ON CONVERSE THEOREM OF APPROXIMATION IN VARIOUS METRICS FOR PERIODIC FUNCTIONS OF SEVERAL VARIABLES

Miloš Tomić

This paper is dedicated to Professor R. Ž. Djordjević for his 65 th birthday

Abstract

The modulus of smoothness in the norm of space L_{q} of a $2 \pi-$ periodic function of several variables is estimated by best approximations by trigonometric polynomials in the norm of $L_{p}, 1 \leq p \leq q<+\infty$.

1. Introduction

The converse theorem of approximation in various metrics for 2π-periodic function of one variable was proved in [1]. In this paper we are proving one of the analogous theorems for functions of several variables. Actually we are improving and generalizing Theorem 6.3.5 in [3], and we are giving the implications of obtained result. In this way we are also getting one generalization of Theorem 1 in [1].

As usually, we say that $f\left(x_{1}, \ldots, x_{n}\right) \in L_{p}([0,2 \pi])^{n}$ if f is measurable on Δ_{n} and is a 2π-periodic function with respect to every variable x_{1}, \ldots, x_{n}, for which $\|f\|_{p}<+\infty$, where

$$
\begin{aligned}
\|f\|_{p} & =\left(\int_{\Delta_{n}}\left|f\left(x_{1}, \ldots, x_{n}\right)\right|^{p} d x_{1} \ldots d x_{n}\right)^{1 / p}, \quad 1 \leq p<+\infty, \\
\Delta_{n} & =\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right): 0 \leq x_{i} \leq 2 \pi, i=1, \ldots, n\right\}=[0,2 \pi]^{n} .
\end{aligned}
$$

The notions of modulus of smoothness of a function and best approximation of a function by trigonometric polynomials are given in [3] and [2].

Received November 5, 1997.
1991 Mathematics Subject Classification. Primary 41A17.

Let

$$
T_{\nu_{1}, \ldots, \nu_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

be a trigonometric polynomial of order ν_{1}, \ldots, ν_{n} in the corresponding variables x_{1}, \ldots, x_{n}. The best approximation $E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}$ of a function $f \in L_{p}$ by trigonometric polynomials is the quantity (see [3], 2.2.6):

$$
\begin{equation*}
E_{\nu_{1}, \ldots, \nu_{n}}(f)_{p}=\inf _{T}\left\|f-T_{\nu_{1}, \ldots, \nu_{n}}\right\|_{p} \tag{1.1}
\end{equation*}
$$

The modulus of smoothness of order k of a function f with respect to x_{i} is the quantity (see [3], 3.3 and 3.4):

$$
\begin{equation*}
\omega_{k}\left(f ; \delta_{i}\right)_{p}=\omega_{k}\left(f ; 0, \ldots, 0, \delta_{i}, 0, \ldots, 0\right)_{p}=\sup _{\left|h_{i}\right| \leq \delta_{i}}\left\|\Delta_{h_{i}}^{k} f\right\|_{p} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{h_{i}}^{k} f=\sum_{\nu=0}^{k}(-1)^{k-\nu}\binom{k}{\nu} f\left(x_{1}, \ldots, x_{i-1}, x_{i}+\nu h_{i}, x_{i+1}, \ldots, x_{n}\right) \tag{1.3}
\end{equation*}
$$

The mixed derivative of a function $f\left(x_{1}, \ldots, x_{n}\right)$ of order r_{j} with respect to x_{j} we denote by

$$
f^{\left(r_{1}, \ldots, r_{n}\right)}=\frac{\partial^{r_{1}+\cdots+r_{n}} f}{\partial x_{1}^{r_{1}} \ldots \partial x_{n}^{r_{n}}}
$$

By $a \ll b, a>0, b>0$, we will denote the inequality $a \leq C b$, where C is a positive constant.

