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INEQUALITIES RELATED TO THE ZEROS
OF SOLUTIONS OF CERTAIN SECOND ORDER

DIFFERENTIAL EQUATIONS

B. G. Pachpatte

Abstract. In this paper we establish some new inequalities related to the zeros
of the solutions of certain second order differential equations by using elemen-
tary analysis. The inequalities obtained here can be used as handy tools in the
study of qualitative behavior of solutions of the associated equations.

1. Introduction

In this paper we consider the following nonlinear second order differential
equations of the forms:(

r(t)|y′(t)|α−1y′(t)
)′

+ q(t)|y(t)|β−1y(t) = 0 ,(A)
(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)′
+ q(t)|y(t)|p+k−2y(t) = 0 ,(B)

where t ∈ I = [t0,+∞), t0 ≥ 0 and I contains the points a and b (a < b),
α ≥ 1, β ≥ 1, p ≥ 0, k ≥ 2 are real constants and k > p, the func-
tion r: I → R = (−∞,+∞) is C

1 – smooth and r > 0, and the function
q: I → R is continuous. Much has been written about the special versions of
equations (A) and (B). The general versions of equations (A) and (B) have
been recently dealt with in [1]–[3], [6], [7], [9]–[12] and results on existence,
uniqueness and other properties of the solutions are established. The object
of this paper is to derive some new inequalities which not only relates points
a and b in I at which the solutions of (A), (B) have zeros but also any point
c ∈ (a, b)) where the solutions of (A), (B) are maximized. The inequali-
ties that we propose here can be used as handy tools in the study of the
qualitative nature of the solutions of equations (A), (B). Here we give some
such applications to convey the importance of our results to the literature.
Finally, we give in brief the further extensions of our results to the higher
order differential equations.
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2. Main Results

Our main results are established in the following theorems.

Theorem 1. Let y(t) be a solution of (A) with y(a) = y(b) = 0 and y(t) �= 0
for t ∈ (a, b). Let |y((t)| be maximized in a point c ∈ (a, b). Then

1 ≤Mβ−α

(∫ b

a

r−(1/α)(s) ds
)α(∫ b

a

|q(s)| ds
)
,(1)

1 ≤ 2α+1Mβ−α

(∫ c

a

r−(1/α)(s) ds
)α(∫ c

a

|q(s)| ds
)
,(2)

1 ≤ 2α+1Mβ−α

(∫ b

c

r−(1/α)(s) ds
)α(∫ b

c

|q(s)| ds
)
,(3)

where M = max |y(t)| = |y(c)|, c ∈ (a, b).

Proof. Let M = |y(c)|, c ∈ (a, b)). From the hypotheses y(a) = y(b) = 0,
we have

M2 = 2
∫ c

a

y(s)y′(s) ds ,(4)

M2 = −2
∫ b

c

y(s)y′(s) ds .(5)

From (4) and (5) we observe that

M2 ≤
∫ b

a

|y(s)||y′(s)| ds(6)

=
∫ b

a

(
r−(1/(α+1))(s)|y(s)|

)(
r(1/(α+1))(s)|y′(s)|

)
ds .

Now by using the Hölder’s inequality on the right side of (6) with indices
(α + 1)/α, α + 1, performing integration by parts and using the fact that
y(t) is a solution of (A) such that y(a) = y(b) = 0, we observe that

M2 ≤
(∫ b

a

r−1/α(s)|y(s)|(α+1)/α ds

)α/(α+1)

×
(∫ b

a

r(s)|y′(s)|α+1 ds

)1/(α+1)

≤
(∫ b

a

r−1/α(s)|y(s)|(α+1)/α ds

)α/(α+1)

×
(∫ b

a

|q(s)||y(s)|β+1 ds

)1/(α+1)

,
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because of

∫ b

a

r(s)|y′(s)|α+1 ds =
∫ b

a

(
r(s)|y′(s)|α−1y′(s)

)
y′(s) ds

= −
∫ b

a

(
r(s)|y′(s)|α−1y′(s)

)′
y(s) ds

=
∫ b

a

q(s)|y(s)|β−1y(s)y(s) ds

≤
∫ b

a

|q(s)||y(s)|β+1 ds .

