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CONDITIONS FOR CONVEXITY OF A DERIVATIVE AND
APPLICATIONS TO THE GAMMA AND DIGAMMA

FUNCTION*

Milan Merkle

Abstract. We consider necessary and sufficient conditions for convexity of a
function x �→ f ′(x) in terms of some properties of the associated function of two
variables F (x, y) = (f(y)−f(x))/(y−x). These results are applied to the theory
of the Gamma function.

1. Introduction

This paper follows the ideas presented in [13] and [14] and discusses the
topic of bounds for a ratio of Gamma functions, which has been researched
by many authors. Our basic goal is to show that these and many other
bounds and asymptotic expansions can be derived as simple consequences of
logarithmic convexity of the Gamma function and hence to study the topic
in a systematic and unified way. In a sense, we follow Artin’s approach [3] to
explanation of main properties of the real Gamma function via logarithmic
convexity.

In the paper [13] we proposed a method that produces sharp bounds for
the ratio Γ(x + β)/Γ(x), where x > 0 and β ∈ (0, 1). In [14], we presented
an application of logarithmic convexity to bounds for the same ratio that
involve the Digamma function. In this paper we start with three necessary
and sufficient conditions for convexity of a derivative and apply these condi-
tions to obtain further bounds for the Gamma and the Digamma function.
Since in the theory of the Gamma function we deal with smooth functions,
the Theorem 1 below is formulated for the functions with continuous third
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derivative, which enables the proof via Taylor’s expansions and consequently,
an analysis of error terms. A more general case is handled in [15].

2. Necessary and Sufficient Conditions for Convexity

Let f be a function defined on an interval I and let the derivative f ′ exist.
Define the function F of two variables by

F (x, y) =
f(y)− f(x)

y − x
(x �= y), F (x, x) = f ′(x),(2.1)

where (x, y) ∈ I2. Among other properties, we shall consider Schur-convexity
of F . This notion can be formulated for a function in any number of vari-
ables, but we need a simplest case of two variables. For a convenience, recall
that a symmetric function (x, y) �→ g(x, y) is Schur-convex on I2 if and only
if

g(x, y) ≤ g(x − ε, y + ε)

for every x, y ∈ I, ε > 0 such that x − ε, y + ε ∈ I. A function g is Schur-
concave if −g is Schur-convex.

Let (x, y) �→ g(x, y) be a symmetric and continuous function on I2.
Suppose that both partial derivatives exist and are continuous on the set
{(x, y) ∈ I2 | x �= y}. Then g is Schur-convex on I2 if and only if ([12, 3.A.4]
and [15])

∂g(x, y)
∂y

− ∂g(x, y)
∂x

≥ 0 for (x, y) ∈ I2 such that x < y.(2.2)

For further details on Schur-convexity see [12].
Let us now consider the following statements:

(A) f ′ is convex on I,

(B) F (x, y) ≤ f ′(x) + f ′(y)
2

for all x, y ∈ I,

(C) f ′
(

x + y

2

)
≤ F (x, y) for all x, y ∈ I,

(D) F is Schur-convex on I2,

and
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(A′) f ′ is concave on I.

(B′) F (x, y) ≥ f ′(x) + f ′(y)
2

for all x, y ∈ I,

(C ′) f ′
(

x + y

2

)
≥ F (x, y) for all x, y ∈ I,

(D′) F is Schur-concave on I2.

Theorem 2.1. If x �→ f ′′′(x) is continuous on I then the conditions (A)−
(D) are equivalent and the conditions (A′)− (D′) are equivalent.

Proof. (A) ⇒ (C): If (A) holds, then f ′′′(t) ≥ 0 on I. Let x, y (x < y)
be arbitrary points in I. By Taylor’s expansion around c = (x + y)/2 we
have

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)
2

(x − c)2 + R1(2.3)

f(y) = f(c) + f ′(c)(y − c) +
f ′′(c)
2

(y − c)2 + R2,(2.4)

where R1 = f ′′′(ξ1)(x−c)3 ≤ 0 and similarly R2 = f ′′′(ξ2)(y−c)3 ≥ 0. Then
from (2.3) and (2.4) we get

f(y)− f(x) = f ′(c)(y − x) + R2 − R1 ≥ f ′(c)(y − x),

wherefrom (C) follows.
(C) ⇒ (A): Suppose that (C) holds and that (A) does not hold. There-

fore, there exists c ∈ I with f ′′′(c) < 0. By continuity of f ′′′, there is an
interval I∗ ∈ I so that f ′′′(t) < 0 for t ∈ I∗. Then the function −f ′ is convex
on I∗ and by the above proof of (A) ⇒ (C), we conclude that (C) holds for
−f on I∗ ⊂ I, hence (C) does not hold for f , which is a contradiction.

