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THE CONVERSE THEOREM OF APPROXIMATION
BY ANGLE IN VARIOUS METRICS
FOR NON-PERIODIC FUNCTIONS

Miloš Tomić

Abstract. The modulus of smoothness and the best approximation by angle
of the derivative of a non-periodic function in the metric of Lq are estimated
by the best approximations by angle from entire functions of exponential type
in the metric Lp, 1 ≤ p ≤ q < +∞. In addition, the representation theorem
of the derivative of a function is proved. The corresponding results for periodic
functions are given in [4].

1. Introduction and Preliminaries

In this paper results from [4] are extended to the case of non–periodic
functions defined on the space R

n. The results that were obtained can be
used to establish embedding theorems of the space of functions which are
defined by the modulus of smoothness, or by the best approximations.

In this section we will give the notations and assertions which are used
to obtain the fundamental results of the paper. The entire functions of
exponential type are the basic tools used to obtain the results.

Let R
n denote an n–dimensional Euclidian space and let x = (x1, . . . , xn)

denote its points. For a real–valued function f(x) it is supposed that |f(x)|p
is integrable with norm

‖f‖ = ‖f‖p =
(∫

|f(x)|p dx
)1/p

, 1 ≤ p < +∞ ,

∫
=

∫
Rn

.

Denote the set of all functions f for which ‖f‖ < +∞ by Lp = Lp(Rn).
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Denote the mixed modulus of smoothness of order kij with respect to the
variable xij of function f , 1 ≤ ij ≤ n, 1 ≤ j ≤ m ≤ n (see [3], [4]), by

ωki1 ,... ,kim
(f, δi1 , . . . , δim)p ,

where kij ∈ N and δij ≥ 0.
Let gνi = gνi(x1, . . . , xn) ∈ Lp be an entire function of exponential type

νi with respect to the variable xi, but with respect to all other variables
gνi ∈ Lp it follows that gνi = 0 for νi = 0, 1 ≤ p < +∞ (see [2], 3.1, 3.2.2).
The best approximation by anm–dimensional angle of the function f ∈ Lp

with respect to the variables xi1 , . . . , xim , 1 ≤ ij ≤ n, 1 ≤ j ≤ m ≤ n, is the
quantity (see [3])

(1.1) Yνi1 ...νim
(f)p = inf

g

∥∥∥f −
m∑

j=1

gνij

∥∥∥
p
, νi ≥ 0 .

Like in the paper [3] we will be using the Fejer general integral, which for
a function f(x) of one variable x is given by the following equality

(1.2) Kλf = Kλf(x) =
λ

2

∫
f(x − t)Φ

(λ

2
t
)
dt , λ > 0 ,

∫
=

∫ +∞

−∞
,

where (see [1], 106; [2], 8.6)

(1.3) Φ(u) =
cosu− cos 2u

πu2
, ‖Φ‖1 < +∞ .

For a function of two variables f(x, y) ∈ Lp(R2) we form the integrals

Kλ∞f = Kλ∞f(x, y) =
λ

2

∫
f(x− t, y)Φ

(λ

2
t
)
dt ,

K∞µf = K∞µf(x, y) =
µ

2

∫
f(x, y − u)Φ

(µ

2
u
)
du ,(1.4)

Kλµf = Kλµf(x, y) = Kλ∞K∞µf(x, y) ,

where λ, µ > 0,
∫

=
∫ +∞

−∞
.

If we denote

(1.5) Θλ(t) =
λ

2
Φ

(λ

2
t
)
,
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(1.6) Wλµ(t, u) = Θλ(t)Θµ(u) ,

then

(1.7) Kλµf(x, y) =
∫

R2

f(x− t, y − u)Wλµ(t, u) dtdu = Wλµ ∗ f .

