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Abstract. A new approach for designing feedforward neural networks using
genetic algorithms has been proposed. In previous attempts to design neural
networks using genetic algorithms, the objective was to optimize the complete
architecture at once which is a large optimization problem. In contrast, in the
proposed algorithm the objective is reduced is to design a neural network through
a sequence of small optimization problems by growing one hidden unit at a time,
each constructed using genetic search. An additional nice feature of the proposed
algorithm is that no need for additional adaptation of connections from input to
the hidden layer after construction. The analysis shows that the algorithm al-
ways has a convergence property, while experiments indicate that the number of
hidden units constructed by the algorithm is close to optimum which results in
good generalization abilities.

1. Introduction

Research on using genetic algorithms for neural networks learning is increas-
ing. Typically, genetic search is used for the weights optimization on a
pre-specified neural network topology (for survey, see [15]). However, deter-
mining the appropriate size of a neural network is one of the most difficult
tasks in its construction. An attempt to overcome the fixed architecture
problem are constructive learning algorithms that grow or shrink the net-
work in an application specific manner [3, 4, 5, 10]. An interesting system can
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be obtained by combining an existing constructive learning algorithm and
the weights optimization of neural networks using genetic algorithms [8, 13].
However, the space defined by a combination of two techniques might be
difficult for the genetic search. Another previously suggested approach to
neural networks design using genetic algorithms is architecture optimization
only [9]. In those applications once the networks are constructed, slow gra-
dient descent optimization using the backpropogation algorithm [18] is used
for learning appropriate interconnection weights.

Genetic algorithms [7] are optimization techniques inspired by natural
selection and natural genetics. They consist of a sequence of steps (called
generations), where in every generation a better set of strings, called species,
is created using bits and pieces of the fittest species of the old generation.
In addition, an occasional random change of strings is tried. While random-
ized, genetic algorithms are no simple random walk. They efficiently exploit
historical information to perform search on new solution candidates with ex-
pected improved performance. In this paper we use genetic search, based on
the generation-by-generation optimization of a set of candidates for a next
hidden layer unit, to design an appropriate neural network architecture for
a given classification problem. Typically, there are four stages in the genetic
search process: creation, selection, crossover, and mutation. In the creation
stage, a set (population) of possible solution strings (species) is randomly
generated. After the creation stage, each of the species is evaluated using
a fitness function and assigned a fitness value. The fitness function must
be tightly linked to the eventual goal. The usual criterion for success in
pattern classification tasks is the percentage of test examples classified cor-
rectly. Selection eliminates bad candidates based on fitness and allows better
to replicate. During crossover, portions of the parent species are exchanged
with the hope of generating new fitter species consisting of useful parts of
both parents. When all species are similar, the crossover operation loses its
ability to generate new species since exchanging portions of identical strings
generates the same strings. Mutation, a random alteration of bits of the
string (with small probability), is performed on each of the new species to
prevent the whole population from becoming similar.

In the evolutionary algorithm that we propose here there is no need for
additional adaptation of connections from input to the hidden layer after an
architecture is designed. The algorithm designs a neural network growing
one hidden unit at a time, each constructed using genetic search on a rela-
tively simple space. Each hidden unit is immediately assigned appropriate
connection weights from the input layer. The pocket algorithm [5] is then
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used to learn the connection weights between the hidden and the output
layer. The analysis shows that the algorithm always converges, while ex-
periments indicate that the algorithm generates small networks with good
generalization ability. The drawback of this algorithm is that it is highly
computation intensive when implemented on a sequential machine, which
makes it inappropriate for large scale problems. In a companion paper [12],
the proposed algorithm is speeded-up through parallelization of the genetic
search and the pocket algorithm to the level that it is applicable to large
real life problems. A preliminary version of the results from both journal
manuscripts appear in [11].

