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Dedicated to Professor Radosav Ž. -Dord̄ević on his 65th Birthday

Abstract. The construction of initial conditions which guarantee the safe con-
vergence of iterative processes is one of the most important problems in solving
nonlinear equations. In this paper we give initial conditions for a one parameter
family of square-root iteration methods for the simultaneous approximation of
all simple zeros of a polynomial. This family, based on the Hansen-Patrick third
order method, has also the cubic convergence and generates some new methods.
The presented initial conditions are of practical importance since depend only
of available data: coefficients of a polynomial and initial approximations to the
wanted zeros of a polynomial.

1. Introduction

The choice of initial points that guarantees the convergence of a given
iterative method is of a great importance in solving nonlinear equations.
Smale’s point estimation theory, first introduced in [21] for Newton’s method,
deals with the domain of convergence and initial conditions in solving an
equation f(z) = 0 using only the information of f at the initial point z(0).
Smale’s result was improved by X. Wang and Han [23]. Their work was
later extended by Curry [5] and Kim [11] to some higher-order iterative
methods and generalized by Chen [4]. Point estimation theorems concerning
simultaneous methods for solving polynomial equations were stated by M.
Petković and his coauthors in several recent papers and collected in the
recent book [17], and by Zhao and D. Wang [22], [24].
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In this paper we consider monic algebraic polynomials of the form

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 (ai ∈ C)

which have only simple zeros. Initial conditions in this case should be a
function of the polynomial coefficients a = (a0, . . . , an−1), its degree n and
initial approximations z(0)1 , . . . , z

(0)
n to the zeros ζ1, . . . , ζn of P. Throughout

this paper we will always assume that the polynomial degree n is ≥ 3.
For m = 0, 1, . . . let

d(m) = min
j �=i

|z(m)
i − z(m)

j |

be the minimal distance between approximations obtained in the mth iter-
ation, and let

N
(m)
i =

P (z(m)
i )

P ′(z(m)
i )

(Newton’s correction),

W
(m)
i =

P (z(m)
i )∏

j �=i

(z(m)
i − z(m)

j )
(Weierstrass’ correction),

w(m) = max
1≤j≤n

|W (m)
j |,

where i ∈ In := {1, . . . , n}. According to the results presented recently in
[13]–[20], [22], [24], it turned out that suitable initial conditions, providing
a safe convergence of iterative methods for the simultaneous determination
of polynomial zeros, are of the form of the inequality

(1) w(0) < c(n)d(0),

where c(n) is the quantity which depends only on the polynomial degree n.
The motivation and discussion about initial conditions of the form (1) have
been given by Petković, Herceg and Ilić in [15].
The convergence theorem which provides very simple verification of the

safe convergence of a rather wide class of iterative methods for the simul-
taneous determination of polynomial zeros under a given initial condition
of the form (1), is presented in Section 2. This theorem is applied in Sec-
tion 4 to a new one parameter family of simultaneous methods for finding
simple complex zeros of a polynomial, proposed recently in [10] and given
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briefly in Section 3. For this family of methods we state practically appli-
cable initial conditions of the form (1) which provide a safe convergence of
this method. The established initial conditions depend only on the vector
z(0) = (z(0)1 , . . . , z

(0)
n ) of starting approximations and the values of P in the

components of z(0).
For simplicity, in our analysis we will sometimes omit the iteration index

m and new entries in the later (m+1)-st iteration will be additionally stressed
by the symbol ̂ (hat). For example, instead of z(m)

i , z
(m+1)
i ,W

(m)
i ,W

(m+1)
i ,

d(m), d(m+1), N
(m)
i , N

(m+1)
i , etc. we will write zi, ẑi,Wi, Ŵi, d, d̂, Ni, N̂i. Ac-

cording to this we denote

w = max
i

|Wi|, ŵ = max
i

|Ŵi|.

To provide some estimates, in this paper we use circular complex arith-
metic. For this reason, we give some basic operations and properties of this
arithmetic. For more details see Alefeld and Herzberger [2, Ch. V]).
A disk Z with center c = mid Z and radius r = rad Z will be denoted

with Z = {c; r} = {z : |z − c| ≤ r}. If 0 /∈ Z (that is, |c| > r), then the
exact inverse of Z is given by

Z−1 =
{

c̄

|c|2 − r2 ;
r

|c|2 − r2
}
=

{
1
z
: z ∈ Z

}
,

and the inverse of Z in the centered form by

(2) ZI :=
{
1
c
;

r

|c|(|c| − r)
}

⊇
{
1
z
: z ∈ Z

}
.