Therefore, the functionKλµf(x, y) is the convolution of the functionsWλµ

and f . The function Wλµ belongs to the space L1(R2) and ‖Wλµ‖1 ≤ M
independent of λ > 0, µ > 0.
We define

(1.8) K0∞f = 0 , K∞0f = 0 , K00f = 0 , Kλ0f = 0 , K0µf = 0 ,

for λ > 0, µ > 0.
The function Kλ∞f(x, y) is entire of exponential type λ with respect to

x, and function K∞µf(x, y) is entire of exponential type with respect to y.
Function Kλµf(x, y) is entire of exponential type λ with respect to x and of
type µ with respect to y (see [1], [2]).
The two–dimensional angle from the Fejer integrals is the function

(1.9) χλµf = K2λ∞f +K∞2µf −K2λ2µf .

The following result holds:

Lemma 1.1 ([3, Lemma 1]). For a function f(x, y) ∈ Lp(R2), 1 ≤ p < +∞,
and λ ≥ 0, µ ≥ 0 the following holds

(1.10)
∥∥f − χλµf

∥∥
p
≤ CYλµ(f)p ,

where C is an absolute constant.

The best approximation of the function f(x, y) by a one–dimensional angle
is denoted by

(1.11) Yλ∞(f)p = Yλ(f)p , Y∞µ(f)p = Yµ(f)p .

It holds

(1.12) Yλ∞(f)p = Yλ0(f)p , Y∞µ(f)p = Y0µ(f)p .
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Note that

(1.13) Y0∞(f)p = Y∞0(f)p = Y00(f)p = ‖f‖p , 1 ≤ p < +∞ .

We define the entire functions gij = gijf , i, j = 0, 1, 2, . . . as following

(1.14)

g00 = K22f ,

g0j = K22j+1f −K22jf ,

gi0 = K2i+12f −K2i2f ,

gij = K2i+12j+1f −K2i+12jf −K2i2j+1f +K2i2jf

= −{
χ

2i2jf − χ
2i2j−1f − χ

2i−12jf + χ
2i−12j−1f

}
,

where i, j = 1, 2, . . . .
The function gijf is entire of type 2i+1 with respect to x and of type 2j+1

with respect to y. From Lemma 1.1 we deduce that the following holds

(1.15) ‖gijf‖p 	 Y[2i−1][2j−1](f)p , i, j = 0, 1, 2, . . . ,

where
[
2k−1

]
= 0 for k = 0,

[
2k−1

]
= 2k−1 for k =≥ 1.

Instead of a ≤ Cb we use a 	 b, where C is a constant which does not
depend on a and b, a ≥ 0, b ≥ 0.
The function f(x, y) can be represented by the entire function gijf = gij .

It holds:

Lemma 1.2 ([3, Thm. 2]). For a function f(x, y) ∈ Lp(R2), 1 ≤ p < +∞,
in the sense of Lp, the following equality holds

(1.16) f(x, y)
(p)
=

+∞∑
i=0

+∞∑
j=0

gijf .

We also need the following result:

Lemma 1.3. For singular integrals K2λ+1∞f , K∞2µ+1f of a function f ,
f(x, y) ∈ Lp(R2), 1 ≤ p < +∞, in the sense of Lp, the following equalities
hold

K2λ+1∞f
(p)
=

λ∑
i=0

+∞∑
j=0

gijf , λ = 0, 1, 2, . . . ,(1.17)

K∞2µ+1f
(p)
=

+∞∑
i=0

µ∑
j=0

gijf , µ = 0, 1, 2, . . . .(1.18)
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Proof. For a fixed number λ note the sequence

(1.19) GλN = GλNf =
λ∑

i=0

N∑
j=0

gijf , N = 0, 1, 2, . . . .

In view of (1.14), we deduce that

(1.20) GλNf = K2λ+12N+1f .

Since
K2λ+1∞f −K2λ+12N+1f = K2λ+1∞

(
f −K∞2N+1f

)
,

then using (1.20) and Lemma 1.1, we get

(1.21)
∥∥K2λ+1∞f −GλNf

∥∥
p
	 Y∞2N (f)p .