In summary, the objective of this paper is to design a neural network
through a sequence of small optimization problems by growing one hidden
unit at a time, each constructed using genetic search. A description of the
proposed algorithm is presented in Section 2, followed by the theoretical
analysis in Section 3, experimental results in Section 3, and conclusions in
Section 4.

2. The Evolutionary Algorithm

By Occam’s razor principle, “the simplest explanation of the observed phe-
nomena is most likely to be a correct one”. So, the objective of this study
is to design a small number of hidden layer units in a neural network with
a single hidden layer that classifies well training set examples for a given
classification problem. Then, assuming that the training set is large enough,
we could expect a good generalization with high confidence.

For a given domain D C R™ we define a region by its bounding set of
hyperplanes in R™. A region is said to be resolved if almost all training ex-
amples (high percentage) belonging to that region are of one class, otherwise
the region is unresolved.

Let us assume that the given problem can be represented by a feedfor-
ward neural network of a single hidden layer with units computing threshold
functions of their weighted input sum (usually called hard limiter units).
Each hidden unit in such neural network can be interpreted as a hyper-
plane through the problem domain R™. Hyperplanes corresponding to the
network’s hidden units partition the domain into resolved regions. Conse-
quently, learning goal can be interpreted as a construction of a small set
of hyperplanes (corresponding to hidden layer units) which partition the
training set into resolved regions.

The outline of the proposed constructive learning algorithm follows:
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(1) Start from a single unresolved region of all training examples, and with
a neural network without hidden units.

(2) Generate a new hidden unit (inter-connection weights and threshold)
using genetic search and add it to the current network.

(3) Partition the current unresolved region(s) further with the generated
unit. Discard resolved regions.

(4) Go back to step 2 until all regions are resolved.

(5) Learn hidden to output layer inter-connection weights.

Let us form pairs of training examples, each pair consisting of two exam-
ples belonging to different classes. Let A and B be such a pair of training
examples. For perfect classification of training examples by a single hidden
layer neural network, there must be a hyperplane corresponding to a hid-
den unit separating A from B. Assume that the line connecting A and B
is completely covered by k disjoint building blocks all of the same length.
For a perfect classification there must be a building block between A and B
such that the hyperplane separating A from B passes through it. For large
k the block is small and consequently the hyperplane can be assumed to
pass through the center of it. A hyperplane in R™ is uniquely determined
by m points. So, the equation of the hyperplane separating A from B is
defined by m building blocks appropriately positioned between m pairs of
training examples similar to A and B. A genetic search can be used to deter-
mine m such appropriately positioned building blocks that define a desired
separating hyperplane in R™ (for m = 2, see an example on Figure 1).

In the genetic algorithm, population represents a set of hyperplanes each
being a candidate for the next hidden unit that we want to add to the
neural network. Each individual hyperplane is represented by a fixed length
binary string. For m dimensional input space, each string consists of m
concatenated substrings of equal length. Each of those substrings encodes a
4-tuple: a region, pair of a positive and a negative training examples both
belonging to that region, and the index (one of k possibilities) of a building
block between those two examples that defines a point on the hyperplane.
This has been illustrated for a two dimensional problem in the Figure 2.

Here, in every generation of genetic search the objective is to create a
better population of candidates for the next hidden unit to be added to
the neural network. For that matter, although there are many variations
of genetic algorithms [6], an incremental static population model [17] where
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F1a. 1: The XOR function realized by the net with two hidden units. The figure
shows building blocks on the dotted lines between the examples belonging to the
opposite classes (between (0,0) and (0,1); (0,0) and(1,0); (0,1) and (1,1); (1,0)
and (1,1)). Each block can be in one of the k different positions on the dotted line.

the population is ranked according to fitness was used in this paper. The
two best ranked strings from previous generation are copied into the next
generation. The rest n — 2 strings of the new generation are the result of
crossover and mutation on the n strings of the previous generation. This
model ensures that the best strings are not destroyed.