Furthermore, if Zk = {ck; rk} (k = 1, 2), then

Z1 ± Z2 := {c1 ± c2; r1 + r2} = {z1 ± z2 : z1 ∈ Z1, z2 ∈ Z2}.

The product Z1 · Z2 is defined as in Gargantini and Henrici [8]:

Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2}.

Then
Z1

Z2
= Z1 · Z−1

2 or
Z1

Z2
= Z1 · ZI

2 (0 /∈ Z2).
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If F (Z) ⊇ {f(z) : z ∈ Z} is a circular interval extension of a given closed
complex function f over a disk Z, then

(3) |mid Z| − rad Z ≤ |f(z)| ≤ |mid F (Z)|+ rad F (Z) for all z ∈ Z
and

(4) z ∈ Z ⇒ f(z) ∈ F (Z)
holds.
The square root of a disk {c; r} in the centered form, where c = |c|eiθ and

|c| > r, is defined as the union of two disks (see Gargantini [7]):
(5) {c; r}1/2 =

{√
|c|ei θ

2 ; ρ
}⋃{

−
√
|c|ei θ

2 ; ρ
}
, ρ =

√
|c| −

√
|c| − r.

2. Point Estimation Theorem

Most of iterative methods for the simultaneous approximation of simple
zeros of a polynomial can be expressed in the form

(6) z
(m+1)
i = z(m)

i − Ci(z
(m)
1 , . . . , z(m)

n ) (i ∈ In; m = 0, 1, . . . ),

where z(m)
1 , . . . , z

(m)
n are some distinct approximations to simple zeros ζ1,

. . . , ζn respectively, obtained in the mth iterative step. In what follows the
term

C
(m)
i = Ci(z

(m)
1 , . . . , z(m)

n )

will be called the iterative correction term or simply correction.
Let γ ∈ (0, 1) be a contraction factor and let

g(γ) =
1 + γ − γ2

1− γ .

Using the idea presented by Petković, Carstensen and Trajković in [14], the
following convergence theorem was established in [16].

Theorem 1. Let Ci be the iterative correction term of the form Ci(z) =
P (z)/F (z) with F (z) �= 0 for z = ζi and z = z(m)

i (i ∈ In; m = 0, 1, . . . ). If
for each i, j ∈ In and m = 0, 1, . . . the initial condition (1) implies

(i) |C(m+1)
i | < γ|C(m)

i | (γ < 1);
(ii) |z(0)i − z(0)j | > g(γ)(|C(0)

i |+ |C(0)
j |) (i �= j),

then the iterative process (6) is convergent.

We emphasize that the class of iterative methods considered in Theorem
1 is rather wide and includes most frequently used methods for the simulta-
neous determination of polynomial zeros.
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3. Family of Simultaneous Zero-finding Methods

Let f be a function of z and let α be a fixed parameter. Hansen and
Patrick have derived in [9] one parameter family of iterative functions for
finding simple zeros of f in the form

(7) ẑ = z − (α+ 1)f(z)

f ′(z)

(
α+

√
1− (α+ 1) f(z)

f ′(z)
f ′′(z)
f ′(z)

) .
Here z is a current approximation and ẑ is a new approximation to the
wanted zero. This family includes the Ostrowski (α = 0), Euler (α = 1),
Laguerre (α = 1/(ν − 1)) and Halley’s method (α = −1) and, as a limiting
case (α → +∞), Newton’s method. All the methods of the family (7)
have cubic convergence to a simple zero except Newton’s method which is
quadratically convergent.
Let

G1,i =
∑
j �=i

Wj

zi − zj , G2,i =
∑
j �=i

Wj

(zi − zj)2 .

Starting from Hansen-Patrick’s formula (7) the following one parameter fam-
ily of iterative methods for the simultaneous approximation of all simple
zeros of a polynomial P has been derived in [19]:

(8) ẑi = zi − (α+ 1)Wi

(1 +G1,i)

(
α+

√
1 +

2(α+ 1)WiG2,i

(1 +G1,i)2

) (i ∈ In).

