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Abstract. In this paper an algorithm for solving impulsive differential equa-
tions is presented. The algorithm is based on well–known numerical methods
and it gives numerical values of solution of impulsive differential equation. A
new type of impulsive differential equations is presented, and numerical ap-
proach to their solving is given.

1. Introduction

In present literature regarded to impulsive differential equations solution
was searched in form of analytical expression. Significantly results are pre-
sented by V. Lakshmikantham, D. Bainov, P. Simeonov, S. Kostadinov and
N. van Minh ([1]-[10]). However, many impulsive differential equations can
not be solved in this way or their solving is more complicated. From the
other side, huge number of practical problems need not solution of impulsive
differential equation in analytical form, but only need numerical values of
solution. This is reason that impulsive differential equation can be solved nu-
merically (see [12]). In this paper well–known numerical methods for solving
ordinary differential equations are used (see [11]).

2. Impulsive Differential Equations

We denote set of real and set of integer numbers with R and Z, respec-
tively. Let it be X = R

n and T = {tk | k ∈ Z} ⊂ R where is tk < tk+1 for
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all k ∈ Z, tk → +∞ when k → +∞ and tk → −∞ when k → −∞. Also, let
t+k = tk + 0, and t−k = tk − 0.

If Ω ⊂ R is any real interval, we suppose that

�x ≡ x(t) = [x1(t) x2(t) · · · xn(t) ]
T
,

is vector of unknown functions, and

f(t, x) : Ω× X �→ X ,

f(t, x) =




f1(t, x1(t), x2(t), . . . xn(t))
f2(t, x1(t), x2(t), . . . xn(t))
...

fn(t, x1(t), x2(t), . . . xn(t))


 ,

is continuous operator on every set [tk, tk+1]× X.

Definition 2.1. A system of differential equations of the form

(2.1)
dx

dt
= f(t, x) (t 
= tk),

with conditions

(2.2) ∆x|t=tk
= x(t+k )− x(t−k ) = Ik(x(tk)) (t = tk),

where Ik : X �→ X are continuous operators, k = 0,±1,±2, . . . , is called
impulsive differential equation (in further IDE).

A state of the process, simulated by IDE, at the moment t = t0 is taken
as a start condition

x0 = x(t0),

for solving differential equation (2.1).

Definition 2.2. Any set of functions ϕi(t) (i = 1, 2, . . . , n) is said to be a
solution of impulsive differential equation (2.1), (2.2) if for t ∈ R\T satisfies
the system of differential equations (2.1), and for t ∈ T satisfies condition of
the jump (2.2).

A problem of existence and uniqueness of the solutions of impulsive differ-
ential equations (2.1), (2.2) is reduced to that about corresponding ordinary
differential equations (see [2]).

dx

dt
= f(t, x).
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Let x(t) be a solution of IDE (2.1), (2.2) which satisfies the start condition
x(t0) = x0. Also, let Ω+ i Ω− be maximal intervals on which the solution
can be continued to the right, respectively to the left of the point t = t0.
Then next expression is valid (see [2]):

(2.3) x(t) =




x0 +
∫ t

t0

f(s,x(s)) ds +
∑

t0<tk<t

Ik(x(tk)) (t ∈ Ω+),

x0 +
∫ t

t0

f(s,x(s)) ds −
∑

t<tk≤t0

Ik(x(tk)) (t ∈ Ω−).

3. Algorithm

We suppose that IDE (2.1), (2.2) with start condition x0 = x(t0) is given.
Impulsive operators Ik, (k ∈ Z) act at the moments tk for all k ∈ Z) and
they can be described with the quadrat matrices of dimensions n × n.

Now, we present an numerically algorithm for solving IDE, in further
ASIDE (Algorithm for Solving Impulsive Differential Equations). If func-
tions x1(t), x2(t), . . . , xn(t) are solution of IDE (2.1), (2.2), it is possible
to obtain values x1(tz), x2(tz), . . . , xn(tz) for fixed value tz of parameter t
by ASIDE. Without loss of generality, we suppose that tz > t0, i.e. tz ∈ Ω+.
Also, we denote index of iteration with j (j = 0, 1, 2 . . . ).

ASIDE consists of following steps:

1◦ step: At the moment t = t0, we set functions to the values that were
given in start condition, i.e. x := x0. We initialize the counter: k := 0.

2◦ step: Using numerical method (NM) we solve the functions of argument
t taking it from halfsegment (tk, tk+1], i.e. x[j+1] := NM(x[j]). We increase
the counter: k := k + 1.