In each generation the hyperplanes in the population are evaluated for
their fitness. If 7; is the percentage of all training examples from class 4
correctly classified by the hyperplane, then its fitness is defined as the sum
of 7; over all classes. The crossover occurs with equal probability between
any two adjacent bits.

Initially, the problem domain is a single unresolved region. Genetic
search for a pre-specified number of generations is performed and the hid-
den unit corresponding to the generated hyperplane is added to the existing
network hidden layer. This hidden unit is used to partition the unresolved
regions further. All resolved regions can be ignored in future constructive
steps of adding new hidden units because a set of hidden units that can clas-
sify those regions correctly is already designed. The unresolved regions are
maintained in a linked list. The process continue construction of new hidden
units, each using new genetic search, until all the regions are resolved.

The hidden layer units and the connections from the input to the hidden
layer can be easily generated from the constructed hyperplanes. The final
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F1c. 2: Representation of a hyperplane in a two dimensional problem space. Points
1 and 2, as well as points 3 and 4 are pairs of a positive and a negative example
belonging to Region 1 and 2 respectively. The slide positions between the Points
1, 2 and 3, 4 are Slidel and Slide2 respectively. In this example Point 1 and 2 are
23’rd positive and 29’th negative example belonging to 5’th region. If the value
encoded in a substring representing the point (or slide, or region) is larger than the
number of training examples, then modulo arithmetic is performed.

step in the algorithm is to learn the connection weights between the hidden
and the output layer. This task is performed using the pocket algorithm [5],
a modification of the perceptron algorithm [14] able to produce the optimal
separation between non-linearly separable classes with high probability.

3. The Analysis

In this section we address questions of convergence of the proposed algorithm
and quality of generated architecture. It is easy to show the following :

The Convergence Theorem: The proposed evolutionary algorithm
for constructive neural network design will always converge.

Proof: With the addition of each hidden unit (hyperplane) one of the fol-
lowing will occur: (1) number of training examples belonging to unresolved
regions decreases; (2) number of existing unresolved regions increases. Con-
sequently, all regions will eventually be resolved since both the number of
training examples belonging to unresolved regions, and the number of un-
resolved regions are non-negative integers upper bounded by the number of
training examples. O

By the Convergence Theorem we have a procedure which constructs hy-
perplanes partitioning the problem domain to resolved regions only. Un-
fortunately, this does not guarantee that corresponding hidden layer repre-
sentation is linearly separable. For example consider the XOR problem of
Figure 3, where database consists of four examples: a and ¢ are positive
and b and d are negative. It is easy to see that if an algorithm first dis-
covers separating planes 1 and 2, it should continue a search in order to
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F1a. 3: If the exclusive OR problem data is first partitioned by planes 1 and 2,
then for the hidden representation to be linearly separable an additional plane 3 is
needed. This results in a non-minimal neural network architecture.

discover plane 3 as otherwise the constructed hidden representation will not
be linearly separable. However, if the first two hyperplanes discovered by
the proposed algorithm are planes Q1 and Q2 shown in Figure 4(a) the al-
gorithm would stop too early as such a partitioning gives resolved regions
only although the corresponding hidden layer representation is not linearly
separable as shown in Figure 4(b) (point a will map to (1,1), point b to (0,1),
point ¢ to (0,0) and point d to (1,0)). It is important to observe that such
an example is not possible in practice because the proposed algorithm will
select first planes P1 and P2 shown in Figure 5(a) which results in linearly
separable hidden layer representation shown in Figure 5(b). This is so since
planes P1 and P2 have greater fitness values than plane P3 (50% for plane
P3 versus 75% for planes P1 and P2).

So, the analysis shows that for the exclusive OR problem, the proposed
algorithm discovers a minimum configuration of 2 hidden units as desired.
In general, the algorithm uses genetic search with an aim to discover the best
hidden unit that is added to the existing network. This results in a near-
minimal number of generated hidden units even for much more complex
domains as demonstrated by the experimental results of the next section.