(A) ⇒ (B): Let f ′ be convex on I and let x, y ∈ I, x < y. Then for each
t ∈ [x, y] we have

t = λ(t)x + (1− λ(t))y, where λ(t) =
y − t

y − x
.

An application of Jensen’s inequality and the integration over t ∈ [x, y] yields∫ y

x
f ′(t) dt ≤ f(x)

∫ y

x
λ(t) dt + f(y)

∫ y

x
(1− λ(t)) dt

=
f(x) + f(y)
2(y − x)

,
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which is equivalent to (B).
(B) ⇐⇒ (D): Since

∂F (x, y)
∂x

=
−f ′(x)(y − x) + (f(y)− f(x))

(y − x)2
,

∂F (x, y)
∂y

=
f ′(y)(y − x)− (f(y)− f(x))

(y − x)2
,

we see that the partial derivatives are continuous in each point (x, y) ∈ I2,
x �= y. Then the condition (2.2) for Schur-convexity of F is equivalent to
(B).

(D) ⇒ (C): Suppose that F is Schur-convex. Then for sufficiently small
ε > 0 it follows that

F

(
x + y

2
− ε,

x + y

2
+ ε

)
≤ F (x, y).

Letting ε → 0, we get

f ′
(

x + y

2

)
≤ F (x, y),

which is the statement (C).
This ends the proof of equivalence of conditions (A) − (D). The second

part follows upon replacing f by −f . ✷

Let us note that (B) and (C) are differential forms of Hadamard’s inequal-
ities for convex functions. It is known that their integral form is equivalent
to convexity [11]; more precisely, a continuous function g is convex on I if
and only if [17, p.15]

g(u) ≤ 1
2h

∫ u+h

u−h
g(t) dt

for all u ∈ I and h > 0 such that u ± h ∈ I and if and only if ([16, p.39] or
[17, p.15])

1
y − x

∫ y

x
g(t) dt ≤ g(x) + g(y)

2

for all x, y ∈ I. Letting here g = f ′, we get the equivalence of (A) with (B)
and (C). However, the presented proof yields the following corollary.

Corollary 2.1. Suppose that x �→ f ′(x) is a convex (concave) function
for positive large enough values of x and also suppose that f ′′′(x) → 0 as
x → +∞. Then the difference between left and right side in (B) and (C) (in
(B′) and (C ′)) converges to zero as x → +∞ and y − x = const.
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Proof. Let y = x + h, where h > 0 is fixed and let f be convex. By the
proof of (A) ⇒ (B), the difference between the right and left hand side in
(B) is expressed in the form

∫ x+h

x
r(x, t) dt,

where

r(x, t) = λ(t)f ′(x) + (1− λ(t))f ′(y)− f ′(t), λ(t) =
y − t

y − x
.

Two successive applications of the mean value theorem yield

r(x, t) = λ(t)(f ′(x)− f ′(t)) + (1− λ(t))(f ′(y)− f ′(t))
= λ(t)(x − t)f ′′(ξ1) + (1− λ(t))(y − t)f ′′(ξ2)
= (y − t)(t − x)(f ′′(ξ2)− f ′′(ξ1)) = (y − t)(t − x)(ξ2 − ξ1)f ′′′(ξ),

where ξ1 ∈ (x, t); ξ2 ∈ (t, y), ξ ∈ (x, y). If y = x + h then

0 ≤ r(x, t) ≤ h3 max
t∈(x,x+h)

f ′′′(t), and so

0 ≤
∫ x+h

x
r(x, t) dt ≤ h4 max

t∈(x,x+h)
f ′′′(t),

Therefore, if f ′′′(x) → 0 as x → +∞, then the difference between the right
and the left side in (B) converges to zero as x → +∞ and y = x + h. The
corresponding statement for (C) follows directly from the proof of (A) ⇒
(C). Statements for a concave function f can be obtained from the above
proof with the convex function −f . ✷