3◦ step: At the moment t = tk acts impulsive operator Ik, and brings
rapidly changes (jumps) of functions x that amounts

J(tk) := Ik(x (tk) +
∑

t0<tm<tk
J(tm)).

4◦ step: We repeat steps 2◦, and 3◦ while tk+1 < tz.

5◦ step: Using numerical method (NM) we solve the functions of argument
t taking it from half-segment (tk, tz], i.e. x[j+1] := NM(x[j]).
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6◦ step: We add to the functions x a sum of all jumps

x := x +
∑

t0<tk<tz

J(tk) .

In 2◦ step we must choose m (m ∈ N) nodes from the segment on which
we solve, i.e. we must divide this segment to disjunctive subsegments

(tk, tk+1] = (t[0]k , t
[1]
k ] ∪ (t[1]k , t

[2]
k ] ∪ . . . ∪ (t[m−1]

k , t
[m]
k ]

where is t
[m]
k = tk+1. We must do similarly in 5◦ step.

Using ASIDE algorithm we practically, do not reach analytical expressions
for functions x1(t), x2(t), . . . , xn(t), at all, but we solve approximative
values of those functions for t = tz.

For generating the sequence x[0], x[1], x[2], . . . we choose some known nu-
merical method (NM) for solving the system of differential equations (Euler’s
method, some multi–step method or some of the Runge-Kutta methods),
which characteristics and accuracy are well known (see, for example [11]).
We can choose the number of nodes and the sizes of subsegments on which
we divide half-segments (tk, tk+1]. It is the most simple, from the aspect
of programming, to choose equal number of the equidistant nodes on each
half-segment. But, a way of choosing nodes can affect to accuracy of the
result. A similar procedure can be applied in the case tz < t0, i.e. t ∈ Ω−.
Only condition is that impulsive operators Ik for k ≤ 0 have their inverse
operators I−1

k . That is because the value of the argument t decreases, and
at the moment t = tk, when impulsive operator acts, an inverse mapping
must be applied

∆x|t=tk
= I−1

k · x(tk).

4. Stroke–Impulsive Differential Equations

We considered another type of impulsive differential equations, where
impulse does not act at the specific moment t = tk, but at the moment
when process, that is simulated by equation, comes to a specific state.

Definition 4.1. Stroke-impulsive differential equation (in further SIDE) is
a system of differential equations of the form

(4.1)
dx

dt
= f(t, x),
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with jump-conditions

(4.2) ∆x|uk(x)=0 = Ik(xuk(x)=0),

where Ik : X �→ X are continuous operators, and uk(x) = 0, are some
conditions (k = 1, 2, . . . , m).

A state of the process, simulated by SIDE, at the moment t = t0 is taken
as a start condition

x0 = x(t0),

for solving differential equation (4.1).

Definition 4.2. Any set of functions ϕi(t) (i = 1, 2, . . . , n) is said to be a
solution of stroke-impulsive differential equation (4.1), (4.2) if satisfies the
system of differential equations (4.1), and satisfies condition of the jump (4.2)
at the moments when conditions uk(x) = 0 (k = 1, 2, . . . m) are fulfilled.

Impulsive operators Ik, (k ∈ Z), can be described with the quadrat ma-
trices of dimensions n × n.

We can use an numerically algorithm for solving SIDE, similarly with
ASIDE, and we shall call it ASSIDE (Algorithm for Solving Stroke–Impul-
sive Differential Equations). This way, we shall obtain values x1(tz), x2(tz),
. . . , xn(tz) for fixed value tz of parameter t.

ASSIDE consists of following steps:
1◦ step: At the moment t = t0, we set functions to the values that were

given in start condition, i.e. x := x0.

2◦ step: While uk(x) 
= 0 (k = 1, 2, ..., m) and t < tz, using numerical
method (NM) we solve the functions of argument t = t0, (h), tz, i.e. x[j+1] :=
NM(x[j]), where x[j] = xt=tj , tj = t0 + jh.

3◦ step: If t = tz algorithm is finished.
4◦ step: Impulsive operator Ik acts and brings rapidly changes (jumps)

of functions x.
5◦ step: Increase t := t + h and then go to step 2◦.
In 2◦ step we must divide t-axis to disjunctive subsegments (tj , tj+1].

Using ASSIDE algorithm we do not reach analytical expressions for functions
x1(t), x2(t), . . . , xn(t), but we solve approximative values of those functions
for t = tz.