It has been proved in [19] that the order of convergence of the iterative
methods of the family (8) is equal to four for any fixed and finite parameter
α. This family of methods provides 1) simultaneous determination of all zeros
of a given polynomial and 2) the acceleration of the order of convergence from
three to four. A number of numerical experiments showed that the proposed
methods possess very good convergence properties.
An another one parameter family which is also based on Hansen-Patrick’s

formula (7) has been derived in the recent paper [10]. If f ≡ P is an
algebraic polynomial and approximations z1, . . . , zn are close enough to the
zeros ζ1, . . . , ζn of P, then substituting the approximation

P ′′(zi)
P ′(zi)

∼= 2
n∑

j=1
j �=i

1
zi − zj
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in (7) we obtain the following family of iteration method:

(9) ẑi = zi − (α+ 1)Ni

α+
√
1− 2(α+ 1)Ni

∑
j �=i(zi − zj)−1

(i ∈ In).

The family (9) has a simple form compared to the fourth order family (8),
but only a cubic convergence. Thus, the class of methods (8) is not faster
than the basic Hansen-Patrick method (7).
We present some special cases of the iterative formula (9):

α = 0, Ostrowski-like method:

ẑi = zi − Ni√
1− 2Ni

∑
j �=i(zi − zj)−1

(i ∈ In);

α = 1, Euler-like method:

ẑi = zi − 2Ni

1 +
√
1− 4Ni

∑
j �=i(zi − zj)−1

(i ∈ In);

α = 1/(n− 1), Laguerre-like method:

ẑi = zi − nNi

1 +
√
(n− 1)2 − n(n− 1)Ni

∑
j �=i(zi − zj)−1

(i ∈ In);

α = −1, Halley-like method:

(10) ẑi = zi − Ni

1−Ni

∑
j �=i(zi − zj)−1

(i ∈ In).

The last formula was considered for the first time by Maehly [12] and Börsch-
Supan [3], but a practical application and an analysis were presented by
Ehrlich [6] and Aberth [1] so that this method is most frequently called the
Ehrlich-Aberth method.
For simplicity, we will introduce the abbreviation

ti = 2(α+ 1)Ni

∑
j �=i

(zi − zj)−1

and consider the iteration formula (9) in the simpler form

(11) ẑi = zi − (α+ 1)Ni

α+
√
1− ti

(i ∈ In).
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4. Initial Conditions and Safe Convergence

In this section we apply Theorem 1 and an initial condition of the form
(1) to state the convergence theorem for the one parameter family (11) of
simultaneous methods for finding polynomial zeros. Before establishing the
main results, we give two necessary lemmas. In our consideration we will
restrict the range of values of the parameter α appearing in the iterative
formula (11) to the disk {−1; 5.5}, that is, we will always assume that
(12) |α+ 1| < 5.5
holds. This requirement will be explained later. We note that this range
of α provides that all the above mentioned methods be defined. Moreover,
in the similar way as in [19] it can be proved for large |α| the convergence
of the square-root iteration methods (11) is slower and with growing |α| it
becomes only quadratic. The convergence analysis and numerical examples
show that the optimal behavior of the family (11) appears for α close to −1
(the Halley-like or Ehrlich-Aberth method (10), see Remark 2). For these
reasons, the condition (12) can be regarded as a slight restriction only.

Lemma 1. Assume that the following condition

(13) w <
d

13n

is satisfied. Then each disk {zi; 13
12 |Wi|} (i ∈ In) contains one and only one

zero of P.

The above result follows according [17, Corollary 1.1].
Using the Lagrange interpolation of P at z1, . . . , zn we represent P in

terms of Wj ’s in the form

(14) P (t) =

(
n∑

j=1

Wj

t− zj + 1
)

n∏
j=1

(t− zj).

Hence, by applying the logarithmic derivative to (14) and putting t = zi in
the obtained formula we find

(15)
P ′(zi)
P (zi)

=
∑
j �=i

1
zi − zj +

1
Wi

(∑
j �=i

Wj

zi − zj + 1
)
.

