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WEAK PROBABILITY POLYADIC ALGEBRAS

S. Marinkovié, M. Raskovié, R. Dordevié

Abstract. We are motivated by the connection between Boolean algebra and
propositional logic, cylindric algebra and predicate logic, Keisler’s L(V, v, m)
logic and polyadic algebra [2], to introduce an algebra calling weak probability
polyadic algebra which ’corresponds’ to the weak probability logic with infinitely
predicates L(V,v, m, R), introduced in [4].

Structure (B, -+,-,—,0, LC(K),C(K),ST), where (B, +,-,—,0,1) is a Boolean
algebra, C’(K), C(K) and Sr are unary operations on B, for each sequence (K) of

ordinals from 3 of length o, & < E, eachr € R (Ris as in [4]) and T € B8, s a
weak probability polyadic algebra of dimension 3, briefly W PPg, if the following
postulates hold:

(WPPy)
(WPP)

(WPP;)
(WPPy)

(B,+,,—,0,1, C(K),ST) is a polyadic algebra of dimension (3,
(i) C(w)x =z, >0,

(ii) Oy 0 =0, r>0,

C?K):L' = 1,

C(TK):E < CfK):L‘, r>s,

() ~Clyeyz Cligt —y < —CRnr 9 (4 4y

(K) (K) o
(i) Clgeyr - Clreyy - Claey = (@) < s w4 w),
(i) C(K) —x > —C(lg)Ta:,
(ii) C(SK) —x < —C(lggna?, s>,
(iii) —CELI;)S —z< Cf;)x, where s = min{r € R|r > s},

SgC(TK):E = STC’(TK):E, if o[ (B\rang K) = 7[(8\ rang K),
So'Cg__l(K)l' = C(K)ng, if o [ail(K) is 1-1 function,

(WPP1) (1) C(K)a: <Ciyz, 1>0,

(ii) Cx)Cyy® = Cl,y®, rang K C rang Ky
(iii) C(K)C(Kl)x =C(k,)®, >0, rang K C rang K.
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Theorem 1. If A is WPPg algebra, then

(1) Clgyl =1, (4) Clgy(z - y) < Clgyx - Clyys
(2) If x <y, then C(TK)HU < C(TK)% (5) C(lK):U =z iff Ciyz=uz,
(3) Clkyz + Cliyy < Cgy(x+y),  (6) Sr1=1.

The proof is similar to that one in [6].
Let V7 be a set of new variables such that V1 NV =0, VN P = () and

Vi=V.Letbe V¥ =V UV, 79:V* =1 V1, G the set of all sentences in L*,
H={®|Vy®P) CV, & € Formp-} and I'C G. For each &,¥ € H we define
S/ ={W|Ttp- W& e HY, Hr ={0/T |®e H},0p = L/I\1p =T/I
and operations +, —p, - on Hp as usual. It is well known the next result:

Lemma 1. The set of sentences I is consistent in L* iff (Hr,+r, r,—r,1r,0r)
1s notrivial Boolean algebra.

For each sequence x of different variables from V, r € R, 7 € VvV and € H
we define:

@ z)(@/I) = (Bz)®) /T,
(P'z >7)(@/T) = (Pz > 1)®)/T,
SU(r)(@/T) = (S§(r)Sy (5 ")S(0)®) /T

Lemma 2. (i) If & is atomic formula and 7 € VY, then
ST(7)(@/T) = (S§(1)®) /T = (S(r)®) /T.
(i) If 7 € (V\ Vy(®))", then ST (7)(®/T") = (S;(7)®) /T.
(iii) If 7€ VYV is 1-1, then ST (7)(®/I") = (S(7)®) /T.
Lemma 3. Ifm =1  and I' is consistent in L*, then
Hpr = (Hp,+r, 1~ 10,00, 3 2, PP > r, 87 (),

where T € VV, r € R and x is a sequence of different variables from V' of length
o, @ <M, is a weak probability polyadic algebra of dimension V.