Since Y∞2N (f)p → 0 as N → +∞ (see Theorem 1 in [3]), then in view of
(1.21) and (1.19) we deduce that (1.17) holds.
In the same way we prove equality (1.18).
Thus, Lemma 1.3 has been proved. �
To prove Lemma 1.4, which is greatly used to obtain the fundamental

results of the paper, we will use methods and facts concerning the space
which is wider than the space Lp. That space is the space of generalized
functions (distributions).
Denote the set of all finite functions which are infinitely differentiable in

R
n by D = D(Rn). The convergence in D is defined, so D is called the space

of test functions.
A linear continuous functional on the space of test functions D is called

a generalized function. The set of all generalized functions is denoted by
D

′ = D
′(Rn).

Every function f(x) which is locally integrable on R
n defines the gener-

alized function by equality

(f, ϕ) =
∫

f(x)ϕ(x) dx , ϕ ∈ D ,

and it is called regular generalized function. In that sense the inclusion
Lp ⊂ D

′ holds.
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The convolution f ∗g of generalized functions f and g is defined in [5, 7.4].
The following assertion holds ([5, 7.5(c)]): If the convolution f ∗g exists, then
so do the convolutions Dαf ∗ g and f ∗Dαg with

Dα(f ∗ g) = Dαf ∗ g = f ∗Dαg

where α = (α1, . . . , αn) is a vector with non–negative integer components
αj and Dαf denotes the derivative

Dαf(x) =
∂|α|f(x1, . . . , xn)

∂xα1
1 · · · ∂xαn

n
, |α| = α1 + · · ·+ αn .

Now we can prove the following result:

Lemma 1.4. Let f(x, y) ∈ Lp(R2), 1 ≤ p < +∞, and let r1, r2 be non–
negative integers. In the function f(x, y) has the derivative

f (r1,r2) =
∂r1+r2f

∂xr1∂yr2
∈ Lp(R2) ,

then the convolution Kλµf = Wλµ ∗ f has the derivative
(
Kλµf

)(r1,r2) ∈ Lp

and almost everywhere the equality

(1.22)
(
Kλµf

)(r1,r2) = Kλµf
(r1,r2) , λ, µ ≥ 0 ,

holds.

Proof. In view of the assertion above (see [5]), we deduce that

(1.23)
((

Kλµf
)(r1,r2)

, ϕ
)
=

(
Kλµf

(r1,r2), ϕ
)
, ϕ ∈ D ,

holds.

Since f (r1,r2) ∈ Lp and Wλµ ∈ L1 we have Kλµf
(r1,r2) ∈ Lp. Therefore

from equality (1.23) the equality (1.22) follows (Lemma of Du Bois Reymond,
[5, 5.6]).

Lemma 1.4 has been proved. �
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2. On Representation of the Derivative of a Function

In this section we derive the theorem which is used to represent the deriva-
tives of a function and derivatives of Fejer singular integrals of the function
using the series whose terms are entire functions. In fact, we generalize
Lemmas 1.2 and 1.3.

Theorem 2.1. Let f(x, y) ∈ Lp(R2), 1 ≤ p ≤ q < +∞. Let ri be non–
negative integers,

σi = ri +
1
p
− 1

q
, i = 1, 2 ,

and

(2.1)
+∞∑
i=0

+∞∑
j=0

(i+ 1)σ1q−1(j + 1)σ2q−1Y q
ij(f)p < +∞ .

Then functions f(x, y), K2λ+1∞f , K∞2µ+1f have derivatives

f (r1,r2) ,
(
K2λ+1∞f

)(r1,r2)
,

(
K∞2µ+1f

)(r1,r2)

belonging to the space Lq and the following equalities hold (in the sense of
Lq):

(
K2λ+1∞f

)(r1,r2) (q)
=

λ∑
i=0

+∞∑
j=0

g
(r1,r2)
ij , λ = 0, 1, 2, . . . ,(2.2)

(
K∞2µ+1f

)(r1,r2) (q)
=

+∞∑
i=0

µ∑
j=0

g
(r1,r2)
ij , µ = 0, 1, 2, . . . ,(2.3)

f (r1,r2) (q)
=

+∞∑
i=0

+∞∑
j=0

g
(r1,r2)
ij .(2.4)