4. Experimental Results

In the literature, one can see three types of tests for neural networks al-
gorithms. One choice is testing on highly structured, human constructed
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FI1G. 4: (a) The ifput representation for the exclusive)OR problem partitioned
by planes Q1 and Q2. (b) The corresponding hidden layer representation is not
linearly separable (it is identical to the input representation).

(a) (b)

F1G. 5: (a) The separating planes for the XOR problem generated by the proposed
algorithm. (b) The corresponding hidden layer representation is linearly separable
and minimal.

problems such as Two spirals problem [3]. These tests are important since
they can be arbitrary hard to learn, but as artificial domains they might
not to have much relation to real-life pattern recognition problems of inter-
est. The second choice is to test on natural data which is important but
potentially biased as such a test usually provides insufficient test-bad for a
new algorithm. The problems here include strong dependence of the learn-
ing problem on the database and non-existence of well-accepted benchmark
data bases. Also, real data usually involves a number of crucial design is-
sues (e.g. preprocessing) which makes testing effectiveness of an algorithm
more dependent on the implementation. A third type of test addresses the
above concerns by generating random functions computable by feed-forward
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networks and testing the ability of the algorithm to learn these [1]. Note
that the target function so generated is not an arbitrary random function,
but it is a function that can be represented by a feedforward network of
known complexity. These tests, similarly to human crafted functions, have
a nice property that a training and testing set of arbitrary size, dimension
and complexity is easy to construct, while also providing flexibility in testing
learning for larger classes of functions.

In this paper, the algorithm is first tested on various random feedforward
target networks. Second, it is tested on a real-life votes database, which has
been previously used as a real-life bench-mark in machine learning litera-
ture (17 attributes, 2 classes, 435 examples - 300 training and 135 testing).
Finally, the algorithm has been tested on the Monks problems which are
generic problems constructed originally to test the performance of different
machine learning systems including neural networks [16]. All results reported
in this section are obtained by averaging over ten experiments and round-
ing to the nearest integer. The experiments are identical in all parameters
except for the seed of the random number generator. In all experiments a
region is considered to be resolved only if it is 100% pure. The intention
was to test if this oversimplification will result in an overfit. However, in our
experiments the obtained networks generalized quite well as demonstrated
by the following results.

4.1. Random Feedforward Networks

The proposed constructive learning algorithm is first tested on random tar-
get feedforward networks with m input units, one output unit and £ hidden
units in a single hidden layer generated as follows. The k hidden units with
threshold and connections from input layer are obtained from & hyperplanes
in R™. Each hyperplane is generated randomly by choosing m non-collinear
points and finding the equation of the plane passing through them. The out-
put unit was also randomly initialized. The examples were drawn randomly
and classified according to the target function. With this kind of test we
know that the test function is actually computable on a neural network with
k hidden units. Consequently if the algorithm constructs a networks with
more than k£ hidden units we immediately know that it is of a non-optimal
size.

Tests were conducted on two nets with m=2, k=3 and m=2, k=5 learn-
ing from training set of about 50 examples. In our tests the algorithm almost
always learned the minimum configuration of hyperplanes required to com-
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Fic. 6: Test on a randomly generated binary function computable on a neural
network with three hidden units. A minimal neural network with three hidden
units was discovered for this problem.

pute the target function. The output layer was then trained using the pocket
algorithm. In both types of experiments average accuracy of 99% on the test
set was achieved. The results are depicted in Figures 6 and 7. Experiments
indicate the number of constructed hidden units is optimal or close to it.

4.2. Votes Database

This data set includes votes for each of the U.S House of Representatives
congressmen on 16 key votes identified by the Congressional Quarterly Al-
manac (CQA) [2]. The CQA contains nine different types of votes: voted
for, paired against, voted against, and announced against. This two class
database consists of 435 examples each of 17 attributes, and has previously
published classification results of about 90 - 95%. The proposed constructive
algorithm learning from 300 training examples of this database designed a
network with two hidden units. The obtained classifiers generalization per-
formance on the remaining portion of the database was 97% correct.