Proof. Let be ol = ¢/I'. Tt follows from Lemma 1 (Hp,+p,-p,—pr,1p,0p) is
a Boolean algebra. The operations 3/ z, PTz > r and ST (1) are well defined and
the set Hp is closed for them. It is easy to verify (by using the axioms and the
rules of inference of L, see [4]) that all axioms (WPP;) — (WPPy) hold in Hp.
We shall only prove (W PPp):
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(Ple> ol = (Pz >r)@)"
<r (Pz>0)®)" forr >0, by A
<r ((Hx)@)F by contraposition A1
= @'n)el.
(ii)
@ 2)(PTy > )" = (@Fx)(Py = r)0)" <p ((Py>r)D)
by supposing rang z C rangy. The above inequality follows from
I'tp« (3z)(Py > r)® — (Py > r)d
that we obtain from
I'bp- (Vo) ((Py < r)® — (Py < r)®)
by using As.
(iii)
r
3"y = (Gy?)
<r ((Pz > r)(EIy)@)F for V¢ ((3y)®) Nrangz = 0, by R3 and A4
=Pz >rn@E"ye!.
Conversely,
(PTe > )@ el = (Pz > r)(By)d)"
<r ((Pz > 0)(EIy)d5)F for r > 0, by A1g
r
<r (G=)3Fy)9)" by Aip
= ((EIy)@)F from As, since rangxz C rangy

=@3'ye!. O

Let A = (A, Rp, jta) _— =+ be a weak probability structure for L and

peEPa<V

V=08 o&*={acA’|Eyq®alV*]} and A={d*|dcH}
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We shall define for each sequence (K) of ordinals from 3 of length o, @ < E,
each r € R and each o € 3°:

ey (P%) = {a € A7 | b] (8 \ rang (K)) = a | (8 \ rang (K)),
for some b € @Ql} ,
ch)(QPm) ={ac AP | po{bo (K)|be d?,
b1(B\rang (K)) = al (B \rang (K))} >},
sg(@m) = {a c AP | a, € (Sf(TJl)S(To)@)Q[},
where a, = (ag(a))a<ﬁ for a = (aa)a<p-
It is easy to verify that the above operations are well defined and that the

sets from definition of CZK) are measurable. We may show that A is closed
for these operations.

c(r) (@) = {a € A7 [ b] (8 \ rang (K)) = a[ (3 \ rang (K))
for some b € @m}
= {a € A% [ b](B\ rang (K)) = a[ (3 \ rang (K)),
for some b such that =g @bV "]}
= {a€ A% [|q (3z)0lal V*]}
= ((Fz)2)* € A.
(i) (@*) ={a € A” | po{bo K | b€ &%,
bl (B \rang (K)) = a[ (8 \rang (K))} > r}
—={a€ A% | pa{bo K [ 2 V7],
bl (B \rang (K)) = a| (8 \ rang (K))} > r}
= {a c AP | Ea (Pz > 1)Pla [V*}}
= ((Pz > r)®)* € A.
5o (BY) = {a € A |aoo e (sf(Tgl)S(To)qs)”}
={a € A% |a Sy(11)S(10)Plac (o1 VF)]}
= {ac A7 | S5(0) Sy (16 1)S (70)Pla ] V*]}
= (S§(0) S5 (5 1) S(70)®)™ € A.

The algebra (A,U,N, N,@,AB,C(K),C(K), sy ) will be called weak probability
polyadic set algebra.
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Lemma 4. Let f : Hr — A be defined by f(®1) = ®*. Then, if o I’
then f is homomorphism Hp onto A and A is a weak probability polyadic
algebra.

Theorem 2. Let B = (B, +,-,—,0, 1,C(K),C’Z"K),SU) be a weak probability
polyadic algebra of infinite dimension 3. Let be V.= (3, P = {p | p € B},

=+ =
m =0 andv(p) = for each p € P. Then there exists a set of sentences
I' in logic L = L(V,v,m, R) such that Hp = B.