The relations (14) and (15) will be used in what follows.
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Lemma 2. Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn
of a polynomial P of degree n ≥ 3, and let ẑ1, . . . , ẑn be new respective
approximations obtained by the family (11). If the inequalities (12) and (13)
hold, then for i, j ∈ In we have

(i)
13
15

|Wi| < |Ni| < 13
11

|Wi| < d

11n
;

(ii) |ti| < 2|α+ 1|
11

;

(iii)
∣∣∣∣ α+ 1
α+

√
1− ti

∣∣∣∣ < 11
9
;

(iv)
∣∣∣∣α+√

1− ti
α+ 1

∣∣∣∣ < 13
11
.

Proof. Let

Vi =Wi

∑
j �=i

1
zi − zj +

∑
j �=i

Wj

zi − zj + 1.

Using (13) and the triangle inequality, we find

(16)
|Vi| > 1− |Wi|

∑
j �=i

1
|zi − zj | −

∑
j �=i

|Wj |
|zi − zj |

> 1− 2(n− 1)w
d

> 1− 2(n− 1)
13n

>
11
13

and, in the similar way,

(17) |Vi| < 1 + |Wi|
∑
j �=i

1
|zi − zj | +

∑
j �=i

|Wj |
|zi − zj | <

15
13
.

Now, using the identity (15) we find

|Ni| =
∣∣∣∣ P (zi)P ′(zi)

∣∣∣∣ = |Wi|
|Vi| ,

wherefrom, applying the inequalities (16) and (17), there follows

(18)
13
15

|Wi| < |Ni| < 13
11

|Wi| < d

11n
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and the assertion (i) is proved.
To prove (ii) we use (i) and the definition of d, and find

|ti| ≤ 2|α+ 1||Ni|
∑
j �=i

1
|zi − zj | < 2|α+ 1|

d

11n
· n− 1
d

<
2|α+ 1|
11

.

According to (ii) we have

ti ∈
{
0;
2|α+ 1|
11

}
= {0; t0},

where t0 =
2|α+ 1|
11

< 1 (in view of (12)).
As usual in an analysis of local convergence, we assume that approxima-

tions are reasonably close to the zeros, that is, |ti| in (11) is sufficiently small.
We need only |ti| < 1, which reduces to the necessary restriction (12). We
emphasize that this restriction is not connected with the applied tools for
the convergence analysis but the sequences of not so perfectly convergence
properties of the family (11).
Using (4) and (5) we find

(19)

√
1− ti ∈ (1− {0; t0})1/2 = ({1; t0})1/2 = {1; 1− (1− t0)1/2}

=
{
1;

t0
1 + (1− t0)1/2

}
⊂ {1; t0} =

{
1;
2|α+ 1|
11

}
so that, by virtue of (2),

(20)
α+ 1

α+
√
1− ti

∈ α+ 1

α+
{
1;
2|α+ 1|
11

} =
1{

1; 2
11

} = {
1;
2
9

}
.

Similarly, using (19) we obtain

(21)
α+

√
1− ti

α+ 1
∈
α+

{
1;
2|α+ 1|
11

}
α+ 1

=
{
1;
2
11

}
.

Now, applying (3), from (20) and (21) one estimates∣∣∣ α+ 1
α+

√
1− ti

∣∣∣ < 1 + 2
9
=
11
9
,(22) ∣∣∣α+√

1− ti
α+ 1

∣∣∣ < 1 + 2
11
=
13
11
.(23)
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Lemma 3. Under the conditions (12) and (13), the following is valid:

(i) |Ŵi| < 0.47|Wi|;

(ii) Ŵ <
d̂

13n
.

Proof. From the iteration formula (11) and the inequalities (18) and (22),
we obtain

(24) |ẑi − zi| = |Ni|
∣∣∣∣ α+ 1
α+

√
1− ti

∣∣∣∣ < d

11n
· 11
9
=
d

9n
.

By (24) it follows

(25) |ẑi − zj | ≥ |zi − zj | − |ẑi − zi| > d− d

9n
=
9n− 1
9n

and

(26) |ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | > d− 2 · d9n =
9n− 2
9n

d.

From the last inequality we have

(27) d̂ >
9n− 2
9n

d, that is, d <
9n

9n− 2 d̂.

Putting t = ẑi in (14), we obtain

(28) P (ẑi) = (ẑi − zi)ui

∏
j �=i

(ẑi − zj),

where
ui =

Wi

ẑi − zi +
∑
j �=i

Wj

ẑi − zj + 1.

