fr172)

where A\, u=0,1,2,....

Proof. In view of equality (1.14), Theorem 2.1 and Lemma 1.4 we deduce
that equality

(2.12) (gis f)") = gig prrre)
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holds.
Now, from (2.2) in view of (2.12) it follows

A +oo
(213) (K2*+1oof) (r1,72) (i) Zzgijf(rl,rg) )

i=0 j=0

Since f(rv72) ¢ L,(R?) (Theorem 2.1), we can apply Lemma 1.3 and
obtain

A +oo
(2.14) Koo f072 2 3TN gy 072
=0 j=0
Equalities (2.13) and (2.14) yield equality (2.9).

Similarly, we prove equality (2.10). Equality (3.11) is the consequence of
equalities (1.9), (2.10), (2.11), Theorem 2.1 and Lemma 11.4.

Thus, Theorem 2.2 has been proved. [J

Corollary 2.3. The equality (2.4) implies

“+o00 +00

1/
(215)  ||fm)|| < {ZZuH)m“(jH)m1Y;§-<f>p} ;

i=0 j=0

Putting p = ¢, from Theorem 2.1 we obtain the following statement:

Corollary 2.4. Let f(x,y) € L,(R?), 1 <p < +o0. Let r1 be non-negative
integers, and

+o00 +00
(2.16) S G+ D)PG A+ )PV, < +oo.

=0 j=0

Then functions f(x,y), Koxt1aof, Kooau+1 f have derivatives

f(T17T2) bl (K2>\+loof)(rl7r2) 5 (KOOQHJﬁlf)(ThTQ)

belonging to the space L, and equalities (2.2), (2.3), (2.4) hold (in the sense
of Lp).
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3. On Approximation by Angle of the Derivative of a Function

Theorems 2.1 and 2.2 give a possibility to estimate the best approxi-
mation by angle of the derivative of a function in the norm of L, by best
approximations by angle of the function in the norm of L,,.

Theorem 3.1. Let conditions of Theorem 2.1 be satisfied for a function
f(z,y) € Ly(R?), 1 <p < q< +oo. Then

0o foo ‘ 1/q
(3.1) Yorou (f(n,rz))q < {ZZQW@QM(DY{;H[QJ‘1}(f)p} )

1=\ j=p

400 +o0 1/q
(3.2) szoo<f(“””2)) < {ZZZ”‘“W” (312~ 1}(f)p} ,

=\ J=p

+00 400 1/q
R e L B D) SECEC AT N S

1=0 j=p
for \, u=0,1,2,....

Proof. By definition of the best approximation by angle and equality (1.9)
we deduce that

(3.4) Yorou (f(m’TQ))q < Hf(Tl’TQ) - X[zAfl][Qufl]f(n’Tz)

q

from which, using theorems 2.2 and 2.1, it follows

(3.4) ym“(f(l,rz)) <HZZ (r1.r2)

Inequality (3.5) yields (3.1) (see (2.5), (2.6) and (2.7)).
Similarly, inequalities (3.2) and (3.3) are proved.
Thus, Theorem 3.1 has been proved. [

4. The Converse Theorem of Approximation by Angle

In this section we establish the converse theorem of approximation by
angle in various metrics for non-periodic functions using the results of Sec-
tions 2 and 3. This way we obtain the generality of Theorem 3 in [3] for
1<p<+o0.
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Theorem 4.1. Let f(z1,...,2,) € Lp(R™), 1 < p < g < 400, ki,l; € N,

r; nonnegative integers, o; = r; + % - %, i=1,...,n, and let

+o0 +oo n
(4.1) YD T+ Y L (e < +oo.

V1 =0 Un =04=1

Then for the mized modulus of smoothness w of the derivative f(r")

for any set of indices {i1,... ,in}, 1 <i; <n, 1 <j<m <n, the following
holds
1 1
49 o ( (i) 2 ,—>
(4.2) Wi, ki, \ L i)

<< 3 I

{il, .,ig}fil

{ Z Z H Vi 1)tk +ai;) =1

7/7;S+1:li5+1+1 Vi, =iy, +1 Vi 41 =0 Vi, =0

n

1/q
T 6+ 0¥, 0,

D SIS T o Z

vig =lip +1 Vigy =bipy +1 Vi, 1 =0 i

n 1/q
H Vl +1) 97 *1yq un(f)p} )

where summing is over all {iy,... ;is} C {i1,... ,im}, and constant C does
not depend on neither f norl; =1,2,....

For n =2 the following inequalities are contained in formula (4.2):
(4.3) Wk (072, 1/10,1 /1) < A,
(4.4) wi, (fU0) /L), < B,
(4.5) Wi, (f(m,rz)’ 1/l2)q < C,
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where
i L 1/q
A=k l;’“?{z D i+ 1)atte =1 4 1)‘1(’“2+"2)‘1Y;§’-(f)p}
i=0 j=0
Iy 1/q
Fip S S iy, |
i=0 j=lp+1
l2 +o00 1/q
+ 12—’@{2(]'4_1)(1(k2+02)1 Z Z‘qmlyg(f)p}
§=0 i=l1+1

“+o00 1/q
H Y S oo A,

i=l1+1j=l2+1

B = zl’ﬁ{

—

1 +o0 1/q
(i 4+ 1ythro 1 S 1>q“2—1123»<f>p}

ing

i=0 §j=0
400 400 1/q
+ { D DTG DY, } ,
i=l1+1 =0

2 1/q
C = ™Y (j+1etete)- IZ (i+1) q"l‘lYiZ(f)p}

"Mi

]:O =0
+o0o  +oo 1/q
{3 @)
1=0 j=l2+1
fOTll,lgz 1,2,....