We choose the numerical method (NM) on the same way, like in ASIDE.
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5. Examples

Example 5.1. In this example, we solved an impulsive differential equation

(5.1)

dx

dt
= f(t, x) (t 
= tk),

∆x|t=tk
= Ik(x(tk)) (t = tk),

x0 = x(t0),

where t0 = 0.0,

x =
[

x1(t)
x2(t)

]
, x0 =

[−1.0
0.0

]
,

f(t, x) =
[

0.1666666x1 + 0.1666666x2 + 0.1666666
−0.1666666x1 − 0.1666666x2 + 0.5833333

]

If impulsive operators

(5.2) I1 =
[
0.25 0.25
0.0 −1.0

]
, I2 =

[
3.0 4.0
0.0 −1.0

]

act at the moments t1 = 1.0 and t2 = 2.0, we found the states of the processes
described by this IDE, at the moment tz = 2.5.

We applied ASIDE algorithm using one of the simplest methods for nu-
merical solving of differential equations, so called Euler’s method,

(5.3) x[j+1] = x[j] + hf(t, x[j]),

where j ∈ Z is index of iteration, and h is a distance between a neighboring
nodes. Then we applied ASIDE algorithm on the same IDE, but instead
Euler’s method (5.3) of the first order, we used Runge-Kutta method of the
fourth order

(5.4)

x[j+1] − x[j] =
h

6
· (K1 + 2K2 + 2K3 + K4)

K1 = f(t[j], x[j])

K2 = f(t[j] +
h

2
, x[j] +

h

2
K1)

K3 = f(t[j] +
h

2
, x[j] +

h

2
K2)

K4 = f(t[j] + h, x[j] + hK3),
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Table 1
tk x1(tk) x1(tk) x1(tk) x2(tk) x2(tk) x2(tk)

(5.3) (5.4) (5.5) (5.3) (5.4) (5.5)

0.0 −1.0000000 −1.0000000 −1.0000000 0.0000000 0.0000000 0.0000000

0.1 −0.9993813 −0.9993738 −0.9993750 0.0743812 0.7445000 0.0743750

0.2 −0.9975126 −0.9974975 −0.9975000 0.1475125 0.1475749 0.1475000

0.3 −0.9943938 −0.9943712 −0.9943750 0.2193937 0.2194499 0.2193750

0.4 −0.9900250 −0.9899949 −0.9900000 0.2900250 0.2900748 0.2900000

0.5 −0.9844064 −0.9843749 −0.9843750 0.3594062 0.3593810 0.3593750

0.6 −0.9775375 −0.9774923 −0.9775000 0.4275375 0.4275746 0.4275000

0.7 −0.9694188 −0.9675436 −0.9693750 0.4944178 0.4978564 0.4942750

0.8 −0.9600500 −0.9599895 −0.9600000 0.5600500 0.5600746 0.5600000

0.9 −0.9494314 −0.9493632 −0.9493750 0.6244313 0.6244494 0.6243750

1.0− −0.9375375 −0.9374993 −0.9375000 0.6875625 0.6875117 0.6875000

1.0+ −1.0000620 −0.9999962 −1.0000000 0.0000000 0.0000000 0.0000000

1.1 −0.9868438 −0.9868710 −0.9868750 0.0618812 0.0618760 0.0618750

1.2 −0.9725751 −0.9724958 −0.9725000 0.1225125 0.1225020 0.1225000

1.3 −0.9569563 −0.9568543 −0.9568750 0.1818938 0.1819367 0.1818750

1.4 −0.9467938 −0.9399778 −0.9448750 0.2388902 0.2400614 0.2467500

1.5 −0.9219688 −0.9218701 −0.9218750 0.2969062 0.2968798 0.2968750

1.6 −0.9026000 −0.9024948 −0.9025000 0.3525376 0.3525065 0.3525000

1.7 −0.8817688 −0.8818483 −0.8818750 0.4074562 0.4069353 0.4068750

1.8 −0.8601125 −0.8599717 −0.8600000 0.4600499 0.4600608 0.4600000

1.9 −0.8369938 −0.8368450 −0.8368750 0.5119312 0.5119346 0.5118750

2.0− −0.8126250 −0.8124933 −0.8125000 0.5625625 0.5625103 0.5625000

2.0+ −1.0002500 −0.9999323 −1.0000000 0.0000000 0.0000000 0.0000000

2.1 −0.9999999 −0.9999073 −0.9997500 0.0005000 0.0004991 0.0004999

2.2 −0.9477624 −0.9474314 −0.9475000 0.0975126 0.0975018 0.0975000

2.3 −0.9474874 −0.9474039 −0.9472249 0.0979877 0.0975492 0.0979749

2.4 −0.8902748 −0.8899304 −0.8900000 0.1900249 0.1900034 0.1900000

2.5 −0.8596561 −0.8593048 −0.8593750 0.2344061 0.2343777 0.2343750

∆ 0.0002811 0.0000702 – 0.0000311 0.0000027 –

where j ∈ Z is index of iteration.

