
FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. 15 (2000), 123–132

DETERMINING THE NUMBER OF PROCESSING
ELEMENTS IN SYSTOLIC ARRAYS

I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M.K. Stojčev

Dedicated to Professor R. Ž. Djordjević in the occasion of his 65th birthday

Abstract. In this paper we determine the minimal number of processing in the
2D systolic implementation for one class of nested loop algorithms. The number
of processing elements is derived depending on the projection direction and size
of loops. Obtained results are illustrated on matrix multiplication algorithm.

1. Introduction

VLSI technology has made possible the integration of circuits with hun-
dreds of thousands of components into a single silicon chip. This high level
of integration opens the way for massive parallel computations. Systolic
processing constitutes a feasible solution for massive parallel computations.
Its principles are compatible with VLSI technology characteristics [8]. Since
systolic arrays are highly regular, only algorithms with repetitive compu-
tations perform well on them. Algorithms with nested loops fall into this
category.

An important problem associated with designing systolic arrays is the
mapping algorithm into systolic array architecture. Several techniques have
been proposed for this purpose. Particularly useful here is the approach
based on space–time representation of computation structure [1–10]. This
method may be also used to examine the performances of possible systolic
array implementation. Various criteria can be used to compare the perfor-
mances of systolic arrays. The array size, which is defined as the number
of processors in the array, obviously determines the basic hardware cost.

Received July 2, 1999.
1991 Mathematics Subject Classification. Primary 68M07; Secondary 68Q35.

123

124 I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M. K. Stojčev

Therefore a systolic array (SA) which has a minimum number of processing
elements (PE) gives the optimal solution with respect to this cost function.

The objective of this paper is to determine the minimal number of pro-
cessing elements (PE) in the 2D systolic implementations for one class of
nested loop algorithms, according to projection direction and size of loops.
For given projection direction, µ, we first introduce a linear transformation
H, which maps index space CD into a new index space C̄D. This transfor-
mation accommodates CD to the projection direction µ. When a space–time
transformation, which maps index space into systolic array, is applied on C̄D

the result is a 2D systolic array with minimal number of PEs.
The rest of the paper is organized as follows. Section 2 contains back-

ground and problem definition. In section 3 we define a class of adaptable
algorithms. In section 4 we define a one–to–one mappings of index space
for adaptable algorithms, and determine minimal number of PEs in the 2D
systolic array implementation. Then we compare obtained results with those
found in the literature.

2. Background

Each regular 3–nested loop algorithm can be characterized by a pair
(D, CD) (see for example [7–9]), where D is data dependency matrix and
CD = {(i, j, k) | 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3} is the index space
where the data are used or computed. The systolic array implementation
can be obtained by a linear transformation

(2.1) T =


 Π
−−
S


 =




t11 t12 t13
−− −− −−
t21 t22 t23
t31 t32 t33


 ,

where Π determines time scheduling, and S is the space mapping function
determining PE locations and the communication channels between them.
If matrix T is nonsingular, i.e. det T �= 0, and all elements of ∆t = ΠD
are positive (or negative depending on convention), it is said that T is valid
space–time transformation of (D, CD) denoted as

(2.2) T (D, CD) = (∆, C∆),

where

∆ = (∆t, ∆s), ∆t = ΠD, ∆s = SD, C∆ = [t x y]T

Determining the Number of Processing Elements in Systolic Arrays 125

and

t = Π [i j k]T , [x y]T = S [i j k]T for all [i j k]T ∈ CD.

Vector [x y]T determines the x − y coordinates of the PE in the projection
plane. Several designing tools have been proposed for finding valid transfor-
mations T [1, 7–9].

Each transformation matrix T defined by (2.1) is associated with unique
direction projection µ = [µ1µ2µ3]T , for which the following is valid

(2.3) S · µ = 0.

It is assumed that rows of matrix S are linearly independent, i.e. that
rankS = 2.

As we have already mentioned we are looking for transformations that
give the smallest number of PEs in the 2D systolic arrays. For the sake
of comparison, we will first present the corresponding results obtained in
[11] (see also [12] for 3-nested loop algorithm. The expression for number
of processing elements, Ωp, depends only on space–time transformation, T ,
and the size of loops (N1, N2, N3).