4.3. Monks Problems

The Monks problems rely on an artificial domain in which robots are de-
scribed by six different attributes [16]. It comprises of three different tasks.
Each learning task is a binary classification problem given by a logical de-
scription of a class. Robots belong either to a particular class or not, but
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Fi1G. 7: A 2% noise is applied to data resulting from a randomly generated binary
function computable on a neural network with five hidden units. A neural network
with six hidden units was discovered for this problem.

instead of providing a complete class description to the learning problem,
only a subset of 432 possible robots with their classification is given. The
learning task is then to generalize using these examples. The results of
the evolutionary algorithm on these problems are shown in Table 1, where
the training set had 125, 170, 350 examples respectively. The proposed
evolutionary design algorithm is compared to another popular constructive
technique called the Tower algorithm [5], and its performance on all three
problems was superior as clearly evident from the table.

Table 1: The Tower and the evolutionary algorithm comparison on the
Monks problems. Here, Uge, is the number of units generated and Pjeq
is the performance on the testing set.

Problem Tower Evolutionary
Ugen Ptest Ugen Ptest
Monk1 6 81% 3 95%
Monk2 8 82% 8 87%
Monk3 5 83% 6 99%
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Table 2: Effects of multipoint crossover performed on data generated using
a random feedforward network.

Population Size | No. of X-over | Iter. to Conv.
50 1 5
50 3 1
100 1 4
100 3 3
100 4 1
1000 1 1
1000 4 1

4.4. Multipoint Crossover Effects

A test of the effects of multipoint crossover to performance of the proposed
algorithm was conducted on the various sizes of population (see Table 2).
These experiments used randomly generated feedforward network of Fig-
ure 6, and all converged to the same network having 100% accuracy.

The results can be explained by observing that the genetic operators
that are more disruptive are more likely to create new individuals from par-
ents with nearly identical genetic material. Smaller population sizes tend to
converge faster to a homogeneity level which reduces crossover productivity.
With larger population sizes the effects of multipoint crossover appear to
be less important. In a small population, more disruptive multiple crossover
operators may yield better results because they help to overcome the limited
information capacity of the population. However, in a larger population less
disruptive single point crossover operator is more likely to work better, as
suggested by Holland’s original analysis [7].

5. Conclusion

A new algorithm has been proposed which learns binary functions com-
putable on single hidden layer feedforward networks. Using genetic algo-
rithm, though tried before, has not been used for directly constructing the
input to hidden layer weights as shown. In addition, the concept of finding a
point on or near a classification boundary by genetic algorithms is new. On
a variety of tests the proposed algorithm is shown to perform better than
some well known algorithms for neural network construction.
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In a genetic search species correspond to hyperplanes in the problem do-
main and their fitness is computed as the percentages of examples of various
classes classified correctly by the hyperplane. Genetic optimization used in
construction of separating hyperplanes creates hyperplanes with better gen-
eralization capability from one generation to another. Thus if a population
consists of n species, in each generation the fitness will have to be evaluated
for all n species. This is the most expensive step in the algorithm since in
practice n can be quite large. The experiments show that in the sequential
implementation of the algorithm and with n ranging between 50 to 200 more
than 80% of the time is spent computing the fitness. Fortunately, the esti-
mation of the fitness values of the species are independent of one another,
and this makes it an appropriate candidate for distributed computing. In a
companion paper [12], this algorithm is efficiently parallelized and thereby
made applicable to large real life problems.

The proposed algorithm assumes that functions to be learned can be
represented by a reasonably small single layer feedforward neural networks.
The constructed hidden layer representation, although sparse, is not always
linearly separable. It is an interesting open problem to further modify the
proposed algorithm such as to insure linear separability of the constructed
hidden layer representation.
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