Proof. We shall put V = 3, P = B, v(p) = 3 for each p € P and z € 3°
“1-1” and “onto”. Let I" be the next set of sentences:

V) ((—p)(z) < = (p(2))), (Vz) ((Srp)(z) < S(7)p(2)),
Vo) (p+q)(z) < p(z) v g(x)), (V&) (Cup)() < (By)p()),
va) ((p- q)(x) < p(z) Ag(x)),  (Va) ((C(K)p)(l‘) o (Py > r)p(:z)) ,

where p,q € P, 7 € VYV, r € R and (K) = y is a sequence of different vari-
ables of length o, @ < m. First, we shall show that Hp = {(p(x))F |pe P} :

For each formula @ € H there exists formula ¥ = Sy (7, ')S(m)® € H such
that @7 =@ V(&) C V1 and V§(¥) C V. Really,

ol = S¢(id)Ss(10)S(m0)d" = ST (id)d" = &

We shall prove that for each formula @ from H, with free variables in V
and bound in Vj, there exists formula ¥ € F such that &/ = ¥!'. Let be

T V* L V. Then

I'bpe S(1)® < Sp(151)S(10)S(1)P.
By (R3), we have
Ik S(r7)S(m)® < Sy 1) S¢(15)S(10)S(m1) 2.
Since V5 (S (7 1)S(70)S(11)®) C Vi, it follows

S(ri1)S¢ (15 1)S(10)S(r)® = Sy( )¢ (15)S(70)S (1)@
= Sy(rg )8 (10) 8¢ () S(m1) 2.
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So,
I l_L* D — Sf(TJI)S(TO)Sf(Tfl)S(Tl)@

Putting ¥ = S¢(7; 1)S(71)®, we have
Ity oW, WeF

It follows that it is enough to prove that for each formula @ € F there exists
p € P such that &7 = p(x)!". We can prove it by induction of complexity
of @.

Now, we shall define a function g : B — Hp on the following way:

It is easy to verify that g is well defined, onto and homomorphism. To
prove that it is one to one we shall define h : ' — B such that, for & € F
holds:

if I'kFp«® then h(P)=1.

For formulas from F' = {® € F | V,(®) NV (P) = 0} we define the mapping
h by induction:

h(p(z)) = p, h(®V V) = h(®) + h(¥),
h(p(toy)) = S:p, h((3y)P) = Cu)h(®),
h(=®) = —h(®),  h((Py=r)®) = Clyh(®).

For @ € F\ F’, let be
(®) = Sy oy M),
where ¥ = S(71)S; (15 1) S(70)® and 7, is a fixed injection from V* onto V.

First, we shall prove that for each function o : Vy(®) — V' \ V;(®) and
every formula ¢ € F we have

(*) h(S(0)®@) = Sop h(P).

For @ € F' the proof is by induction on the complexity of formula.
If & = p(x), then h(S¢(0)P) = h(p(o o z)) = Sop = Sevh(P).
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fo=py),y=1ox, 7€ VYV, we have

h(S(a)p(y)) = h(p(ooTox)) by definition Sy
= S,0rp by definition h
= SovSrp by (Py) (see [1])
= Sovh (p(y)) by definition h.

[fd=-Word=¥V6O it is easy to verify.
If ® = (Py > r)¥, then

B (S1(0)B) = h (S4(0)(Py = 1))
= h((Py > r)Sf(01)¥ where o1 = o [V (¥)
= Cliy S h(®)
= S s h ()
= Sov Cliyh(¥) since o [ (K) = id
= Soh((Py = 1)¥).