Finally,

M2 ≤MM (β+1)/(α+1)

(∫ b

a

r−1/α(s) ds
)α/(α+1)

(7)

×
(∫ b

a

|q(s)| ds
)1/(α+1)

.

Dividing both sides of (7) by M2 and then raising the power α+ 1 to both
sides of the resulting inequality we get the required inequality in (1).

From (4), (5) we have

M2 ≤ 2
∫ c

a

|y(s)||y′(s)| ds ,(8)

M2 ≤ 2
∫ b

c

|y(s)||y′(s)| ds .(9)

Inequalities in (2) and (3) follows in similar way by rewriting the integrand
on the right sides in (8) and (9) as in (6) and using Hölder’s inequality with
indices (α+ 1)/α, α+ 1. Performing the integration by parts, the fact that
y(t) is a solution of equation (A) such that y(a) = y(b) = 0, y′(c) = 0 and
following the last arguments as in the proof of inequality (1) given above.
The proof is complete. �

Theorem 2. Let y(t) be a solution of (B) with y(a) = y(b) = 0 and y(t) �= 0
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for t ∈ (a, b). Let y(t) be maximized in a point c ∈ (a, b). Then

1 ≤
(∫ b

a

r−1/(k−1)(s) ds
)k−1(∫ b

a

|q(s)| ds) ,(10)

1 ≤ 2k

(∫ c

a

r−1/(k−1)(s) ds
)k−1(∫ c

a

|q(s)| ds) ,(11)

1 ≤ 2k

(∫ b

c

r−1/(k−1)(s) ds
)k−1(∫ b

c

|q(s)| ds) .(12)

Proof. By following the proof of Theorem 1, from the hypotheses we have
(4) and (5). From (4) and (5) we have

M2 ≤
∫ b

a

|y(s)||y(s)| ds(13)

=
∫ b

a

(
r−1/k(s)|y(s)|1−p/k

)(
r1/k(s)|y(s)|p/k|y′(s)|

)
ds .

Now by applying the Hölder’s ineqquality on the right side of (13) with
indices k/(k− 1), k, performing integration by parts and using the fact that
y(t) is a solution of (B) such that y(a) = y(b) = 0, we have

M2 ≤
(∫ b

a

r−1/(k−1)(s)|y(s)|(k−p)/(k−1) ds

)(k−1)/k

×
(∫ b

a

r(s)|y(s)|p|y′(s)|k ds
)1/k

≤
(∫ b

a

r−1/(k−1)(s)|y(s)|(k−p)/(k−1) ds

)(k−1)/k

×
(∫ b

a

|q(s)||y(s)|p+k ds

)1/k

,

because of∫ b

a

r(s)|y(s)|p|y′(s)|k ds =
∫ b

a

(
r(s)|y(s)|p|y′(s)|k−2y′(s)

)
y′(s) ds

= −
∫ b

a

(
r(s)|y(s)|p|y′(s)|k−2y′(s)

)′
y(s) ds

=
∫ b

a

q(s)|y(s)|p+k−2y(s)y(s) ds

≤
∫ b

a

|q(s)||y(s)|p+k ds .



Inequalities Related to the Zeros of Solutions . . . 39

Finally,

M2 ≤M (k−p)/kM (p+k)/k

(∫ b

a

r−1/(k−1)(s) ds
)(k−1)/k

(14)

×
(∫ b

a

|q(s)| ds
)1/k

.

Dividing both sides of (14) byM2 and then raising the power k to both sides
of the resulting inequality we get the required inequality in (10).

The inequalities (11), (12) follows in similar fashion as mentioned in the
case of inequalities (2), (3) with suitable modifications. The proof is com-
plete. �

3. Some Applications

We next establish the following theorems which deals with the applica-
tions of some of our inequalities given in Theorems 1 and 2.

Theorem 3. (i) If

(15)
∫ +∞

r−1/α(s) ds < +∞ ,

∫ +∞
|q(s)| ds < +∞ ,

then every oscillatory solution of (A) is bounded on I.
(ii) If

(16)
∫ +∞

r−1/(k−1)(s) ds < +∞ ,

∫ +∞
|q(s)| ds < +∞ ,

then every oscillatory solution of (B) is bounded on I.

