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Ser. Math. Inform. 16 (2001), 25–33

GRONWALL–BELLMAN TYPE INTEGRAL INEQUALITIES
FOR MULTI–DISTRIBUTIONS

James Adedayo Oguntuase

Abstract. The object of this paper is to establish a new Gronwall-Bellman
type integral inequalities for multi-distributions. These inequalities generalize
some results of Zhihong and Yongquing obtained in [5].

1. Introduction

The origin of the results obtained in this paper is the Gronwall–Bellman
inequality which plays an important role in the study of the properties of
solutions of differential and integral equations (see for example [1] and the
references cited therein). Due to various motivations, many linear, nonlinear
and discrete generalizations of Gronwall–Bellman type inequalities have been
obtained and applied extensively (see for example [1]).

The purpose of this paper is to further investigate the Gronwall type in-
equalities for multi–distributions and to extend some of the results obtained
in [5] and where necessary to obtain improved apriori bounds than those
given in [5].

The results obtained in this paper are in the sense of Lebesgue–Stieltjes
integral for functions of bounded variation. Throughout this paper, we shall
assume that the functions uj(t) is right continuous at t = 0, j = 1, . . . , m.
We shall let BV(I) denote the set of all functions of bounded variation defined
on I ⊂ R and taking values in R.

1. Main Results

The following results will be needed in the proof of our main results.
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Lemma 2.1 ([5]). Let f and g be two real-valued functions on the real line R

such that both are of bounded variation on every compact subinterval of R.
Then fg defines a distribution, and the derivative of fg in the sense of the
distribution is equal to the locally summable function (fg)′ given by

f ′(x)g(x) + f(x)g′(x)

for almost all x. That is D(fg) = (Df)g + f(Dg), where Df and Dg
denote the derivatives of the functions f and g respectively in the sense of
the distributions.

Theorem 2.1. Suppose that for j = 1, . . . , m and t, s ∈ [0, T ]:
1◦ Qj(t, s) ≥ 0, y(t) ≥ 0 and Qj(t, s), y(t), f(t) ∈ BV [0, T ].
2◦ uj(t) are nondecreasing in t.

3◦ Qj(t, s) and its partial derivatives ∂
∂tQj(t, s) are continuous and non-

decreasing in its first variable and that Qj(t, s) and ∂
∂tQj(t, s) are nonnega-

tive and integrable with respect to uj(t) and if the following inequality holds

(1) y(t) ≤ f(t) +
m∑

j=1

∫ t

0

Qj(t, s)y(s)duj(s) .

Then

(2) y(t) ≤ Am(f) + Am(1)
∫ t

0

(
Qm(s, s)Am(f) +

∫ s

0

∂

∂s
Qm(s, τ)Am(f)

)

× exp
(∫ t

s

Qm(s, τ)Am(1)dum(τ)
)

dum(s).

for all t, s, τ ∈ [0, T ], and where Ak(v) is defined inductively as follows

A1(v) = v ,

Ak+1(v) = Ak(v) +
∫ t

0

(
Ak (Qk(s, s))Ak(v)(3)

+
∫ s

0

∂

∂s
Ak (Qk(s, τ))Ak(v)duk(τ)

)

× exp
(∫ t

s

Ak (Qk(s, τ)) duk(τ)
)

duk(s).
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Proof. Let

(4) xi(t) =
∫ t

0

Qi(t, s)y(s)dui(s) , t, s ∈ [0, T ] , i = 1, . . . , m .

Clearly xi(t) are functions of bounded variation. We also observed that
xi(0) = 0. Hence, in view of (4), inequality (1) becomes

(5) y(t) ≤ f(t) +
m∑

j=0

xj(t) .

Thus

Dxi(t) = Qi(t, t)y(t)Dui(t) +
∫ t

0

∂

∂t
Qi(t, s)y(s)Dui(s) .

If we put i = 1 in (5) and (6), we obtain

Dx1(t) = Q1(t, t)y(t)Du1(t) +
∫ t

0

∂

∂t
Q1(t, s)y(s)Du1(s)

≤

Q1(t, t)


f(t) +

m∑
j=1

xj(t)




+
∫ t

0

∂

∂t
Q1(t, s)


f(s) +

m∑
j=1

xj(s)





 Du1(t) .

That is

Dx1(t)−
(

Q1(t, t)x1(t) +
∫ t

0

∂

∂t
Q1(t, s)x1(s)

)
Du1(t)(7)

≤

Q1(t, t)


f(t) +

m∑
j=2

xj(t)







+
∫ t

0

∂

∂t
Q1(t, s)


f(s) +

m∑
j=2

xj(s)





 Du1(t) .