Proof. Taking into account Lemmas 1.2 and 1.3 and the fact that gij are
entire functions of exponential type 2i+1 with respect to x and 2j+1 with
respect to y, and that for the entire functions and trigonometric polynomials
the same inequalities used in [4] hold, we can apply the method used to
prove the corresponding theorem for periodic functions (see [4, Thm. 3.1]).
Therefore in the proof of this theorem we will only give the main results
using the results obtained in [4].
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We will prove that equality (1.17) from Lemma 1.3 holds in Lq. As in [4]
we denote

GP
λN =

λ∑
i=0

P∑
j=N+1

gij = GλP −GλN , P > N + 1 ,(2.5)

A =
∥∥GP

λN

∥∥q

q
.(2.6)

Then (see [4, Eqs. (3.14)–(3.54)])

(2.7) A 	
λ∑

i=0

P∑
j=N+1

2(i+j)q
(

1
p− 1

q

)
Y q

[2i−1][2j−1](f)p .

Using (2.7) and condition (2.1) we deduce that in the sense of Lq equality
(1.7) holds, i.e.

(2.8) K2λ+1∞f
(q)
=

λ∑
i=0

+∞∑
j=0

gij .

In the following step from equality (2.8) we derive equality (2.2). To
obtain that we use the method which was used in [4] to obtain equality (3.75)
from equality (3.58) and the corresponding inequality for entire functions of
exponential type.
Similarly equalities (2.3) and (2.4) are established.
Thus, Theorem 2.1 has been proved. �

Theorem 2.2. Let conditions of Theorem 2.1 hold for a function f(x, y).
Then

(
K2λ+1∞f

)(r1,r2) = K2λ+1∞f (r1,r2) ,(2.9) (
K∞2µ+1f

)(r1,r2) = K∞2µ+1f (r1,r2) ,(2.10) (
χ

2λ2µ

)(r1,r2) = χ
2λ2µf (r1,r2) ,(2.11)

where λ, µ = 0, 1, 2, . . . .

Proof. In view of equality (1.14), Theorem 2.1 and Lemma 1.4 we deduce
that equality

(2.12)
(
gijf

)(r1,r2) = gijf
(r1,r2)
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holds.

Now, from (2.2) in view of (2.12) it follows

(2.13)
(
K2λ+1∞f

)(r1,r2) (q)
=

λ∑
i=0

+∞∑
j=0

gijf
(r1,r2) .

Since f (r1,r2) ∈ Lq(R2) (Theorem 2.1), we can apply Lemma 1.3 and
obtain

(2.14) K2λ+1∞f (r1,r2) (q)
=

λ∑
i=0

+∞∑
j=0

gijf
(r1,r2) .

Equalities (2.13) and (2.14) yield equality (2.9).

Similarly, we prove equality (2.10). Equality (3.11) is the consequence of
equalities (1.9), (2.10), (2.11), Theorem 2.1 and Lemma 11.4.

Thus, Theorem 2.2 has been proved. �

Corollary 2.3. The equality (2.4) implies

(2.15)
∥∥f (r1,r2)

∥∥ 	
{+∞∑

i=0

+∞∑
j=0

(i+ 1)σ1q−1(j + 1)σ2q−1Y q
ij(f)p

}1/q

.

Putting p = q, from Theorem 2.1 we obtain the following statement:

Corollary 2.4. Let f(x, y) ∈ Lp(R2), 1 ≤ p < +∞. Let r1 be non–negative
integers, and

(2.16)
+∞∑
i=0

+∞∑
j=0

(i+ 1)r1p−1(j + 1)r2p−1Y p
ij(f)p < +∞ .

Then functions f(x, y), K2λ+1∞f , K∞2µ+1f have derivatives

f (r1,r2) ,
(
K2λ+1∞f

)(r1,r2)
,

(
K∞2µ+1f

)(r1,r2)

belonging to the space Lp and equalities (2.2), (2.3), (2.4) hold (in the sense
of Lp).



54 M. Tomić

3. On Approximation by Angle of the Derivative of a Function

Theorems 2.1 and 2.2 give a possibility to estimate the best approxi-
mation by angle of the derivative of a function in the norm of Lq by best
approximations by angle of the function in the norm of Lp.

