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FINITE DIFFERENCE METHOD FOR
THE HEAT EQUATION WITH COEFFICIENT

FROM ANISOTROPIC SOBOLEV SPACE

B. S. Jovanović and D. Bojović

Dedicated to Professor R. Ž. Djordjević in the occasion of his 65th birthday

Abstract. In this paper we consider the first initial-boundary value problem
for the heat equation with variable coeficient in a domain (0, 1) × (0, T ]. We
assume that the solution of the problem and the coefficient of equation belong
to the corresponding anisotropic Sobolev spaces. Convergence rate estimate
which is consistent with the smoothness of the data is obtained.

1. Introduction

For a class of finite difference schemes for parabolic initial-boundary value
problem, the estimates of the convergence rates consistent with the smooth-
ness of data, are of major interest, i.e.

(1) ‖u− v‖
W

r,r/2
2 (Qhτ )

≤ C(h+
√
τ)s−r‖u‖

W
s,s/2
2 (Q)

, s ≥ r.

Here u = u(x, t) denotes the solution of the original initial–boundary value
problem, v denotes the solution of corresponding finite difference scheme, h
and τ are discretisation parameters, W s,s/2

2 (Q) denotes anisotropic Sobolev
space, W s,s/2

2 (Qhτ ) denotes discrete anisitropic Sobolev space, and C is a
positive generic constant, independent of h, τ and u. For problems with
variable coefficients constant C depends on the norms of coefficients.
Estimates of this type have been obtained for parabolic problems with

coefficient which depends only on variable x [2]. In this paper we are deriv-
ing estimates for the parabolic problem with coefficient which depends on
variables x and t. Our proof is based on Bramble–Hilbert lemma [3].
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2. Initial–Boundary Value Problem and its Approximation

Let us define anisotropic Sobolev spacesW s,s/2
2 (Q), Q = Ω×I, I = (0, T ),

as follows [5]:

W
s,s/2
2 (Q) = L2(I,W s

2 (Ω)) ∩W
s/2
2 (I, L2(Ω)) ,

with the norm

‖f‖
W

s,s/2
2 (Q)

=

(∫ T

0

‖f(t)‖2
W s

2 (Ω)dt+ ‖f‖2

W
s/2
2 (I,L2(Ω))

)1/2

.

We consider, as a model problem, the first initial–boundary value problem
for parabolic equation with variable coefficient in the rectangular domain
Q = Ω× (0, T ] = (0, 1)× (0, T ]:

(2)

∂u

∂t
− ∂

∂x
(a

∂u

∂x
) = f , (x, t) ∈ Q ,

u = 0 , (x, t) ∈ ∂Ω× [0, T ] ,
u(x, 0) = u0(x) , x ∈ Ω .

We assume that the generalized solution of the problem (2) belongs to the
anisotropic Sobolev space W

s,s/2
2 (Q), 2 ≤ s ≤ 4, with the right–hand side

f(x, t) which belongs toW s−2,s/2−1
2 (Q). Consequently, coefficient a = a(x, t)

belongs to the space of multipliers M
(
W

s−1,(s−1)/2
2 (Q)

)
, i.e. it is sufficient

that

a ∈ W
s−1+ε,(s−1+ε)/2
3/(s−1) (Q) (ε > 0) for 2 ≤ s ≤ 5/2 ,

a ∈ W
s−1,(s−1)/2
2 (Q) for 5/2 < s ≤ 4 .

We assume that the coefficient a(x, t) is decreasing function in variable t and
a(x, t) ≥ c0 > 0.
Let ω be the uniform mesh in Ω = (0, 1) with the step size h, ω̄ =

ω∪{0, 1} = ω∪γ. Let θτ be the uniform mesh in (0, T ) with the step size τ ,
θ+

τ = θτ ∪{T}, θ̄τ = θτ ∪{0, T}. We define uniform mesh in Q: Qhτ = ω×θτ ,
Q+

hτ = ω × θ+
τ and Qhτ = ω̄ × θ̄τ , and we assume that the conditions

k1h
2 ≤ τ ≤ k2h

2 , k1, k2 = const > 0 ,
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are satisfied. Now, we define finite differences in the usual manner:

vx =
v+ − v

h
= v+

x̄ , vxx̄ =
v+ − 2v + v−

h2
,

where v±(x, t) = v(x± h, t), and

vt(x, t) =
v(x, t+ τ)− v(x, t)

τ
= vt̄(x, t+ τ) .

Also, we define the Steklov smoothing operators:

T+
x f(x, t) =

∫ 1

0

f(x+ hx′, t) dx′ = T−
x f(x+ h, t) ,

T 2
x f(x, t) = T+

x T−
x f(x, t) =

∫ 1

−1

(1− |x′|)f(x+ hx′, t) dx′ ,

T+
t f(x, t) =

∫ 1

0

f(x, t+ τt′) dt′ = T−
t f(x, t+ τ) .

