ON CONVERSE THEOREM OF APPROXIMATION IN VARIOUS METRICS FOR PERIODIC FUNCTIONS OF SEVERAL VARIABLES

Miloš Tomić

This paper is dedicated to Professor R. Ž. Djordjević for his 65th birthday

Abstract. The modulus of smoothness in the norm of space L_q of a 2π -periodic function of several variables is estimated by best approximations by trigonometric polynomials in the norm of L_p , $1 \le p \le q < +\infty$.

1. Introduction

The converse theorem of approximation in various metrics for 2π -periodic function of one variable was proved in [1]. In this paper we are proving one of the analogous theorems for functions of several variables. Actually we are improving and generalizing Theorem 6.3.5 in [3], and we are giving the implications of obtained result. In this way we are also getting one generalization of Theorem 1 in [1].

As usually, we say that $f(x_1, \ldots, x_n) \in L_p([0, 2\pi])^n$ if f is measurable on Δ_n and is a 2π -periodic function with respect to every variable x_1, \ldots, x_n , for which $||f||_p < +\infty$, where

$$||f||_p = \left(\int_{\Delta_n} \left| f(x_1, \dots, x_n) \right|^p dx_1 \dots dx_n \right)^{1/p}, \quad 1 \le p < +\infty,$$

$$\Delta_n = \left\{ \boldsymbol{x} = (x_1, \dots, x_n) : \ 0 \le x_i \le 2\pi, \ i = 1, \dots, n \right\} = [0, 2\pi]^n.$$

The notions of modulus of smoothness of a function and best approximation of a function by trigonometric polynomials are given in [3] and [2].

Received November 5, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A17.

Let

$$T_{\nu_1,\ldots,\nu_n}(x_1,\ldots,x_n)$$

be a trigonometric polynomial of order ν_1, \ldots, ν_n in the corresponding variables x_1, \ldots, x_n . The best approximation $E_{\nu_1, \ldots, \nu_n}(f)_p$ of a function $f \in L_p$ by trigonometric polynomials is the quantity (see [3], 2.2.6):

(1.1)
$$E_{\nu_1,\dots,\nu_n}(f)_p = \inf_T \left\| f - T_{\nu_1,\dots,\nu_n} \right\|_p.$$

The modulus of smoothness of order k of a function f with respect to x_i is the quantity (see [3], 3.3 and 3.4):

(1.2)
$$\omega_k(f;\delta_i)_p = \omega_k(f;0,\ldots,0,\delta_i,0,\ldots,0)_p = \sup_{|h_i| \le \delta_i} \left\| \Delta_{h_i}^k f \right\|_p,$$

where

(1.3)
$$\Delta_{h_i}^k f = \sum_{\nu=0}^k (-1)^{k-\nu} \binom{k}{\nu} f(x_1, \dots, x_{i-1}, x_i + \nu h_i, x_{i+1}, \dots, x_n).$$

The mixed derivative of a function $f(x_1, \ldots, x_n)$ of order r_j with respect to x_j we denote by

$$f^{(r_1,\ldots,r_n)} = \frac{\partial^{r_1+\cdots+r_n}f}{\partial x_1^{r_1}\ldots\partial x_n^{r_n}}.$$

By $a \ll b$, a > 0, b > 0, we will denote the inequality $a \le Cb$, where C is a positive constant.

2. The Main Result

In this section we are proving a theorem which is a generalization and improvement of Theorem 6.3.5 in [3].

Theorem 2.1. Let $f(x_1, \ldots, x_n) \in L_p([0, 2\pi]^n)$ and let for given nonnegative integers r_j and natural numbers l_j , $j = 1, \ldots, n$, $l_i = 1$, for some $i \in \{1, \ldots, n\}, 1 \le p \le q < +\infty$ the following inequality holds

(2.1)
$$\sum_{\nu=1}^{+\infty} \nu^{q\sigma-1} E_{\nu^{l_1},\dots,\nu,\dots,\nu^{l_n}}(f)_p < +\infty$$

where

(2.2)
$$\sigma = \sum_{j=1}^{n} l_j \left(r_j + \frac{1}{p} - \frac{1}{q} \right).$$

On Converse Theorem of Approximation in Various Metrics ...