To show that (%) holds for each formula from F'\ F’, we shall prove, first,
that

(**) h(S(0)®) = S, @) (®P),

for each formula ¢ € F' and each o : V(9) Ly

First, let be & € F'.
If & = p(x), then h(S(o)p(x)) = h(p(cox)) = Syp = Sarvf(é)h(@)-
If & = (Jy)¥, we have

h(S(o)®) = h((30 0 y)S(0)¥)
= Coo(r)h(S(0)¥)
= Coo(k)S(ov; (w)wM(¥) by induction hypothesis
= S(ow; v Ca) (W) by (Pr2)
= S(ow; @ Cuah(¥) by (Pi1)
= S(otv; @) h((3Y)Y) = Siov; @) (D).
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Ifd e F\F and o : V(®) ~= V, let be © = S(11)S¢ (75 1) S (10)5(0) &,
T = S(11)Ss(151)S(10)® and oy : V(W) — V defined by oy | V3(¥) =
TiomoagoTry tor [ Vy(¥) and oy [Vi(W)=mio000 Tt [Vi(¥). Then

h(S(0)P) = S, =1, @) MO) = S, 1, @y (S (11) S5 (151)S(10) S (o)D)
= S e h(S(01)S(1) S (51) S (70)P)
= Sy S (o)
= Sy @) Stenvy @ M)
= S(Tl—lrvf(@))rvs(noaorl—lrvf(W))rvh@)
= Sy @)Wo(roaor vy wyv M)
= S(owy @) Sy, oy M) = Sio @) P)-

By using (xx) it is easy to verify that for each formula @ € F’ holds
(®) = S oy M),

where
W = S(11)Ss (15 1) S (7).

Now, we shall prove that (x) is valid for each formula @ from F'\ F’. Let be
O = S(11)Ss (75 1)S(70)S(0)® and ¥ = S(71)Ss (5 1) S(70)®. Then

M(S5(0)P) = Sz, o) M(O)
= S(—1wyey (S (ri oo 0 1)S(m1) S (15 1) S (10))P)

= S(Tl—lrvf(@))rvS(TloUOTl—lrvf(vp))rvh(‘[’)
= Sov Sr 1wy @y M¥) = So (D).

Now, we shall prove that I" -« & implies h(®) = 1. It follows from
I'CF, e F,that I'Fp« @ iff I' -1, &. So, it is enough to show that from
I'tp, @ follows h(®) = 1. At the beginning, we shall prove that each axiom
maps to 1. First, let the axiom be from F”.

(A7) It is sufficient to show that h(®) # 1 implies @ is not tautology. Let
I be maximal ideal of Boolean algebra (B, +, -, —,0,1) which contains h(®)
and 7 natural homomorphism from B onto two-elements Boolean algebra
B/I. From h(®) # 1 it follows m o h(®) = 0, i.e. @ is not tautology.
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(A2)
h((Vy)(@ — &) — (2 — (Vy)¥))
= h(=EY)~(? = ¥) = (2 — ~(Fy)-¥))
= Cky (h(=® VvV V¥)) + —h(®) + —C k) (—h(¥))
= Clxy (M@) - =h(¥)) + —h(®) + —Clx) (=h(¥))
= Cuoh(®) - Cixe) (—h(¥)) + =h(®) + =Clc) (=h(¥))
> h(®) - Crxey (=h(¥)) + =h(®) + —Cx) (=h(¥))
= — (=h(?) = Cx) (=1(¥))) - W(P) - Cxc) (—h(¥))
—  (h(®) - h(®) - Caey (~h(#)) + —Cirey (—h()) - h(®) - Cosey (—h(0)))
= —(0+0)=1,
with condition Vy(®) Nrangy = 0.
(43)
h((Vy)® — Sf(7)®P), where 7:rangy — V \ V4(P)
— B ()0 S4(1))
= C(iy (=W(®)) + S h(P), where 7/ =7V
= S Cky (—h(®)) + Srh(®) by (Ps) since
7' [(V \rangy) = id[(V \ rangy)

h((Vy)® — (VT oy))® = Cx) — h(®) + —C(xy — W(P) = 1
by (Pi3) supposing 7 : y cﬁ Y.
(A5)
h((Py > 0)®) = Clxyh(®) =1 from (WPP,).
(As)
h((Py = 1)@ — (Py = 5)®) = —=C{i) (@) + Cl) h(P)
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(A7)
h((Py >1)® A (Py > s)¥ A (Py < 0)($ A D)
— (Py > min{l,r + s})(2V¥))
S (C(K)h(qs)  Cliyhl(W) - Clyey — (h(®) - h@)))
+ O (h(@) + h(w))
> — R (h(@) + h(w)) + ST (W(®) + () = 1.