These operators commute and transform derivatives into differences:

T 2
x

(
D2

xf(x, t)
)
= D2

x

(
T 2
x f(x, t)

)
= fxx̄(x, t) ,

T−
t (Dtf(x, t)) = Dt

(
T−
t f(x, t)

)
= ft̄(x, t) ,

etc.
We approximate problem (2) with the following finite–difference scheme:

(3)

vt̄ + Lhv = T 2
x T−

t f in Q+
hτ ,

v = 0 on γ × θ̄τ ,

v = u0 on ω × {0} ,

where
Lhv = −1

2
(
(avx)x̄ + (avx̄)x

)
.

The finite–difference scheme (3) is the standard symmetric scheme with the
averaged right–hand side. Note that for s ≤ 3.5 the right–hand side may
be discontinuous function, so scheme without averaging is not well defined.
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3. Convergence of the Finite–Difference Scheme

Let u be the solution of initial-boundary value problem (2) and v - the
solution of finite difference scheme (3). The error z = u − v satisfies the
conditions:

(4)

zt̄ + Lhz = η + ϕ in Q+
hτ ,

z = 0 on ω × {0} ,
z = 0 on γ × θ̄τ ,

where

η = T 2
x T−

t (Dx(aDxu))− 1
2
((aux)x̄ + (aux̄)x) , ϕ = ut̄ − T 2

x ut̄ .

We define discrete inner products

(v, w)ω = (v, w)L2(ω) = h
∑
x∈ω

v(·, t)w(·, t) ,

where v(·, t) = v(x, t), (x, t) ∈ ω × {t}, t ∈ θ+
τ is fixed,

(v, w)Qhτ
= (v, w)L2(Qhτ ) = hτ

∑
x∈ω

∑
t∈θ+

τ

v(x, t)w(x, t) = τ
∑
t∈θ+

τ

(v, w)ω ,

and discrete Sobolev norms

‖v‖2
ω = (v, v)ω ,

‖v‖2
Qhτ

= (v, v)Qhτ
,

‖v‖2
W 2,1

2 (Qhτ )
= ‖v‖2

Qhτ
+ ‖vx‖2

Qhτ
+ ‖vxx̄‖2

Qhτ
+ ‖vt̄‖2

Qhτ
.

The following assertion holds true:

Lemma. Finite–difference scheme (4) satisfies a priori estimate

(5) ‖z‖W 2,1
2 (Qhτ ) ≤ ‖η‖Qhτ

+ ‖ϕ‖Qhτ
.

Proof. Multiplying (4) by Lhz = 1
2Lh(z+ž)+ τ

2Lhzt̄, where ž = z(x, t−τ)
and summing through the nodes of ω we obtain:

1
2τ

(‖z‖2
Lh

−‖ž‖2
Lh

)
+

τ

2
‖zt̄‖2

Lh
+‖Lhz‖2

ω = (η+ϕ,Lhz)

≤ 1
2
‖η+ϕ‖2

ω+
1
2
‖Lhz‖2

ω ,

‖z‖2
Lh

− ‖ž‖2
Lh
+ τ2‖zt̄‖2

Lh
+ τ‖Lhz‖2

ω ≤ τ‖η + ϕ‖2
ω
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and

‖z‖2
Lh

− ‖ž‖2
Ľh
+ ‖ž‖2

Ľh
− ‖ž‖2

Lh
+ τ2‖zt̄‖2

Lh
+ τ‖Lhz‖2

ω ≤ τ‖η + ϕ‖2
ω ,

where Ľh(t) = Lh(t − τ). Recalling the condition that a(x, t) is decreasing
function in variable t we simply deduce that ‖ž‖2

Ľh
− ‖ž‖2

Lh
≥ 0 . We thus

obtain
‖z‖2

Lh
− ‖ž‖2

Ľh
+ τ‖Lhz‖2

ω ≤ τ‖η + ϕ‖2
ω .

Summing through the nodes of θ+
τ we obtain

‖z(T )‖2
Lh(T ) − ‖z(0)‖2

Lh(0) + τ
T∑
τ

‖Lhz‖2
ω ≤ τ

T∑
τ

‖η + ϕ‖2
ω .

Using the relations ‖z(T )‖2
Lh(T ) ≥ 0 and ‖z(0)‖2

Lh(0) = 0 we have

(6) τ
T∑
τ

‖Lhz‖2
ω ≤ τ

T∑
τ

‖η + ϕ‖2
ω .

Using the relation ‖zt̄‖ ≤ ‖η + ϕ‖+ ‖Lhz‖ we have

(7) τ
T∑
τ

‖zt̄‖2
ω ≤ 4τ

T∑
τ

‖η + ϕ‖2
ω .