Proof. Here we will prove (i) only. The proof of (ii) can be completed
similarly. Let y(t) be an oscillatory solution of equation (A) on I. Suppose
to the contrary that lim sup |y(t)| = +∞. Indeed, since y(t) is oscillatory,
there exists an interval (t1, t2) such that y(t1) = y(t2) = 0, |y(t)| > 0 on
(t1, t2) and M = max

{|y(t)| : t1 ≤ t ≤ t2
}
. Choose c in (t1, t2) such that

|y(c)| =M . Because of (15), we can choose T ≥ t0 large enough so that for
every t1 ≥ T ,

(17)
∫ +∞

t1

r−1/α(s) ds < M−(β−α)/α ,

∫ +∞

t1

|q(s)| ds < 1 .
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Clearly, the inequality (1) in Theorem 1 is true on the interval (t1, t2) and
we have

(18) 1 ≤Mβ−α

(∫ t2

t1

r−1/α(s) ds
)α(∫ t2

t1

|q(s)| ds
)
.

From (18) and using (17) we have

1 ≤Mβ−α

(∫ +∞

t1

r−1/α(s) ds
)α(∫ +∞

t1

|q(s)| ds
)
< 1 .

This contradiction shows that the solution y(t) of equation (A) is bounded.
This completes the proof. �
Theorem 4. Suppose that |q(t)| ∈ L

µ[t0,+∞), 1 ≤ µ < +∞. If y(t) is
any oscillatory solution of (A) with r(t) = 1 (and respectively of (B) with
r(t) = 1), then the distance between conscutive zeros of y(t) tends to infinity
as t→ +∞.

Proof. Here we will give the proof concerning the equation (B). The proof
concerning the equation (A) can be completed similarly. We first assume
that y(t) is any oscillatory solution of (B) with r(t) = 1 and the conclusion
is not true. Then there exists a solution y(t) with its sequence of zeros {tn}
having a subsequence {tnm} such that |tnm+1 − tnm | ≤ N < +∞ for all
m. Let snm be a point in (tnm , tnm+1) at which |y(t)| is maximized. Then
|snm − tnm | < N for all m. Let µ′ be the index conjugate with µ, namely
1/µ + 1/µ′ = 1. Suppose |q(t)| ∈ L

µ[t0,+∞), 1 ≤ µ < +∞, for m large
enough we can write

(19)
(∫ +∞

tnm

|q(s)|µ ds
)1/µ

≤ 2−kN−(k−1+1/µ′) .

By using the inequality in (11) with r(t) = 1, we have

(20) 1 ≤ 2k
(
snm − tnm

)k−1
(∫ snm

tnm

|q(s)| ds
)
.

Now, using the Hölder’s inequality with indices µ, µ′ on the right side of
(20), and then making use of the inequality (19), we get

1 ≤ 2k
(
snm − tnm

)k−1
(∫ snm

tnm

|q(s)|µ ds
)1/µ(

snm − tnm

)1/µ′

≤ 2k
(
snm − tnm

)k−1+1/µ′
(∫ +∞

tnm

|q(s)|µ ds
)1/µ

< 2kNk−1+1/µ′
2−kN−(k−1+1/µ′) = 1 .
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This is a contradiction and the conclusion is true. This completes the
proof. �

4. Further Extensions

In this section we indicate in brief the further extensions of our results
given in Theorem 1 and 2 to the following higher order differential equations
of the forms: (

r(t)|y′(t)|α−1y′(t)
)(n−1)

+ q(t)|y(t)|β−1y(t) = 0 ,(21)
(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)(n−1)

+ q(t)|y(t)|p+k−2y(t) = 0 ,(22)

where α, β, p, k, r(t), q(t) are the same as in equations (A) and (B), except
that γ is C

(n−2)–smooth, and n ≥ 3. We use the following notation for
simplification of details of presentation. For t ∈ I and some function h(t),
t ∈ I, we set

(*) E
(
t, h(t)

)
=

∫ γ1

t

∫ γ2

s2

· · ·
∫ γn−2

sn−2

h(s) dsdsn−2 · · · ds3ds2 ,

where γ1, γ2, . . . , γn−2 are suitable points in I. We denote by Ē
(
t,H(t)

)
the integral on the right side of (*) with the upper limits γ1, γ2, . . . , γn−2 of
integrals are all replaced by the largest γi, i = 1, 2, . . . , n− 2.