Multiply both sides of (7) by exp
(
− ∫ t

0
Q1(t, s)du1(s)

)
we have

[
Dx1(t)−

(
Q1(t, t)x1(t) +

∫ t

0

∂

∂t
Q1(t, s)x1(s)

)
Du1(t)

]

× exp
(
−

∫ t

0

Q1(t, s)du1(s)
)
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≤

Q1(t, t)


f(t) +

m∑
j=2

xj(t)


 ∫ t

0

∂

∂t
Q1(t, s)


f(s) +

m∑
j=2

xj(s)







× exp
(
−

∫ t

0

Q1(t, s)du1(s)
)

Du1(t) .

By Lemma 2.1, we have

D

(
x1(t) exp

(
−

∫ t

0

Q1(t, s)du1(s)
))

≤

Q1(t, t)


f(t) +

m∑
j=2

xj(t)


 +

∫ t

0

∂

∂t
Q1(t, s)


f(s)

m∑
j=2

xj(s)







× exp
(
−

∫ t

0

Q1(t, s)du1(s)
)

Du1(t) .

Integrate with respect to t from 0 to t, we have

(x1(t) − x1(0)) exp
(
−

∫ t

0

Q1(t, s)du1(s)
)

≤
∫ t

0

(
Q1(s, s)

[
f(s) +

m∑
j=2

xj(s)
]
+

∫ s

0

∂

∂s
Q1(s, τ)

[
f(τ) +

m∑
j=2

xj(τ)
])

× exp
(
−

∫ s

0

Q1(s, τ)du1(τ)
)

du1(s) .

Since x1(0) = 0, we obtain

(8) x1(t) ≤
∫ t

0

(
Q1(s, s)

[
f(s) +

m∑
j=2

xj(s)
]

+
∫ s

0

∂

∂s
Q1(s, τ)

[
f(τ)+

m∑
j=2

xj(τ)
])

exp
(
−

∫ t

s

Q1(s, τ)du1(τ)
)

du1(s) .

If we put (8) into (5) and using the fact that Xj(t) are nondecreasing, we
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obtain

y(t) ≤ f(t) +
∫ t

0

(
Q1(s, s)

[
f(s) +

m∑
j=2

xj(s)
]

(9)

+
∫ s

0

∂

∂s
Q1(s, τ)

[
f(τ) +

m∑
j=2

xj(τ)
])

× exp
(
−

∫ t

s

Q1(s, τ)du1(τ)
)

du1(s) +
m∑

j=2

xj(t)

≤ f(t) +
∫ t

0

(
Q1(s, s)f(s) +

∫ s

0

∂

∂s
Q1(s, τ)f(τ)

)

× exp
(
−

∫ s

0

Q1(s, τ)du1(τ)
)

du1(s)

+
m∑

j=2

[
1 +

∫ t

0

(
Q1(s, s) +

∫ s

0

∂

∂s
Q1(s, τ)

)

× exp
(
−

∫ t

s

Q1(s, τ)du1(τ)
)

du1(s)
]

xj(t),

i.e.,

y(t) ≤ A2(f) +
m∑

j=2

A2(1)xj(t) ,

where A2(f) and A2(1) are as defined in (3).

When i = 2, inequalities (6) and (9) gives

Dx2(t) = Q2(t, t)y(t)Du2(t) +
∫ t

0

∂

∂t
Q2(t, s)y(s)Du2(s)

≤
(

Q2(t, t)
[
A2(f) +

m∑
j=2

A2(1)xj(t)
]

+
∫ t

0

∂

∂t
Q2(t, s)

[
A2(f) +

m∑
j=2

A2(f)xj(s)
])

Du2(t) ,
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i.e.,

Dx2(t) −
(

Q2(t, t)A2(1)x2(t) +
∫ t

0

∂

∂t
Q2(t, s)A2(1)x2(s)

)
Du2(t)(10)

≤
(

Q2(t, t)
[
A2(f) +

m∑
j=3

A2(1)xj(t)
]

+
∫ t

0

∂

∂t
Q2(t, s)

[
A2(f) +

m∑
j=3

A2(1)xj(s)
])

Du2(t) .

Multiply both sides of (10) by exp
(
− ∫ t

0
Q1(t, s)du1(s)

)
we have

[
Dx2(t) −

(
Q2(t, t)A2(1)x2(t) +

∫ t

0

∂

∂t
Q2(t, s)A2(1)x2(t)

)
Du2(t)

]

× exp
(
−

∫ t

0

Q2(t, s)A2(1)du2(s)
)

≤
(

Q2(t, t)
[
A2(f) +

m∑
j=3

A2(1)xj(t)
]

+
∫ t

0

∂

∂t
Q2(t, s)

[
A2(1) +

m∑
j=3

A2(1)xj(s)
])

× exp
(
−

∫ t

0

Q2(t, s)A2(1)du2(s)
)

Du2(t) .