2. The Main Result

In this section we are proving a theorem which is a generalization and improvement of Theorem 6.3.5 in [3].
Theorem 2.1. Let $f\left(x_{1}, \ldots, x_{n}\right) \in L_{p}\left([0,2 \pi]^{n}\right)$ and let for given nonnegative integers r_{j} and natural numbers $l_{j}, j=1, \ldots, n, l_{i}=1$, for some $i \in\{1, \ldots, n\}, 1 \leq p \leq q<+\infty$ the following inequality holds

$$
\begin{equation*}
\sum_{\nu=1}^{+\infty} \nu^{q \sigma-1} E_{\nu^{l_{1}}, \ldots, \nu, \ldots, \nu^{l_{n}}}(f)_{p}<+\infty \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\sum_{j=1}^{n} l_{j}\left(r_{j}+\frac{1}{p}-\frac{1}{q}\right) . \tag{2.2}
\end{equation*}
$$

Then the function f has a mixed derivative $f^{\left(r_{1}, \ldots, r_{n}\right)}$ belonging to the space L_{q} and for any natural numbers k and m_{i} the following inequality holds

$$
\begin{align*}
& \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; 0, \ldots, 0, \frac{1}{m_{i}}, 0, \ldots, 0\right)_{q} \\
& \leq \frac{C}{m_{i}^{k}}\left\{\|f\|_{p}^{q}\right.\left.+\sum_{\nu=1}^{m_{i}} \nu^{q(\sigma+k)-1} E_{\nu^{l_{1}, \ldots, \nu, \ldots, \nu_{n}}}(f)_{p}\right)^{1 / q} \tag{2.3}\\
&+\left\{\sum_{\nu=m_{i}+1}^{+\infty} \nu^{q \sigma-1} E_{\nu_{l_{1}}, \ldots, \nu, \ldots, \nu^{l_{n}}}(f)_{p}\right\}^{1 / q}
\end{align*}
$$

where constant C depends on k and σ only. The constant C does not depend on neither f nor $m_{i}=1,2,3 \ldots$.

Proof. Let

$$
\begin{align*}
T_{\nu_{1}, \ldots, \nu_{i-1}, \nu, \nu_{i+1}, \ldots, \nu_{n}}= & T_{\nu_{1}, \ldots, \nu_{i-1}, \nu, \nu_{i+1}, \ldots, \nu_{n}}\left(f ; x_{1}, \ldots, x_{n}\right) \tag{2.4}\\
& \nu_{j}=\nu^{l_{j}}, \quad j=1, \ldots, n \quad\left(\nu_{i}=\nu\right)
\end{align*}
$$

be the trigonometric polynomials of the best approximation of function f in the space L_{p}. For trigonometric polynomials

$$
\begin{equation*}
S_{m}=T_{1, \ldots, 1}+\sum_{\nu=0}^{m}\left[T_{2^{l_{1}(\nu+1)}, \ldots, 2^{\nu+1}, \ldots, 2^{l_{n}(\nu+1)}}-T_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}\right] \tag{2.5}
\end{equation*}
$$

the following holds

$$
f-S_{m}=f-T_{2^{l_{1}(m+1)}, \ldots, 2^{m+1}, \ldots, 2^{l_{n}(m+1)}} .
$$

Since

$$
\begin{equation*}
\left\|f-T_{2^{l_{1}(m+1)}, \ldots, 2^{m+1}, \ldots, 2^{l_{n}(m+1)}}\right\|_{p}=E_{2^{l_{1}(m+1)}, \ldots, 2^{m+1}, \ldots, 2^{l_{n}(m+1)}}(f)_{p} \tag{2.6}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\left\|f-S_{m}\right\| \rightarrow 0 \quad \text { as } \quad m \rightarrow+\infty \tag{2.7}
\end{equation*}
$$

This means that in the sense of L_{p} equality

$$
\begin{equation*}
f=T_{1, \ldots, 1}+\sum_{\nu=0}^{+\infty}\left[T_{2^{l_{1}(\nu+1)}, \ldots, 2^{\nu+1}, \ldots, 2^{l_{n}(\nu+1)}}-T_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}\right] \tag{2.8}
\end{equation*}
$$

holds.
In the following step we are proving that equality (2.8) also holds in the sense of $L_{q}, 1 \leq p \leq q<+\infty$. To do this we will prove that the sequence $S_{m}, m=0,1,2, \ldots$, is a Cauchy sequence in L_{q}.