Theorem 3.1. Let conditions of Theorem 2.1 be satisfied for a function
f(x, y) ∈ Lp(R2), 1 ≤ p ≤ q < +∞. Then

Y2λ2µ

(
f (r1,r2)

)
q
	

{+∞∑
i=λ

+∞∑
j=µ

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

}1/q

,(3.1)

Y2λ∞
(
f (r1,r2)

)
q
	

{+∞∑
i=λ

+∞∑
j=µ

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

}1/q

,(3.2)

Y∞2µ

(
f (r1,r2)

)
q
	

{+∞∑
i=0

+∞∑
j=µ

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

}1/q

,(3.3)

for λ, µ = 0, 1, 2, . . . .

Proof. By definition of the best approximation by angle and equality (1.9)
we deduce that

(3.4) Y2λ2µ

(
f (r1,r2)

)
q
≤

∥∥∥f (r1,r2) − χ
[2λ−1][2µ−1]f

(r1,r2)
∥∥∥

q

from which, using theorems 2.2 and 2.1, it follows

(3.4) Y2λ2µ

(
f (r1,r2)

)
q
≤

∥∥∥
+∞∑
i=λ

+∞∑
j=µ

g
(r1,r2)
ij

∥∥∥
q
.

Inequality (3.5) yields (3.1) (see (2.5), (2.6) and (2.7)).
Similarly, inequalities (3.2) and (3.3) are proved.
Thus, Theorem 3.1 has been proved. �

4. The Converse Theorem of Approximation by Angle

In this section we establish the converse theorem of approximation by
angle in various metrics for non-periodic functions using the results of Sec-
tions 2 and 3. This way we obtain the generality of Theorem 3 in [3] for
1 ≤ p < +∞.
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Theorem 4.1. Let f(x1, . . . , xn) ∈ Lp(Rn), 1 ≤ p ≤ q < +∞, ki, li ∈ N,
ri nonnegative integers, σi = ri + 1

p − 1
q , i = 1, . . . , n, and let

(4.1)
+∞∑
ν1=0

. . .
+∞∑

νn=0

n∏
i=1

(νi + 1)qσi−1Y q
ν1...νn

(f)p < +∞ .

Then for the mixed modulus of smoothness ω of the derivative f (r1,... ,rn),
for any set of indices {i1, . . . , in}, 1 ≤ ij ≤ n, 1 ≤ j ≤ m ≤ n, the following
holds

ωki1 ...kim

(
f (r1,... ,rn),

1
li1

, . . . ,
1
lim

)
q

(4.2)

≤C
∑

{i1,... ,is}

s∏
j=1

l
−kij

ij

+
{ li1∑

νi1=0

. . .

lis∑
νis=0

s∏
j=1

(νij + 1)q(kij
+σij

)−1

×
+∞∑

νis+1=lis+1+1

. . .

+∞∑
νim=lim+1

+∞∑
νim+1=0

. . .

+∞∑
νin=0

n∏
j=s+1

(νij + 1)qσij
−1Y q

ν1...νn
(f)p

}1/q

+
{ +∞∑

νi1=li1+1

. . .
+∞∑

νim=lim+1

+∞∑
νim+1=0

. . .
+∞∑

νin=0

n∏
j=1

(νij + 1)qσij
−1Y q

ν1...νn
(f)p

}1/q

,

where summing is over all {i1, . . . , is} ⊂ {i1, . . . , im}, and constant C does
not depend on neither f nor li = 1, 2, . . . .