On the interval where we calculate, we take equidistant nodes with the
step h = 0.1.

We compared obtained results with the results obtained using analytical
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expression that is solution of IDE (5.1)

(5.5) x =




x1(t) = 0.0625t2 − 1.0,

x2(t) = −0.0625t2 + 0.75t,

x1(t) = 0.0625t2 − 1.0625,

x2(t) = −0.0625t2 + 0.75t − 0.6875,

x1(t) = 0.0625t2 − 1.25,

x2(t) = −0.0625t2 + 0.75t − 1.25.

for t ∈ (−∞, 1),

for t ∈ (−∞, 1),

for t ∈ [1, 2),

for t ∈ [1, 2),

for t ∈ [2,∞),

for t ∈ [2,∞).

We implemented those methods on programming language FORTRAN-
77 and the results that we obtained using ASIDE algorithm with numerical
methods (5.3) and (5.4), as well as the results that we obtained using analyt-
ical expression (5.5), are given in the Table 1. Absolute errors of estimated
results (∆) are given too.

We can conclude that the accuracy of the results is better when we use a
better numerical method. That fact shows us a possibility of increasing effi-
ciency of ASIDE algorithm using more convenient numerical method (NM).

We can note that impulsive operators Ik, that act at the moments tk,
affect on error too. Namely, when operators Ik act, the values of the functions
are approximative, and so we calculate approximative values of the jumps.
ASIDE algorithm, constructed on this way, gives us possibilities for further
improvement, in the sense of controlling influence of the impulsive operators
to total error. That idea might be a basis for some further investigations.

Example 5.2. In this example, we consider a ball that is jumping on a flat
horizontal surface (see Figure 1). Loss of energy, caused by the friction of
surface, is characterized by constant µ.

Fig. 1
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This process is simulated by differential equation of second order

(5.6) m
d2x

dt2
= F,

where m is a mass of the ball, F = −mg, is the force (g ≈ 9.81m
s2 is acceler-

ation of Earths gravitation). Any time when ball touch the surface vertical
component of the vector of velocity changes its sign. State of this process
is described by vertical position, velocity and horizontal position of the ball
(coordinates of the state). We shall compute approximative value of those
tree coordinates at the moment tz = 0.5. This process can be described with
an SIDE

(5.7)
dx1

dt
= x2,

dx2

dt
= −g,

dx3

dt
= v0,

with start condition x = (x1, x2, x3) = (h0, 0, 0), h0 = 0.1m, v0 = 1m/s and
with condition of jump

(5.8) Ik(x1, x2, x3) = (x1,−µ · x2, x3), for u(x) = x1 = 0.

Here is µ = 0.91. In this model x1 is vertical position, x2 is velocity, x3 is
horizontal position of the ball.

Analytical expression of solution of SIDE (5.7), (5.8) is

x1(t) = −4.905t2 + 0.1,

x2(t) = −9.81t,
x3(t) = t,




t ∈ [0.0000000, 0.1427843),

x1(t) = −4.905t2 + 2.075364t − 0.2819999 ,

x2(t) = −9.81t + 2.6753639,

x3(t) = t,




t ∈ [0.1427843, 0.4026518),

x1(t) = −4.905t2 + 5.1099454t − 1.2622885,

x2(t) = −9.81t + 5.1099454,

x3(t) = t,




t ∈ [0.4026518, 0.5000000).

We implemented ASSIDE algorithm (with Runge-Kutta method (5.4)
with h = 10−5) on programming language FORTRAN-77 and the results
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that we obtained, as well as the results that we obtained using analytical
expression, are given in the Table 2. Absolute errors of estimated results
(∆) are given too.

Table 2

x1(0.5) x̃1(0.5) x2(0.5) x̃2(0.5) x3(0.5) x̃3(0.5)
ASSIDE ASSIDE ASSIDE

0.0664342 0.0664035 0.2049454 0.2083093 0.5000000 0.4999907
∆ - 0.000307 - 0.0033639 - 0.0000093

6. Further Possibilities

The examination of the problem in solving IDE and SIDE by numerical
methods does not end by this algorithm. It is interesting, for example, to
investigate the influence of nodes (i.e. the way of dividing the segments
to the subsegments) to accuracy of results, because better accuracy can be
obtained if nodes are more frequent on those parts of t-axe on which the
state of the process change more rapidly. In connection with that, in pre-
sented algorithms we can use some numerical methods for solving differential
equations which do not demand a set of equidistant nodes.
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