Applying the method by which the corresponding quantity in [1] was estimated (see estimation of quantity A for $q>2$ in Lemma 1 in [1]), and taking into consideration the corresponding inequality of various metrics for trigonometric polynomials of several variables, we conclude that, for $t>m$,

$$
\begin{equation*}
\left\|S_{t}-S_{m}\right\|_{q} \ll\left\{\sum_{\nu=m+1}^{t} 2^{\nu q\left(\frac{1}{p}-\frac{1}{q}\right)\left(l_{1}+\ldots, l_{n}\right)} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q} \tag{2.9}
\end{equation*}
$$

holds.
From (2.9) in view of the assumption (2.1) it follows that the sequence S_{m} is a Cauchy sequence in L_{q}. Since the space L_{q} is complete, there exists a function $h\left(x_{1}, \ldots, x_{n}\right) \in L_{q}$ such that

$$
\begin{equation*}
\left\|h-S_{m}\right\|_{q} \rightarrow 0 \quad \text { as } \quad m \rightarrow+\infty . \tag{2.10}
\end{equation*}
$$

Equality (2.8) and convergence (2.10) imply (see [3], 1.3.9) that equality (2.8) holds in L_{q}.

In the following step we are proving that in the sense of L_{q} equality

$$
\begin{align*}
& f^{\left(r_{1}, \ldots, r_{n}\right)} \stackrel{(q)}{=} T_{1, \ldots, 1}^{\left(r_{1}, \ldots, r_{n}\right)} \tag{2.11}\\
&+\sum_{\nu=0}^{+\infty}\left[T_{2^{\prime}(\nu+1), \ldots, 2^{\nu+1}, \ldots, 2^{l_{n}(\nu+1)}}^{\left(r_{1}, \ldots, r_{n}\right)}-T_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n \nu}}}^{\left(r_{1}, \ldots, r_{n}\right)}\right]
\end{align*}
$$

holds.
Applying the same procedure which yielded inequality (2.9)), and using the Bernstein type inequality (see [3], 4.8.62(30); see also proof of Lemma 1 in [1]), we conclude that

$$
\begin{equation*}
\left\|S_{t}^{\left(r_{1}, \ldots, r_{n}\right)}-S_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \ll\left\{\sum_{\nu=m+1}^{t} 2^{\nu q \sigma} E_{2^{1_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q} \tag{2.12}
\end{equation*}
$$

holds.

In view of (2.12) and (2.1) we conclude that the sequence $S_{m}^{\left(r_{1}, \ldots, r_{n}\right)}$ converges in L_{q}. Since equality (2.8) holds in L_{q}, it means that in the sense of L_{q} equality (2.11) holds (see [2], 4.4.7; [3], 6.3.31).

For modulus of smoothness of the function $f^{\left(r_{1}, \ldots, r_{n}\right)}$ we have

$$
\begin{align*}
\omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \leq \omega_{k} & \left(f^{\left(r_{1}, \ldots, r_{n}\right)}-S_{m}^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \tag{2.13}\\
& +\omega_{k}\left(S_{m}^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q}=I_{1}+I_{2}
\end{align*}
$$

Now, we get

$$
\begin{equation*}
I_{1} \ll\left\|f^{\left(r_{1}, \ldots, r_{n}\right)}-S_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \tag{2.14}
\end{equation*}
$$