For n = 2 the following inequalities are contained in formula (4.2):

ωk1k2

(
f (r1,r2), 1/l1, 1/l2

)
q

	 A,(4.3)

ωk1

(
f (r1,r2), 1/l1

)
q

	 B,(4.4)

ωk2

(
f (r1,r2), 1/l2

)
q

	 C,(4.5)
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where

A = l−k1
1 l−k2

2

{ l1∑
i=0

l2∑
j=0

(i+ 1)q(k1+σ1)−1(j + 1)q(k2+σ2)−1Y q
ij(f)p

}1/q

+ l−k1
1

{ l1∑
i=0

(i+ 1)q(k1+σ1)−1
+∞∑

j=l2+1

jqσ2−1Y q
ij(f)p

}1/q

+ l−k2
2

{ l2∑
j=0

(j + 1)q(k2+σ2)−1
+∞∑

i=l1+1

iqσ1−1Y q
ij(f)p

}1/q

+
{ +∞∑

i=l1+1

+∞∑
j=l2+1

iqσ1−1jqσ2−1Y q
ij(f)p

}1/q

,

B = l−k1
1

{ l1∑
i=0

(i+ 1)q(k1+σ1)−1
+∞∑
j=0

(j + 1)qσ2−1Y q
ij(f)p

}1/q

+
{ +∞∑

i=l1+1

+∞∑
j=0

iqσ1−1(j + 1)qσ2−1Y q
ij(f)p

}1/q

,

C = l−k2
2

{ l2∑
j=0

(j + 1)q(k2+σ2)−1
+∞∑
i=0

(i+ 1)qσ1−1Y q
ij(f)p

}1/q

+
{+∞∑

i=0

+∞∑
j=l2+1

(i+ 1)qσ1−1jqσ2−1Y q
ij(f)p

}1/q

,

for l1, l2 = 1, 2, . . . .

Proof. We will prove inequalities (4.3), (4.4) and (4.5). As in [4] (see [4,
Proof of Thm. 5.1]), we have

(4.6) ωk1k2

(
f (r1,r2), 1/l1, 1/l2

)
q
≤ ωk1k2

(
f (r1,r2)−χ

2λ2µf (r1,r2), 1/l1, 1/l2
)
q

+ωk1k2

(
χ

2λ2µf (r1,r2), 1/l1, 1/l2
)
q
= I1+I2 .

For I1, by virtue of the property of the modulus and Lemma 1.1, the
following inequality

(4.7) I1 	 Y2λ2µ

(
f (r1,r2)

)
q

holds.
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Using Theorem 2.2 for quantity I2 we have

(4.8) I2 = ωk1k2

((
χ

2λ2µf
)(r1,r2)

, 1/l1, 1/l2
)

q
.

Since χ00f = 0 for f ∈ Lp, 1 ≤ p < +∞, the equality

(4.9) χ
2λ2µf =

λ∑
i=0

ψi +
µ∑

j=0

ηj −
λ∑

i=0

µ∑
j=0

gij

holds, where

(4.10) ψi = χ
2i2µf − χ

[2i−1]2µf , ηj = χ
2λ2jf − χ

2λ[2j−1]f .

Since
λ∑

i=0

ψi = K2λ+1∞f −K2λ+12µ+1f

by virtue of the equalities (1.17), (1.19), (1.20) (Lemma 1.3), we get

(4.11)
λ∑

i=0

ψi
(p)
=

λ∑
i=0

+∞∑
j=µ+1

gijf .

From equality (4.11) we derive equality

(4.12)
( λ∑

i=0

ψi

)r1+k1,r2+k2)
(q)
=

λ∑
i=0

+∞∑
j=µ+1

g
(r1+k1,r2+k2)
ij

with

(4.13)
∥∥∥
( λ∑

i=0

ψi

)(r1+k1)∥∥∥
q
�

{ λ∑
i=0

+∞∑
j=µ+1

2iq(k1+σ1)2jq2σ2Y[2i−1][2j−1](f)p

}1/q

.

In view of the results that we have obtained ((4.6)–(4.13)) and inequality
(3.1), applying the method used to get the corresponding inequality in [4]
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((5.19)), we deduce that

ωk1k2

(
f (r1,r2), 1/l1, 1/l2

)
q

(4.14)

	 l−k1
1 l−k2

2

{ λ∑
i=0

µ∑
j=0

2iq(k1+σ1)2jq(k2+σ2)Y q
[2i−1][2j−1](f)p

}1/q

+ l−k1
1

{ λ∑
i=0

2iq(k1+σ1)
+∞∑

j=µ+1

2jqσ2Y q
[2i−1][2j−1](f)p

}1/q

+ l−k2
2

{ µ∑
j=0

2jq(k2+σ2)
+∞∑

i=λ+1

2iqσ1Y q
[2i−1][2j−1](f)p

}1/q

+
{ +∞∑

i=λ+1

+∞∑
j=µ+1

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

}1/q

.