Finally, recalling well-known relations

‖Lhz‖Qhτ
≥ C‖zxx̄‖Qhτ

, ‖z‖Qhτ
≤ C‖zx‖Qhτ

, ‖zx‖Qhτ
≤ C‖zxx̄‖Qhτ

and the relations (6) and (7) we simply obtain

‖z‖W 2,1
2 (Qhτ ) ≤ ‖η‖Qhτ

+ ‖ϕ‖Qhτ
. �

In such a way, the problem of deriving the convergence rate estimate for
finite–difference scheme (3) is now reduced to estimating the right–hand side
terms in (5).
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First of all, we decompose term η in the following way: η =
7∑

k=1

ηk ,

where

η1 = T 2
x (aT

−
t D2

xu)− (T 2
x T−

t a)(T 2
x T−

t D2
xu) ,

η2 = (T 2
x T−

t a− a)(T 2
x T−

t D2
xu) ,

η3 = a(T 2
x T−

t D2
xu− uxx̄) ,

η4 = T 2
x T−

t (DxaDxu)− (T 2
x T−

t Dxa)(T 2
x T−

t Dxu) ,

η5 = (T 2
x T−

t Dxa− 0.5(ax + ax̄))(T 2
x T−

t Dxu) ,

η6 = 0.5(ax + ax̄)(T 2
x T−

t Dxu− 0.5(u−
x + u+

x̄ )) ,

η7 = 0.25(ax − ax̄)(u−
x − u+

x̄ ) .

Let us introduce the elementary rectangles

e = e(x, t) = {(ξ, ν) : ξ ∈ (x− h, x+ h) , ν ∈ (t− τ, t)}.
The linear transformations ξ = x + hx∗, ν = t + τt∗, defines a bijective
mapping of the canonical rectangles E = {(x∗, t∗) : |x∗| < 1 , −1 < t∗ < 0}
onto e. We define u∗(x∗, t∗) = u(x+ hx∗, t+ τt∗) and so on.
The value of η1 at a mesh point (x, t) ∈ Q+

hτ can be expressed as

η1(x, t) =
1
h2

{ ∫∫
E

(1− |x∗|)a∗(x∗, t∗)D2
xu

∗(x∗, t∗) dt∗dx∗

−
∫∫

E

(1− |x∗|)a∗(x∗, t∗) dt∗dx∗

×
∫∫

E

(1− |x∗|)D2
xu

∗(x∗, t∗) dt∗dx∗
}

.

Then we deduce that η1 is a bounded bilinear functional of the argument
(a∗, x∗) ∈ W

λ,λ/2
q (E) × W

µ,µ/2
2q/(q−2)(E), where λ ≥ 0, µ ≥ 2 and q > 2.

Furthermore, η1 = 0 whenever a∗ is a constant function or u∗ is a polynomial
of degree two in x∗ and degree one in t∗. Applying the bilinear version of
the Bramble-Hilbert lemma we deduce that

|η1(x, t)| ≤ C

h2
|a∗|

W
λ,λ/2
q (E)

|u∗|
W

µ,µ/2
2q/(q−2)(E)

,

0 ≤ λ ≤ 1 , 2 ≤ µ ≤ 3 , q > 2 .
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Returning from the canonical variables to the original variables we obtain:

|a∗|
W

λ,λ/2
q (E)

≤ Ch
λ− 3

q |a|
W

λ,λ/2
q (e)

,

|u∗|
W

µ,µ/2
2q/(q−2)(E)

≤ Ch
µ− 3(q−2)

2q |u|
W

µ,µ/2
2q/(q−2)(e)

.

Therefore,

|η1(x, t)| ≤ Chλ+µ− 7
2 |a|

W
λ,λ/2
q (e)

|u|
W

µ,µ/2
2q/(q−2)(e)

,

0 ≤ λ ≤ 1 , 2 ≤ µ ≤ 3 , q > 2 .

Summing over the mesh Q+
hτ we obtain

‖η1‖Qhτ
≤ Chλ+µ−2‖a‖

W
λ,λ/2
q (Q)

‖u‖
W

µ,µ/2
2q/(q−2)(Q)

,(8)

0 ≤ λ ≤ 1 , 2 ≤ µ ≤ 3 .

Now suppose that q > 2 and 5/2 < s ≤ 4. Then the following Sobolev
imbeddings hold:

W
λ+µ,(λ+µ)/2
2 (Q) ⊂ W

µ,µ/2
2q/(q−2)(Q) for λ ≥ 3/q ,

W
λ+µ−1,(λ+µ−1)/2
2 (Q) ⊂ Wλ,λ/2

q (Q) for µ ≥ 5/2− 3/q .