Proof. We will prove inequalities (4.3), (4.4) and (4.5). As in [4] (see [4,
Proof of Thm. 5.1]), we have

(46) Wkikso (f(’l”l,’l’g)7 1/l17 1/l2)q < Wiy ks (f(rl,'rg) _X2)‘2“f(rl7r2)’ 1/l17 1/l2)q

Fhgks (Xoron f072), 1)1, /1) = T+

For I, by virtue of the property of the modulus and Lemma 1.1, the
following inequality

(4.7) I} < Yorou (f(’l”l,TZ))
holds.

q
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Using Theorem 2.2 for quantity /s we have
(4.8) Iy = Wi, 1, ((xgxzuf)(“’”), /1y, 1/l2> .
q

Since Xgof =0 for f € L,, 1 <p < +o0, the equality

A Iz A B
(4.9) Xovguf =Y Wity =YD i
i=0 7=0

i=0 j=0

holds, where

(4.10) Vi = Xoigu f — Xpgimjan f 5 M5 = Xonos f — Xoappi—1) [ -
Since
A
Zwi = Kpvtioof — Koxtigus f
i=0

by virtue of the equalities (1.17), (1.19), (1.20) (Lemma 1.3), we get
A ) A +oo
P
(4.11) D E D> gl
i=0 i=0 j=p+1
From equality (4.11) we derive equality

A +oo
@ Z Z g§;1+k1y7‘2+k2)

> ri+ky,ra+ka)
1=0 j=p+1

A
(4.12) <Z Vi
=0

with

A )(Tl-i-kl)

(413) | (;J i

A2 _ 1/q
, < {Z Z 2“1( 1+U1)2]¢I202y[2i1“2j1](f)p} )

i=0 j=p+1

In view of the results that we have obtained ((4.6)—(4.13)) and inequality
(3.1), applying the method used to get the corresponding inequality in [4]
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((5.19)), we deduce that
(4.14) wpyp, (FO07,1/0,1/12)

Aok ' 1/q
< l;kl l;kQ {Z Z 21Q(k1+01)2]11(162-1—:72)}/[;_1][2],_1} (f)p}
i=0 j=0

k A . = i o
n lf 1{Z2zq(k:1+a1) Z 2]402}/'[gi_1][21_1](f)17}

=0 J=p+1

. poo = ta
I l2_ Q{Z 2]q(k2+0'2) Z 21q01y‘[gi1”2j1](f)p}
7=0

i=A+1

+o0o  +oo . . 1/q
—I—{ Z Z 22q0123q02y[gi_1“2j_1](f)p} .

i=A+1j=p+1

Choosing A and 1 so that 2271 <[, 2#71 <[, < 2#, (4.14) implies (4.3).
Now we will prove inequality (4.4). We have

(4.15) Wy (f(rl’TQ), 1/[1)1 < wg, (f("’hTQ) — KQ/\-HOOf(Tl’TQ), 1/ll)q
+ wg, (K2A+1oof(r1’T2), 1/l1)q =13+ 1.

Using the property of modulus and Lemma 1.1 we obtain

(4.16) I < Yoroo (fr072)) .

q
In order to estimate the quantity I, we will use the equality

(4.17) K2A+1oof(r1’rz) = K2A+1oof(r1’r2) — Kortigi41 f(Tl’rz)
+ Kort1g9t+1 f(T1,T2) ,

where t is an arbitrary natural number.

In view of equalities (1.19) and (1.20) and Lemma 1.4, we get

At
(4.18) Eorrgean fU072) =3 7% "(gi)0r).

i=0 =0
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Now we derive

A t
Z Z(gz’jf)(rﬁk“”)

1=0 5=0

N ¢ 1/q
< ll—krl {Z 21q(1€1+01) Z 2]‘]02}/'[31_71][23-,1} (f)P}
i=0 7=0

(see the procedure for estimation of quantity B in Theorem 3.1 in [4]). Also,

(4.19) Wk, (K2A+12t+1 f(rl’m))q < ll_kl

q

(4.20) Wiy (K2A+1oof(r1’T2) — Koxtigi41 f(Tl’TQ), 1/ll)q

& [T = Ko O Vg (£

Using (4.17), (4.19) and (4.20) we obtain

A t 1/q
(4.21) Iy < Yot (f(rl,rz))q + ll—k1 {Z qu(k1+01) Z 2jq‘72Y[2¢1[2j1](f)p} .
i=0 j=0

By (3.2) and as t — +o0 in view of (4.15), (4.16) and (4.21) we conclude
that

Ao foo 1/q
(422) wn, (7 ) <t {5 ot ),

i=0 =0
yoa oo | 1/q
n {ZZqumQ]qUQY[gil”Qj1](f)p} ’
i=X j=0

Choosing A so that 22~1 < [; < 2* from (4.22) we obtain (4.4). Similarly
we establish (4.5). O

Remark. Theorem 4.1 can be interpreted geometrically for n = 1,2, 3, which
was done in [4, Thm. 5.1].

Corollary 4.2. Forn =1 we have Y = E and formula (4.2) contains only
the following inequality:

l +o0

1/q 1/q
Wk (f(r)7 1/Z)q < l_k{Z(i+1)q(k+0)_lEg(f)p} +{ Z Z'qan;J(f)p} 7

=0 i=l+1
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where
—+oco

(4.23) D i+ 1) EL(f), < 400,
i=0

k € N, r non-negative integer, o = r + ]—1) — %, [=1,2,....

If (4.23) holds then f") € Ly(R) and the corresponding theorem of repre-
sentation holds.
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