Choosing λ and µ so that 2λ−1 ≤ l1, 2µ−1 ≤ l2 < 2µ, (4.14) implies (4.3).

Now we will prove inequality (4.4). We have

ωk1

(
f (r1,r2), 1/l1

)
1
≤ ωk1

(
f (r1,r2) −K2λ+1∞f (r1,r2), 1/l1

)
q

(4.15)

+ ωk1

(
K2λ+1∞f (r1,r2), 1/l1

)
q
= I3 + I4 .

Using the property of modulus and Lemma 1.1 we obtain

(4.16) I3 	 Y2λ∞
(
f (r1,r2)

)
q
.

In order to estimate the quantity I4 we will use the equality

K2λ+1∞f (r1,r2) = K2λ+1∞f (r1,r2) −K2λ+12t+1f (r1,r2)(4.17)

+K2λ+12t+1f (r1,r2) ,

where t is an arbitrary natural number.

In view of equalities (1.19) and (1.20) and Lemma 1.4, we get

(4.18) K2λ+12t+1f (r1,r2) =
λ∑

i=0

t∑
j=0

(gij)(r1,r2) .
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Now we derive

(4.19) ωk1

(
K2λ+12t+1f (r1,r2)

)
q
	 l−k1

1

∥∥∥
λ∑

i=0

t∑
j=0

(gijf)(r1+k1,r2)
∥∥∥

q

	 l−k1
1

{ λ∑
i=0

2iq(k1+σ1)
t∑

j=0

2jqσ2Y q
[2i−1][2j−1](f)p

}1/q

(see the procedure for estimation of quantity B in Theorem 3.1 in [4]). Also,

(4.20) ωk1

(
K2λ+1∞f (r1,r2) −K2λ+12t+1f (r1,r2), 1/l1

)
q

	 ∥∥f (r1,r2) −K∞2t+1f (r1,r2)
∥∥

q
	 Y∞2t

(
f (r1,r2)

)
q
.

Using (4.17), (4.19) and (4.20) we obtain

(4.21) I4 � Y∞2t

(
f (r1,r2)

)
q
+ l−k1

1

{ λ∑
i=0

2iq(k1+σ1)
t∑

j=0

2jqσ2Y[2i−1[2j−1](f)p

}1/q

.

By (3.2) and as t → +∞ in view of (4.15), (4.16) and (4.21) we conclude
that

(4.22) ωk1

(
f (r1,r2), 1/l1

) 	 l−k1
1

{ λ∑
i=0

2iq(k1+σ1)
+∞∑
j=0

2jqσ2Y q
[2i−1][2j−1](f)p

}1/q

+
{+∞∑

i=λ

+∞∑
j=0

2iqσ12jqσ2Y q
[2i−1][2j−1](f)p

}1/q

.

Choosing λ so that 2λ−1 ≤ l1 < 2λ from (4.22) we obtain (4.4). Similarly
we establish (4.5). �

Remark. Theorem 4.1 can be interpreted geometrically for n = 1, 2, 3, which
was done in [4, Thm. 5.1].

Corollary 4.2. For n = 1 we have Y = E and formula (4.2) contains only
the following inequality:

ωk

(
f (r), 1/l

)
q
	 l−k

{ l∑
i=0

(i+1)q(k+σ)−1Eq
i (f)p

}1/q

+
{ +∞∑

i=l+1

iqσ1Eq
i (f)p

}1/q

,
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where

(4.23)
+∞∑
i=0

(i+ 1)qσ−1Eq
i (f)p < +∞ ,

k ∈ N, r non–negative integer, σ = r + 1
p − 1

q , l = 1, 2, . . . .

If (4.23) holds then f (r) ∈ Lq(R) and the corresponding theorem of repre-
sentation holds.
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