h((Py <r)®A(Py < s)¥ — (Py < max{0,r +s—1})(® AV¥))
= — (C(llg)r — h(P) - —C(SK)h(W)) + —CET;})X{O’”S*H (h(®) - h(¥))
1

> O (h(@) - h(@)) + =GRS (h(@) - h(#)) = 1.

(K)
(Ag)
h((Py < )@ — (Py < 8)®) = —Cli)h(®) + C; — h(®)
> Ciyh(®) + —Cii)h(®) = 1, by (WPPs).
(A1o)
h((Py > 8)@ — (Py > 1)®) = —Cii)h(P) + Ol h(D)
> — Ofeyh(®) + Oy h(®) = 1, by (WPPy), for s > r.
(A11)
h((Py > s)® — (Py > 5)®) = Clics — h(®) + Cige) h(®)
> — O3 (@) + Ci)h(®) = 1, by (WPPy).
(Ai12)
h((Yy)® — (Py 2 1)8) = Cxe) — h(P) + Cg)h(®)

ot

> Cxy — h(®) + —Clx) — h(®) by (WPP;) (iii)
>Cgy — MP) + —Cigy — M(P) from (WPPy) (ii)
=1.
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Now, let @ be axiom from F'\ F’. Then ¥ = S(71)S;(1y ')S(m0)® is an
axiom from F’. It follows h(¥) = 1. Then

(®) = Sty @y M) = Sty @yl = 1

It is easy to verify that all formulas from I map to 1.

Now, we shall show that from formula mapped to 1, by any rule of infer-
ence, we get the formula which maps to 1, i.e. that all theorems map to 1.
It is only nontrivial for (R3) and (Ry4).

(R3) Let be & -, S(o)®, where o : V(®) 25V, h(®) = 1. Then
h(S(0)®) = Siov; @) h(P) = S, @)vl = 1.

(Ry) Let be S4(0)® k1, @, where o : Vi (P) ~—> V\ Vi (), h (S4(0)®) = 1.
If ¢ € F', we have & = S¢(071)Sf(0)®. It follows

h(@) = Sg—lﬂ/h(Sf(O')é) = Sa.—lrvl =1.

If® e F\F'let be W = S(m1)S; (15 ")S(70)® and 7y : V(S;(0)d) — V
defined by oy | V4(S¢(0)®) = 11 0719 and oy | Vi(Sf(0)®) = 11007t It is
clear that o7 is “1-1” function. Then

h(é) - S(Tflfvf(i'/)){vh(w) = S(Tflf‘/f(g/))FVh(S(O-l)Sf(0-)@)
= Sy, oy Seuvs (8 ()@ IS (0)¥)
= S @) S vy (ss@@nvl = 1.

Finally, we shall show that g : B — Hp, g(p) = (p(x))F, is “1-17. If
g(p) = g(q), then I' Fr« p(z) < gq(x). It follows h(p(xz) < ¢(z)) = 1, and
hence p=¢q. U

Theorem 3. If B is a weak probability polyadic algebra with infinite di-
mension 3, then there exists homomorphism of B to some weak probability
polyadic set algebra.

Proof. By the previous theorem there exists the set of sentences I" in logic

—+ =
L = L(B,v, ,R) such that Hy = B. Since B > 1, it follows that I" is
consistent in L. By the completeness theorem, I" has a weak model 2. By
Lemma 4 A = (A, U,N, ~, A7 0, ¢(g), ¢(x)» Sr) is a weak probability polyadic
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set algebra and there exists homomorphism from Hjp onto A. It means that
there exists homomorphism from B onto A. [
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