Using the procedure which yielded inequality (2.12), and in view of equality (2.11) and (2.5), we obtain

$$
\begin{equation*}
\left\|f^{\left(r_{1}, \ldots, r_{n}\right)}-S_{m}^{\left(r_{1}, \ldots, r_{n}\right)}\right\|_{q} \ll\left\{\sum_{\nu=m+1}^{+\infty} 2^{\nu q \sigma} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{\frac{1}{q}} \tag{2.15}
\end{equation*}
$$

In virtue of the properties of modulus of smoothness we have

$$
\begin{equation*}
I_{2}=\omega_{k}\left(S_{m}^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \ll \frac{1}{m_{i}^{k}}\left\|S_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q} \tag{2.16}
\end{equation*}
$$

The estimate for the norm $\left\|S_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q}$ follows from (2.5), in the same way as inequality (2.12). Only instead of number r_{i} we write $r_{i}+k$. Therefore, we get

$$
\begin{align*}
\left\|S_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q} & \ll\left\|T_{1, \ldots, 1}\right\|_{p} \tag{2.17}\\
& +\left\{\sum_{\nu=0}^{m} 2^{\nu q(\sigma+k)} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q}
\end{align*}
$$

To get (2.17) we use inequality

$$
\left\|G_{2^{\nu+1}}-G_{2^{\nu}}\right\| \leq\left\|G_{2^{\nu+1}}-f\right\|+\left\|f-G_{2^{\nu}}\right\|
$$

Hence

$$
\begin{align*}
&\left\|S_{m}^{\left(r_{1}, \ldots, r_{i}+k, \ldots, r_{n}\right)}\right\|_{q} \tag{2.18}\\
& \ll\left\{\|f\|_{p}^{q}+\sum_{\nu=0}^{m} 2^{\nu q(\sigma+k)} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q}
\end{align*}
$$

From (2.13), in view of $(2.14),(2.15),(2.16)$ and (2.18), it follows

$$
\begin{align*}
\omega_{k} & \left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \tag{2.19}\\
& \ll \frac{1}{m_{i}^{k}}\left\{\|f\|_{p}^{q}+\sum_{\nu=0}^{m} 2^{\nu q(\sigma+k)} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q} \\
& +\left\{\sum_{\nu=m+1}^{+\infty} 2^{\nu q \sigma} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}^{q}(f)_{p}\right\}^{1 / q}
\end{align*}
$$

Let us denote

$$
\begin{equation*}
F_{2^{\nu}}=E_{\left(2^{\nu}\right)^{l_{1}}, \ldots, 2^{\nu}, \ldots,\left(2^{\nu}\right)^{l_{n}}} \tag{2.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{\mu}=E_{\mu^{l_{1}, \ldots, \mu, \ldots, \mu^{l_{n}}}} \tag{2.21}
\end{equation*}
$$

and $F_{\mu} \downarrow 0$ as $\mu \rightarrow+\infty$.
Choosing m so that $2^{m} \leq m_{i}<2^{m+1}$, from (2.19) we get

$$
\begin{align*}
\omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \ll & \frac{1}{m_{i}^{k}}\left\{\|f\|_{p}^{q}+\sum_{\nu=1}^{m_{i}} \nu^{q(\sigma+k)-1} F_{\nu}^{q}\right\}^{1 / q} \tag{2.22}\\
& +\left\{\sum_{\nu=m_{i}+1}^{+\infty} \nu^{q \sigma-1} F_{\nu}^{q}\right\}^{1 / q}
\end{align*}
$$

Inequality (2.3) follows from (2.22) in view of (2.21).

3. Some Consequences

We give now a few basic consequences of Theorem 2.1.

Corollary 3.1. For $n=1\left(l_{j}=1, r_{j}=r, \sigma=r+\frac{1}{p}-\frac{1}{q}\right)$, Theorem 1 in [1] follows.