By Lemma 2.1, we have

D

(
x2(t) exp

(
−

∫ t

0

Q2(t, s)A2(1) du2(s)
))

≤
(

Q2(t, t)
[
A2(f) +

m∑
j=3

A2(1)xj(t)
]

+
∫ t

0

∂

∂t
Q2(t, s)

[
A2(f) +

m∑
j=3

A2(1)xj(s)
])

× exp
(
−

∫ t

0

Q2(t, s)A2(1)du2(s)
)

Du2(t) .
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Integrate with respect to t from 0 to t and noting that x2(0) = 0 we have

x2(t) ≤
∫ t

0

(
Q2(s, s)

[
A2(f) +

m∑
j=3

A2(1)xj(s)
]

(11)

+
∫ s

0

∂

∂s
Q2(s, τ)

[
A2(f) +

m∑
j=3

A2(1)xj(τ)
])

× exp
(
−

∫ t

s

Q2(s, τ)A2(1)du2(τ)
)

du2(s) .

On putting (11) into (9) and using the fact that xj(t) are nondecreasing, we
obtain

y(t) ≤ A2(f) + A2(1)
∫ t

0

(
Q2(s, s)

[
A2(f) +

m∑
j=3

A2(1)xj(s)
]

(12)

+
∫ s

0

∂

∂s
Q2(s, τ)

[
A2(f) +

m∑
j=3

A2(1)xj(τ)
])

× exp
(
−

∫ t

s

Q2(s, τ)A2(1)du2(τ)
)

du2(s) +
m∑

j=3

A2(1)xj(t)

≤ A2(f) + A2(1)
∫ t

0

(
Q2(s, s)A2(f) +

∫ s

0

∂

∂s
Q2(s, τ)A2(f)

)

× exp
(
−

∫ s

0

Q2(s, τ)A2(1)du2(τ)
)

du2(s)

+
m∑

j=1

[
A2(1) + A2(1)

∫ t

0

(
Q2(s, s)A2(1) +

∫ s

0

∂

∂s
Q2(s, τ)A2(1)

)

× exp
(
−

∫ s

0

Q2(s, τ)A2(1)du2(τ)
)

du2(s)
]

xj(t)

= A3(f) +
m∑

j=3

A3(1)xj(t) ,

where A3(f) and A3(1) are as defined in (3).
If we set i = m − 1, then we easily obtain

y(t) ≤ Am(f) + Am(1)xm(t) .
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Next, suppose i = m, then (6) and (11) implies

Dxm(t) = Qm(t, t)y(t)Dum(t) +
∫ t

0

∂

∂t
Qm(t, s)y(s)Dum(s)

≤
(
Qm(t, t)

[
Am(f) + Am(1)xm(t)

]

+
∫ t

0

∂

∂t
Qm(t, s)

[
Am(f) + Am(1)xm(s)

])
Dum(t) .

Thus,

(14) Dxm(t) −
(
Qm(t, t)Am(1)xm(t) +

∫ t

0

∂

∂t
Qm(t, s)Am(1)xm(s)

)
Dum(t)

≤
(

Qm(t, t)Am(f) +
∫ t

0

∂

∂t
Qm(t, s)Am(f)

)
Dum(t) .

Multiply both sides of (10) by exp
(
− ∫ t

0
Qm(t, s)Am(1)dum(s)

)
and in-

tegrate with respect to t from 0 to t and noting that xm(0) = 0, we have

xm(t) ≤
∫ t

0

(
Qm(s, s)Am(f) +

∫ s

0

∂

∂s
Qm(s, τ)Am(f)

)
(15)

× exp
(
−

∫ t

s

Qm(t, τ)Am(1)dum(τ)
)

dum(s) .

Substituting (14) into (13) and noting that xm(t) is nondecreasing, we obtain

y(t) ≤ Am(f) + Am(1)
∫ t

0

(
Qm(s, s)Am(f) +

∫ s

0

∂

∂s
Qm(s, τ)Am(f)

)

× exp
(
−

∫ t

s

Qm(t, τ)Am(1)dum(τ)
)

dum(s) .

This completes the proof of the theorem. �
As an immediate consequence of our result, we observe that if we set

Qj(t, s) = gj(t)hj(s), j = 1, 2, . . . , m, then Theorem 2.1 becomes
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Corollary 2.1. Suppose that for j = 1, . . . , m and t, s ∈ [0, T ],
1◦ gj(t) ≥ 0, y(t) ≥ 0 and gj(t), y(t), f(t) ∈ BV [0, T ].
2◦ uj(t) are nondecreasing in t.
3◦ hj(t) are nonnegative and integrable with respect to uj(t) and if the

following inequality holds

(16) y(t) ≤ f(t) +
m∑

j=1

gj(t)
∫ t

0

hj(s)y(s)duj(s) .

Then

(17) y(t) ≤ Am(f) + Am(1)
∫ t

0

gm(s)hm(s)Am(f)

× exp
(∫ t

s

gm(s)hm(τ)dum(τ)
)

dum(s) .

Remark 2.1. Corollary 2.1 is essentially not the same as Theorem 2.1 in [5] in
the sense that Corollary 2.1 contains Theorem 2.1 in [5] as a special case. Indeed
Corollary 2.1 is more general than Theorem 2.1 in [5].
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