From the iteration formula (11) and the identity (15) we obtain

Wi

ẑi − zi = −Wi · α+
√
1− ti

(α+ 1)Ni

= −Wi · α+
√
1− ti

α+ 1

(∑
j �=i

1
zi − zj +

1
Wi

(∑
j �=i

Wj

zi − zj + 1
))

= −α+
√
1− ti

α+ 1
Vi,
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where Vi is given at the beginning of the proof of Lemma 2. According to
this and (21) there follows

ui = −α+
√
1− ti

α+ 1
Vi +

∑
j �=i

Wj

ẑi − zj + 1

∈ −
{
1;
2
11

}
Vi +

∑
j �=i

Wj

ẑi − zj + 1 = {η;R},

where

η = −Wi

∑
j �=i

1
zi − zj −

∑
j �=i

Wj

zi − zj − 1 +
∑
j �=i

Wj

ẑi − zj + 1

= −Wi

∑
j �=i

1
zi − zj − (ẑi − zi)

∑
j �=i

Wj

(ẑi − zj)(zi − zj) ,

and

R =
2
11

∣∣∣∣∣Wi

∑
j �=i

1
zi − zj +

∑
j �=i

Wj

zi − zj + 1
∣∣∣∣∣ = 2

11
|Vi|.

Now, using (13), (24) and (25), and the definition of d, we estimate

|η| ≤ |Wi|
∑
j �=i

1
|zi − zj | + |ẑi − zi|

∑
j �=i

|Wj |
|ẑi − zj ||zi − zj |

<
(n− 1)w

d
+
d

9n
· (n− 1)w

9n−1
9n d · d =

n− 1
13n

+
n− 1

13n(9n− 1) <
1
13

and, by (17),

R <
2
11

|Vi| < 2
11

· 15
13
=
30
143

.

Since ui ∈ {η;R}, using the above bounds and (3), we find

(29) |ui| < |η|+R < 1
13
+
30
143

=
41
143

.

Dividing (28) with
∏
j �=i

(ẑi − ẑj) we obtain

(30) Ŵi =
P (ẑi)∏

j �=i

(ẑi − ẑj)
= (ẑi − zi)ui

∏
j �=i

ẑi − zj
ẑi − ẑj .
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Using the bounds (24) and (26), we get

(31)

∣∣∣∣∣∣
∏
j �=i

ẑi − zj
ẑi − ẑj

∣∣∣∣∣∣ ≤
∏
j �=i

(
1 +

|ẑj − zj |
|ẑi − ẑj |

)
<

∏
j �=i

(
1 +

1
9nd

(9n−2)
9n d

)

=
(
1 +

1
9n− 2

)n−1

< exp(1/9) ∼= 1.1331.

According to (18) and (22) we estimate

(32) |ẑi − zi| = |Ni|
∣∣∣ α+ 1
α+

√
1− ti

∣∣∣ < 13
11

|Wi| · 119 =
13
9
|Wi|.

Using (29), (31) and (32), from (30) we find

|Ŵi| = |ẑi − zi||ui|
∣∣∣∣∣∣
∏
j �=i

ẑi − zj
ẑi − ẑj

∣∣∣∣∣∣ < 13
9
|Wi| · 41143 exp(1/9)

∼= 0.4627|Wi|,

so that

(33) |Ŵi| < 0.47|Wi|,

which proves (i) of Lemma 3.

With regard to the last inequality, (13) and (27) it follows

ŵ < 0.47w < 0.47 · d

13n
<
0.47
13n

· 9n
9n− 2 d̂ <

d̂

13n
.

Therefore, we prove the implication

(34) w <
d

13n
=⇒ ŵ <

d̂

13n
,

which means that the assertion (ii) of Lemma 3 is valid.
This completes the proof of Lemma 3. �

Using Lemmas 2 and 3, and Theorem 1, we state the convergence theorem
for the family of square-root iteration methods (11).
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Theorem 2. The family of iterative methods

(35) z
(m+1)
i = z(m)

i − (α+ 1)N (m)
i

α+
√
1− t(m)

i

(i ∈ In)

with the parameter α ∈ {−1; 5.5} is convergent under the condition

(36) w(0) <
d(0)

13n
.

Proof. The correction C(m)
i appearing in (35) is given by

(37) Ci =
(α+ 1)N (m)

i

α+
√
1− t(m)

i

(i ∈ In).