Corollary 3.2. If the condition

$$
\begin{equation*}
\sum_{\nu=1}^{+\infty} \nu^{q}\left[r+n\left(\frac{1}{p}-\frac{1}{q}\right)\right]-1 E_{\nu, \ldots, \nu, \ldots, \nu}^{q}(f)_{p}<+\infty \tag{3.1}
\end{equation*}
$$

holds, then the function f has a derivative $\frac{\partial^{r} f}{\partial x_{i}^{r}}$ with respect to any variable x_{i}. The derivative belongs to the space L_{q}. Also for the modulus of smoothness the corresponding inequality (2.3) holds.

Corollary 3.2 follows from the theorem for $l_{1}=l_{2}=\cdots=l_{n}=1, r_{j}=0$ for $j \neq i, r_{i}=r$.

Corollary 3.3. If

$$
\begin{equation*}
\sum_{\nu=1}^{+\infty} \nu^{q\left[r+\left(\frac{1}{p}-\frac{1}{q}\right)\left(l_{1}+\cdots+l_{n}\right)\right]-1} E_{\nu^{l_{1}, \ldots, \nu, \ldots, \nu^{l_{n}}}}^{q}(f)_{p}<+\infty \tag{3.2}
\end{equation*}
$$

then the function f has a derivative $\frac{\partial^{r} f}{\partial x_{i}^{r}} \in L_{q}$ and the corresponding inequality (2.3) holds.

This corollary follows from the theorem for $r_{i}=r, r_{j}=0$ for $j \neq i$.
Corollary 3.4. For $p=q$, Theorem 2.1 implies Theorem 6.3 .5 in [3]. Indeed, from (2.19) using inequality $\left(\sum a_{k}\right)^{s} \leq \sum\left(a_{k}\right)^{s}, a_{k} \geq 0,0<s \leq 1$, we get

$$
\begin{align*}
& \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \tag{3.3}\\
& \ll \frac{1}{m_{i}^{k}}\left\{\|f\|_{p}\right.\left.+\sum_{\nu=0}^{m} 2^{\nu(\sigma+k)} E_{2^{l_{1} \nu}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}(f)_{p}\right\} \\
&+\sum_{\nu=m+1}^{+\infty} 2^{\nu \sigma} E_{2^{l_{1}}, \ldots, 2^{\nu}, \ldots, 2^{l_{n} \nu}}(f)_{p}
\end{align*}
$$

and then

$$
\begin{align*}
& \omega_{k}\left(f^{\left(r_{1}, \ldots, r_{n}\right)} ; \frac{1}{m_{i}}\right)_{q} \tag{3.4}\\
& \ll \frac{1}{m_{i}^{k}}\left\{\|f\|_{p}\right.\left.+\sum_{\nu=1}^{m_{i}} \nu^{\sigma+k-1} E_{\nu^{l_{1}, \ldots, \nu, \ldots, \nu^{l_{n}}}}(f)_{p}\right\} \\
&+\sum_{\nu=m_{i}+1}^{+\infty} \nu^{\sigma-1} E_{\nu^{l_{1}, \ldots, \nu, \ldots, \nu^{l_{n}}}}(f)_{p}
\end{align*}
$$

For $q=p$ we have $\sigma=\sum_{j=1}^{n} l_{j} r_{j}$, and inequality 6.3 .5 (24) in [3] follows from (3.4).

REFERENCES

1. N. A. Ilyssov: The converse theorem of theory of approximation in various metrics. Mat. Zametki 50 (1991), 57-65 (Russian).
2. S. M. Nikol'skiĬ: Approximation of Functions of Several Variables and Imbedding Theorems. (Second edition, revised and supplemented), Nauka, Moscow, 1977 (Russian).
3. A. F. Timan: Theory of Approximation of Functions of a Real Variable. Dover Publ., New York, 1994.

Faculty of Mechanical Engineering
Department of Mathematics
University of Pristina
Serbia, Yugoslavia
Faculty of Technology
University of Republika Srpska
Zvornik
Republika Srpska