Theorem 1 ([11]). Let ω = (N1 − a1)(N2 − a2)(N3 − a3). Then

(2.4) Ωp =
{

N1N2N3, if ai > Ni for some 1 ≤ i ≤ 3,

N1N2N3 − ω, otherwise,

where
ai =

∣∣∣ T1i

gcd(T11, T12, T13)

∣∣∣ .

In the previous expression, T1i, i = 1, 2, 3 is (1, i) − cofactor of matrix T ,
while gcd(T11, T12, T13) denotes the greatest common divisor of the nonzero
integers, T11, T12 and T13. It is obvious that the expression (2.4) for Ωp

depends only on transformation T and the size of loops N1, N2 and N3.
But, if we take into account some properties of the algorithm, the result can
be optimized. Namely, there is a broad class of algorithms with the property
that index space CD can be accommodated to the projection direction µ.
This accommodation is performed by one–to–one mapping H : CD → C̄D,
where H depends on µ. If we then apply transformation T on C̄D we obtain
the set C∆ with fewer number of processing elements.

126 I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M. K. Stojčev

3. Definitions

In this section, we give some preliminary definitions as a basis for the
description that follows.

Let A be a regular 3–nested loop algorithm with index space CD =
{(i, j, k)|1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}. We introduce the fol-
lowing subclasses of A.

Definition 1. If the ordering of computations in algorithm A, for some
fixed j (i), may be performed over arbitrary permutations of index variables
i and k (j and k), we say that A is A(i, k) (A(j, k)) adaptable.

Remark 1. If a given algorithm A is both A(i, k) and A(j, k) adaptable, we
say that it is adaptable.

In the sequel we define one–to–one mappings for adaptable algorithms
which in composition with T enable to obtain 2D systolic arrays with mini-
mal number of processing elements.

4. One–to–one Mappings for Adaptable Algorithms

Let A be an algorithm characterized by a pair (D, CD) and valid transfor-
mation T . Let µ = [µ1 µ2 µ3]T be a projection which corresponds to T . The
accommodation of index space CD to the direction µ is performed by “1–1”
mapping H = (F, G), H : CD → C̄D, where F is 3×3 matrix whose ele-
ments depend on µ, and G is 3×1 matrix with constant coefficients. Matrix
G elements are determined from the condition that H performs mapping
from the first into the first octant of Euclidian space. The definition of H
for adaptable algorithms is as follows:

Definition 2. Suppose that a given algorithm is of type A(i, k). If µ =
[µ1 µ2 µ3]T is allowable projection direction with µ2 = 1, then mapping
H = (F, G) is defined by

(4.1) F =


 1 µ1 0

0 1 0
0 µ3 1


 , G =


 g1

0
g3


 ,

where g1 and g3 are smallest integers determined such that for each [i j k]T ∈
CD the following is valid

(4.2) u = i + µ1j + g1 > 0, w = k + µ3j + g3 > 0.

Determining the Number of Processing Elements in Systolic Arrays 127

The elements u and w are obtained according to

(4.3)


 u

v
w


 = F


 i

j
k


 + G =


 1 µ1 0

0 1 0
0 µ3 1


 ·


 i

j
k


 +


 g1

0
g3


 .

Remark 2. If µ2 = −1, then µ1 and µ3 in (4.1), (4.2) and (4.3) should be
substituted by (−µ1) and (−µ3), respectively.

Definition 3. Suppose that a given algorithm is of type A(j, k). If µ =
[µ1 µ2 µ3]T is allowable projection direction with µ1 = 1, then mapping
H = (F, G) is defined by

(4.4) F =


 1 0 0

µ2 1 0
µ3 0 1


 , G =


 0

g2

g3


 ,

where g2 and g3 are smallest integers determined such that for each [i j k]T

∈ CD the following is valid

(4.5) v = µ2i + j + g2 > 0, w = µ3i + k + g3 > 0.

The elements v and w are obtained according to

(4.6)


 u

v
w


 = F


 i

j
k


 + G =


 1 0 0

µ2 1 0
µ3 0 1


 ·


 i

j
k


 +


 0

g2

g3


 .

Remark 3. If µ1 = −1, then µ2 and µ3 in (4.4), (4.5) and (4.6) should be
substituted by (−µ2) and (−µ3), respectively.