Setting λ+ µ = s in (8) yields:

(9) ‖η1‖Qhτ
≤ Chs−2‖a‖

W
s−1,(s−1)/2
2 (Q)

‖u‖
W

s,s/2
2 (Q)

, 5/2 < s ≤ 4 .

Similarly, for 2 ≤ s ≤ 5/2 we have

|η1(x, t)| ≤ Chs−7/2|a|
W

s−1+ε,(s−1+ε)/2
3/(s−1) (e)

|u|
W

s,s/2
2 (e)

.

Summing over the mesh Q+
hτ we obtain

(10) ‖η1‖Qhτ
≤ Chs−2‖a‖

W
s−1+ε,(s−1+ε)/2
3/(s−1) (Q)

‖u‖
W

s,s/2
2 (Q)

, 2 ≤ s ≤ 5/2 .

By a similar argument, the term η2 is a bounded bilinear functional of
the argument (a∗, x∗) ∈ W

λ,λ/2
q (E) × W

µ,µ/2
2q/(q−2)(E), where λ > 3/q,µ >
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3(q − 2)/(2q) and q > 2. Furthermore, η2 = 0 whenever a∗ is a polynomial
of degree one in x∗ or u∗ is a polynomial of degree one in x∗ . Applying the
bilinear version of the Bramble-Hilbert lemma we deduce that

|η2(x, t)| ≤ C

h2
|a∗|

W
λ,λ/2
q (E)

|u∗|
W

µ,µ/2
2q/(q−2)(E)

,

3
q
< λ ≤ 2 , 3(q − 2)

2q
< µ ≤ 2 .

Summing over the mesh Q+
hτ we obtain

‖η2‖Qhτ
≤ Chλ+µ−2‖a‖

W
λ,λ/2
q (Q)

‖u‖
W

µ,µ/2
2q/(q−2)(Q)

.

For 2 ≤ s ≤ 5/2, setting q = 3, λ = 1 + ε, µ = s − (1 + ε) and using the
imbeddings

W
λ+µ,(λ+µ)/2
2 (Q) ⊂ W

µ,µ/2
2q/(q−2)(Q) for λ ≥ 3/q ,

W
λ+µ−1+ε,(λ+µ−1+ε)/2
3/(s−1) (Q) ⊂ Wλ,λ/2

q (Q) for λ ≤ 3/q + ε ,

we obtain

(11) ‖η2‖Qhτ
≤ Chs−2‖a‖

W
s−1+ε,(s−1+ε)/2
3/(s−1) (Q)

‖u‖
W

s,s/2
2 (Q)

, 2 ≤ s ≤ 5/2 .
For 5/2 < s ≤ 4, using the same technique as for η1 we obtain

(12) ‖η2‖Qhτ
≤ Chs−2‖a‖

W
s−1,(s−1)/2
2 (Q)

‖u‖
W

s,s/2
2 (Q)

, 5/2 < s ≤ 4 .
The term η3 is a bounded bilinear functional of the argument (a∗, x∗) ∈

C(E) × W
s,s/2
2 (E) , and η3 = 0 whenever u∗ is a polynomial of degree

three in x∗ and degree one in t∗. Recalling the imbeddings

W
s−1+ε,(s−1+ε)/2
3/(s−1) (Q) ⊂ C(Q) for 2 ≤ s ≤ 5/2 ,

W
s−1,(s−1)/2
2 (Q) ⊂ C(Q) for 5/2 < s ≤ 4 ,

we obtain estimates of the form (9) and (10) for η3 .

Using the same technique as before we obtain estimates of the form (9)
and (10) for η4 , η5 , η6 and η7 .

Applying the linear version of the Bramble-Hilbert lemma we simply ob-
tain estimates of the term ϕ :

(13) ‖ϕ‖Qhτ ≤ Chs−2‖u‖
W

s,s/2
2 (Q)

, 2 ≤ s ≤ 4 .
Combining (5) with (9)–(13) we obtain the final result:
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Theorem. Finite–difference scheme (3) converges in the norm of the space
W 2,1

2 (Qhτ ) and, with condition k1h
2 ≤ τ ≤ k2h

2, the following estimates
hold:

‖u− v‖W 2,1
2 (Qhτ ) ≤ Chs−2‖a‖

W
s−1+ε,(s−1+ε)/2
3/(s−1) (Q)

‖u‖
W

s,s/2
2 (Q)

, 2 ≤ s ≤ 5/2 ,

‖u− v‖W 2,1
2 (Qhτ ) ≤ Chs−2‖a‖

W
s−1,(s−1)/2
2 (Q)

‖u‖
W

s,s/2
2 (Q)

, 5/2 < s ≤ 4 .

These estimates are consistent with the smoothness of data.
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