This correction has the required form Ci = P (zi)/F (zi) (Theorem 1) with

F (zi) =
P ′(zi)

(
α+

√
1− ti

)
α+ 1

.

We note that F (zi) �= 0. Indeed, in view of (21) we have

0 /∈ {1; 2/11} � (α+√
1− ti)/(α+ 1),

while by (i) of Lemma 2 it follows |P ′(zi)| > 11n|P (zi)|/d > 0 for zi �= ζi
and |P ′(ζi)| �= 0 since ζi is a simple zero of P.
We will show now that the sequences

{∣∣C(m)
i

∣∣} (i = 1, . . . , n) are mono-
tonically decreasing. From (32) we immediate find

(38) |Ci| = |ẑi − zi| < 13
11

|Wi|.

In the proof of Lemma 3 we derived the implication (34).

w <
w

13n
=⇒ ŵ <

d̂

13n
.
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Using the same argumentation and similar procedure, we prove by induction
the following implication

(39) w(0) <
d(0)

13n
=⇒ w(m) <

d(m)

13n

for each m = 1, 2, . . . . This means that all previously proved estimates hold
for each index m = 1, 2, . . . . In particular, the assertion (i) of Lemma 3 is
valid, that is

(40) |W (m+1)
i | < 0.47|W (m)

i | (i ∈ In; m = 0, 1, . . . ).

According to this and the inequalities (33) and (38), we obtain

(41) |Ĉi| < 13
11

|Ŵi| < 13
11

· 0.47|Wi| < 0.56|Wi| = 0.56
∣∣∣ Wi

ẑi − zi
∣∣∣|Ci|

since |ẑi−zi| = |Ci|. By virtue of (i) of Lemma 2 we have |Wi|/|Ni| < 15/13,
so that, by (23), we find∣∣∣ Wi

ẑi − zi
∣∣∣ = |Wi|

|Ni|
∣∣∣α+√

1− ti
α+ 1

∣∣∣ < 15
13

· 13
11
=
15
11
.

Using the last bound, from (41) we obtain

(42) |Ĉi| < 0.56 · 1511 |Ci| < 0.8|Ci|.

Hence, by induction and (39) we prove the inequality

|C(m+1)
i | < 0.8|C(m)

i | (i = 1, . . . , n; m = 0, 1, . . . ),

which points to the monotonicity of the sequences
{∣∣C(m)

i

∣∣}. Following The-
orem 1 the contraction factor in (42) is γ = 0.8 and we calculate the constant
g(0.8) = 5.8 appearing in (ii) of Theorem 1.
With the constant g(0.8) = 5.8 we should prove that the inclusion disks

S1 =
{
z
(0)
1 ; 5.8|C(0)

1 |}, . . . , Sn =
{
z(0)n ; 5.8|C(0)

n |}
are disjoint (assertion (ii) of Theorem 1). In regard to (38) we have |C(0)

i | <
13w(0)/11, whence, by (36),

d(0) > 13nw(0) > 13n · 11
13

|C(0)
i | = 11n|C(0)

i | for each i ∈ In.
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Using this bound we obtain for arbitrary pair of indices i, j (i �= j)

|z(0)i − z(0)j | ≥ d(0) > 11n|C(0)
i | ≥ 5.5n

(|C(0)
i |+ |C(0)

j |)
> 5.8

(|C(0)
i |+ |C(0)

j |) = rad Si + rad Sj .

Therefore, the inclusion disks S1, . . . , Sn are disjoint, which completes the
proof of Theorem 2. �

Remark 1. As shown in [20], the fourth order family (8) converges under the

weaker condition w(0) < d/(3n + 3) in reference to (35). This means that the
family (8) possesses better convergence properties than the family (11). The fast
convergence of (8) is provided due to the additional term under the square root in

(8) for which we have 2(α+ 1)WiG2,i = O(|zi − ζi|2), while for the corresponding
term ti in (11) we have only ti = O(|zi − ζi|).

Remark 2. It was proved in [18] that the Halley-like (Ehrlich-Aberth) method
(10), appearing as a special case of the family (11), converges under considerably

weaker condition w(0) < d(0)/(2n + 3) compared to (36). According to this and a
number of numerical examples, it turns out that the parameter α in (11) should
be chosen close to −1. For this reason, we may say that the condition (12) is not
strong restriction for α.
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