Before we determine the number of PEs in the systolic array, let us point
out to some properties of mapping H = (F, G) defined by (4.4) or (4.1):

– The mapping H = (F, G) is “1–1”;
– Suppose that H = (F, G), H : CD → C̄D is mapping defined by

(4.4) (or (4.1)). Then each line parallel with direction µ = [1 µ2 µ3]T

(or µ = [µ1 1 µ3]T) which passes through one point of C̄D contains N1

(i.e., N2) points from C̄D. There are N2N3 (i.e. N1N3) such lines.
– The composition of T and F , i.e., M = T ◦ F , is a regular mapping.
In the remainder of this section we will determine the minimal number of

PEs in 2D systolic implementation for adaptable algorithms.

128 I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M. K. Stojčev

Theorem 2. Suppose that a given algorithm A is A(i, k) adaptable. The
number of PEs in the 2D array obtained by the projection direction µ =
[µ1 1 µ3]T is

(4.7) Ωp = N1N3.

Proof. Suppose that algorithm A is characterized by a pair (D, CD),
CD = {(i, j, k) | 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3}, and valid transforma-
tion T , defined by (2.1). Since the algorithm is of A(i, k) type we can apply
mapping H = (F, G) defined by (4.1). The systolic array implementation is
obtained according to composite mapping T ◦ H, i.e., according to

(CD) H
−→(C̄D) and (D, C̄D) T
−→(∆, C∆).

Since G is matrix with constant coefficients, the number of PEs, Ωp, in
the array depends only on matrix M = T ◦ F , that is

(4.8)

M = T ◦ F =


 t11 t12 t13

t21 t22 t23
t31 t32 t33


 ·


 1 µ1 0

0 1 0
0 µ3 1




=


 t11 µ1t11 + µ2t12 + µ3t13 t13

t21 0 t23
t31 0 t33


 .

Note that in (4.8) we have used the condition (2.3), S · µ = 0, i.e.,
µ1t21 + µ2t22 + µ3t23 = 0 and µ1t31 + µ2t32 + µ3t33 = 0. Since M is valid
transformation and M11 = M13 = 0, then according to Theorem 1 we have
that a1 = 0, a2 = 1, a3 = 0, i.e.,

Ωp = N1N2N3 − N1(N2 − 1)N3 = N1N3. �

Theorem 3. Suppose that a given algorithm A is A(j, k) adaptable. The
number of PEs in the 2D array obtained by the projection direction µ =
[1 µ2 µ3]T is

(4.9) Ωp = N2N3.

The proof is similar to that of Theorem 2.

Determining the Number of Processing Elements in Systolic Arrays 129

Corollary 1. Suppose that a given algorithm A is adaptable. The number
of PEs in the 2D array obtained by the projection directions µ = [1 1 µ3]T ,
or µ = [1 − 1 µ3]T , is

(4.10) Ωp = N3 · min{N1, N2}.

Remark 4. We assume that directions µ and −µ are equal.

Remark 5. If for a given algorithm A allowable direction is µ = [0 0 1]T , we
have a trivial case F = I and G = 0. In that case

(4.11) Ωp = N1N2.

Let us point out that for adaptable algorithms results obtained according
to (2.4) are inferior compared to those obtained according to (4.7), (4.9) or
(4.10). We will illustrate this fact on the example of matrix multiplication
algorithm.

Algorithm (matrix multiplication C = A × B)
for k := 1 to N3 do
for j := 1 to N2 do
for i := 1 to N1 do
a(i, j, k) := a(i, j − 1, k);
b(i, j, k) := b(i − 1, j, k);
c(i, j, k) := c(i, j, k − 1) + a(i, j, k) ∗ b(i, j, k);

where a(i, 0, k) ≡ aik, b(0, j, k) ≡ bkj , c(i, j, 0) ≡ 0 for all i, j and k. It
is not difficult to conclude that a given algorithm is both of type A(i, k)
and A(j, k). For the purpose of comparison we will take the same valid
transformations T1 and T2 as in [11], that is

T1 =


 1 1 1
−1 1 0
0 0 −1


 and T2 =


 1 1 1

0 1 1
1 0 1


 .