Theorem 2.1 can serve as a tool for producing inequalities and Corollary
2.1 is a starting point for asymptotic expansions. This is especially suitable
for the Gamma function or in a more general context, for all convex or
concave solutions of the functional equation f(x + 1) − f(x) = g(x), where
g is a sum of a convex and a concave function on x > 0. For the theory of
this functional equation, see [9] or [10].

3. Applications to the Gamma and Digamma Function

Inequalities for the ratio Q(x, β) = Γ(x+β)/Γ(x) with x > 0 and usually
β ∈ (0, 1), have been studied by many authors (see [2, 13] and references
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therein). Bounds for the ratio Q that involve the function Ψ and its deriva-
tives have been investigated in [2, 4, 5, 6, 8, 14], using a variety of meth-
ods. In this section we present some new inequalities of this type, starting
from (A′) − (D′) with f = log Γ and I = (0,+∞). It is well known that
f ′′′(x) = Ψ′′(x) → 0 as x → +∞, so Corollary 2.1 applies.

Firstly, (B′) and (C ′) give

1
2
(Ψ(x) + Ψ(y)) ≤ log Γ(y)− log Γ(x)

y − x
≤ Ψ

(
x + y

2

)
.(3.1)

Letting y = x + β, β > 0, we get

exp
(

β
Ψ(x) + Ψ(x + β)

2

)
≤ Q(x, β) ≤ exp(βΨ(x + β/2)).(3.2)

The upper bound in (3.2) was also obtained in [8] by other means. In
[14] we showed that the lower bound in (3.2) is closer than a lower bound
in [8].

Applying the recurrence relation for the Gamma function, one obtains

Q(x, β) = Π(x, n, β)Q(x + n, β),

where
Π(x, n, β) =

x(x + 1) · · · (x + n − 1)
(x + β)(x + β + 1) · · · (x + β + n − 1)

.

Therefore, replacing x by x + n in (3.2), we get

Π(x, n, β) exp
(
β
Ψ(x + n) + Ψ(x + n + β)

2

)
≤ Q(x, β)(3.3)

≤ Π(x, n, β) exp(βΨ(x + n + β/2)).

By Corollary 2.1, inequalities in (3.3) are asymptotically exact, i.e., both
bounds in (3.3) converge to the ratio Q(x, β) as n → +∞.

The condition (D′) implies

log Γ(y)− log Γ(x)
y − x

≥ log Γ(y + ε)− log Γ(x − ε)
y − x + 2ε

for 0 < x < y and 0 < ε < x. In particular, replacing x by x+ β and letting
y = x + 2β and ε = β, we obtain

Γ(x + 3β)
Γ(x)

≤
(
Γ(x + 2β)
Γ(x + β)

)2

, x > 0, β > 0.(3.4)
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Finally, let us derive bounds and expansions for the Digamma function
Ψ. Letting y = x + 1 in (3.1), we get

Ψ(x) +
1
2x

≤ log x ≤ Ψ
(

x +
1
2

)
,

wherefrom it follows

log
(

x − 1
2

)
≤ Ψ(x) ≤ log x − 1

2x
, x > 1/2.(3.5)

Now replacing x by x + n and using the recurrence relation for the
Digamma function, we get

log
(

x + n − 1
2

)
−

n−1∑
k=0

1
x + k

≤ Ψ(x)(3.6)

≤ log(x + n)− 1
2(x + n)

−
n−1∑
k=0

1
x + k

.

By Corollary 2.1, both bounds in (3.6) are asymptotic expansions for
Ψ(x); it is not difficult to see that they are asymptotically equivalent to the
well known expansion [1]

Ψ(x) = −γ +
+∞∑
k=1

x − 1
k(k + x − 1)

.

However, the advantage of (3.6) is that it gives inequalities.

More applications and examples will be presented in our forthcoming
papers.
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