Theorem 5. Let γ1 > γ2 > · · · > γn−2 be respectively zeros of(
r(t)|y′(t)|α−1y′(t)

)′
,

(
r(t)|y′(t)|α−1y′(t)

)′′
, . . . ,

(
r(t)|y′(t)|α−1y′(t)

)(n−2)

,

where y(t) is a solution of (21), let a < γn−2 and b > γ1 be zeros of y(t) and
|y(t)| is maximized in c ∈ (a, b). Then

1 ≤Mβ−α

(∫ b

a

r−1/α(s) ds
)α(∫ b

a

Ē
(
s1, |q(s)|

)
ds1

)
,(23)

1 ≤ 2α+1Mβ−α

(∫ c

a

r−1/α(s) ds
)α(∫ c

a

Ē
(
s1, |q(s)|

)
ds1

)
,(24)

1 ≤ 2α+1Mβ−α

(∫ b

c

r−1/α(s) ds
)α(∫ b

c

Ē
(
s1, |q(s)|

)
ds1

)
,(25)

where M = max |y(t)| = |y(c)|, c ∈ (a, b).
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Theorem 6. Let γ1 > γ2 > · · · > γn−2 be respectively zeros of
(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)′
,

(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)′′
, . . . ,

(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)(n−2)

,

where y(t) is a solution of (22), let a < γn−2 and b > γ1 be zeros of y(t) and
|y(t)| is maximized in c ∈ (a, b). Then

1 ≤
(∫ b

a

r−1/(k−1)(s) ds
)k−1(∫ b

a

Ē
(
s1, |q(s)|

)
ds1

)
,(26)

1 ≤ 2k

(∫ c

a

r−1/(k−1)(s) ds
)k−1(∫ c

a

Ē
(
s1, |q(s)|

)
ds1

)
,(27)

1 ≤ 2k

(∫ b

c

r−1/(k−1)(s) ds
)k−1(∫ b

c

Ē
(
s1, |q(s)|

)
ds1

)
.(28)

Integrating n− 2 times the equations (21), (22), by using the hypotheses,
we get

(−1)n−2
(
r(t)|y′(t)|α−1y′(t)

)′
+ E

(
t, q(s)|y(s)|β−1y(s)

)
= 0 ,(29)

(−1)n−2
(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)′
+ E

(
t, q(s)|y(s)|p+k−2y(s)

)
= 0 .(30)

By following the proofs of Theorems 1 and 2 with suitable modifications and
using the facts that, by hypotheses, the solution y(t) of (21) or (22) satisfies
the equivalent integral equations (29) or (30) such that y(a) = y(b) = 0, we
get the desired inequalities in (23)–(25) and (26)–(28).

Finally, we note that our results in Theorems 1 and 2 can be very easily
extended to the following more general equations of the forms:

(
r(t)|y′(t)|α−1y′(t)

)′
+ q(t)|y(t)|β−1y(t)f

(
t, y(t)

)
= 0 ,(31)

(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)′
+ q(t)|y(t)|p+k−2y(t)f

(
t, y(t)

)
= 0 ,(32)

and also to the equations of the forms:
(
r(t)|y′(t)|α−1y′(t)

)(n−1)

+ q(t)|y(t)|β−1y(t)f
(
t, y(t)

)
= 0 ,(33)

(
r(t)|y(t)|p|y′(t)|k−2y′(t)

)(n−1)

+ q(t)|y(t)|p+k−2y(t)f
(
t, y(t)

)
= 0 ,(34)
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where α, β, p, k, r(t), q(t) are as defined in equations (A) and (B), n ≥ 3 and
the function f : I×R → R is continuous and satisfies the condition |f(t, y)| ≤
w(t, |y|), the function w: I × R+ → R+, R+ = [0,+∞), is continuous and
w(t, u) ≤ w(t, v) for 0 ≤ u ≤ v. For similar results, see [4], [5], [8], [14].

In concluding this paper we note that the results analogous to those of
given in Theorems 3 and 4 can be obtained to the equations (21), (22) as
well as to the equations (31), (32) and (33), (34). The precise formulations
of such results is similar to that of our results given in Theorems 3 and 4
and closely looking at the results given in [3]–[5], [8], [11]–[14] with suitable
modifications and hence we do not discuss the details.
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