The projection direction which corresponds to T1 is µ = [1 1 0]T . Ac-
cordingly, we can use Corollary 1 to determine the number of PEs in the
corresponding systolic array. According to (4.10) we have

(4.12) Ωp(T1) = N3 · min{N1, N2}

compared to
Ωp(T1) = N3 · (N1 + N2 − 1)

130 I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M. K. Stojčev

obtained according to Theorem 1 (see [11]).
Similarly, for T2 the corresponding direction is µ = [1 1 − 1]T . Thus,

according to Corollary 1

Ωp(T2) = Ωp(T1) = N3 · min{N1, N2}

compared to

Ωp(T2) = N1N2N3 − (N1 − 1)(N2 − 1)(N3 − 1)

obtained by the Theorem 1 (se [11]).
Similar results are obtained for all other allowable projection directions

(µ = [1 0 0]T , µ = [0 1 0]T , µ = [0 0 1]T , µ = [1 0 1]T , µ = [0 1 1]T ,
µ = [1 1 1]T , µ = [1 −1 1]T , µ = [1 −1 −1]T) for a matrix multiplication
algorithm.

Figures 1 and 2 show systolic array implementations obtained by T2 for
the case N1 = N2 = N3 = 2 obtained according to Theorem 1 and Corollary
1, respectively.

Fig. 1. Systolic array obtained according to Theorem 1

5. Conclusion

In this paper we have determined the minimal number of PEs in the
2D systolic implementations for one class of 3–nested loop algorithms. We

Determining the Number of Processing Elements in Systolic Arrays 131

Fig. 2. Systolic array obtained according to Corollary 1

have defined a class of adaptable algorithms for which we introduce some
linear transformations that accommodate the index space of algorithm to
the projection direction. This accommodation enables us to obtain 2D SAs
with the smallest number of PEs. The number of PEs depends on the size
of loops and projection direction. We have illustrated the obtained results
on the matrix multiplication algorithm.

R E F E R E N C E S

1. M.O. Esonu, J.Al–Khalili, S. Hariri, D. Al–Khalili: Systolic arrays:
How to chose them., IEE Proc. 139, No. 3 (1992), 179–188.

2. S.Y. Kung: VLSI Array Processors. Prentice Hall, New Jersey, 1988.

3. P.-Z. Lee, Z.-M. Kedem: Mapping nested loop algorithms into multidimen-
sional systolic arrays. IEEE Trans. Parallel Distr. Syst. 1, No. 1 (1990),
64–76.

4. G. J. Li, B.W. Wah: The design of optimal systolic arrays. IEEE Trans.
Comput. C–34, No. 1 (1985), 66–77.

5. C.-M. Liu, C.-W. Jen: Design of algorithm–based fault–tolerant VLSI array
processor. IEE Proc. 136, Pt. E, 6 (1989), 539–547.

6. I.Z.Milentijević, I.Ž.Milovanović, E.I.Milovanović, M.K. Stojčev:

The design of optimal planar systolic arrays for matrix multiplication. Com-
put. Math. Appl. 33, No. 6 (1997), 17–35.

7. W. L. Miranker, A. Winkler: Space time representations of computa-
tional structures. Computing 32 (1984), 93–114.

8. D. I. Moldovan: Parallel Processing: From Applications to systems. Mor-
gan Kaufman, San Mateo, CA, 1993.

132 I. Ž. Milovanović, T. I. Tokić, E. I. Milovanović, M. K. Stojčev

9. D. I. Moldovan, J.A.B. Fortes: Partitioning of algorithms for fixed size
VLSI architectures. IEEE Trans. Comput. C–35, No. 1 (1986), 1–12.

10. S. G.Sedukhin: The designing and analysis of systolic algorithms and struc-
tures., Programming 2 (1991), 20–40 (Russian).

11. C. N.Zhang, J. H.Weston, Y.-F. Yan: Determining object functions in
systolic array designs. IEEE Trans. Very Large Scale Integration (VLSI)
Systems 2, No. 3 (1994), 357–360.

12. C. N. Zhang, T. M. Bahtiar, W. K. Chou: Optimal fault–tolerant design
approach for VLSI array. IEEE Proc. Comput. Dig. Techn. 144, No. 1
(1997), 15–23.

Faculty of Electronic Engineering
P.O. Box 73
18000 Nǐs, Serbia