51

Then the function f has a mixed derivative $f^{(r_1,\ldots,r_n)}$ belonging to the space L_q and for any natural numbers k and m_i the following inequality holds

(2.3)

$$\omega_{k} \Big(f^{(r_{1},\ldots,r_{n})}; 0,\ldots,0, \frac{1}{m_{i}}, 0,\ldots,0 \Big)_{q} \\
\leq \frac{C}{m_{i}^{k}} \Big\{ \|f\|_{p}^{q} + \sum_{\nu=1}^{m_{i}} \nu^{q(\sigma+k)-1} E_{\nu^{l_{1}},\ldots,\nu,\ldots,\nu^{l_{n}}}(f)_{p} \Big)^{1/q} \\
+ \Big\{ \sum_{\nu=m_{i}+1}^{+\infty} \nu^{q\sigma-1} E_{\nu_{l_{1}},\ldots,\nu,\ldots,\nu^{l_{n}}}(f)_{p} \Big\}^{1/q},$$

where constant C depends on k and σ only. The constant C does not depend on neither f nor $m_i = 1, 2, 3 \dots$

Proof. Let

(2.4)
$$T_{\nu_1,\dots,\nu_{i-1},\nu,\nu_{i+1},\dots,\nu_n} = T_{\nu_1,\dots,\nu_{i-1},\nu,\nu_{i+1},\dots,\nu_n}(f;x_1,\dots,x_n)$$
$$\nu_j = \nu^{l_j}, \quad j = 1,\dots,n \quad (\nu_i = \nu),$$

be the trigonometric polynomials of the best approximation of function f in the space L_p . For trigonometric polynomials

(2.5)
$$S_m = T_{1,\dots,1} + \sum_{\nu=0}^m \left[T_{2^{l_1(\nu+1)},\dots,2^{\nu+1},\dots,2^{l_n(\nu+1)}} - T_{2^{l_1\nu},\dots,2^{\nu},\dots,2^{l_n\nu}} \right]$$

the following holds

$$f - S_m = f - T_{2^{l_1(m+1)}, \dots, 2^{m+1}, \dots, 2^{l_n(m+1)}}.$$

Since

(2.6)
$$\left\| f - T_{2^{l_1(m+1)}, \dots, 2^{m+1}, \dots, 2^{l_n(m+1)}} \right\|_p = E_{2^{l_1(m+1)}, \dots, 2^{m+1}, \dots, 2^{l_n(m+1)}}(f)_p$$

we conclude that

(2.7)
$$||f - S_m|| \to 0 \text{ as } m \to +\infty.$$

This means that in the sense of L_p equality

(2.8)
$$f = T_{1,\dots,1} + \sum_{\nu=0}^{+\infty} \left[T_{2^{l_1(\nu+1)},\dots,2^{\nu+1},\dots,2^{l_n(\nu+1)}} - T_{2^{l_1\nu},\dots,2^{\nu},\dots,2^{l_n\nu}} \right]$$

holds.

In the following step we are proving that equality (2.8) also holds in the sense of L_q , $1 \le p \le q < +\infty$. To do this we will prove that the sequence S_m , $m = 0, 1, 2, \ldots$, is a Cauchy sequence in L_q .

Applying the method by which the corresponding quantity in [1] was estimated (see estimation of quantity A for q > 2 in Lemma 1 in [1]), and taking into consideration the corresponding inequality of various metrics for trigonometric polynomials of several variables, we conclude that, for t > m,

(2.9)
$$||S_t - S_m||_q \ll \left\{ \sum_{\nu=m+1}^t 2^{\nu q \left(\frac{1}{p} - \frac{1}{q}\right)(l_1 + \dots, l_n)} E^q_{2^{l_1 \nu}, \dots, 2^{\nu}, \dots, 2^{l_n \nu}}(f)_p \right\}^{1/q},$$

holds.

From (2.9) in view of the assumption (2.1) it follows that the sequence S_m is a Cauchy sequence in L_q . Since the space L_q is complete, there exists a function $h(x_1, \ldots, x_n) \in L_q$ such that

(2.10)
$$||h - S_m||_q \to 0 \text{ as } m \to +\infty.$$

Equality (2.8) and convergence (2.10) imply (see [3], 1.3.9) that equality (2.8) holds in L_q .

In the following step we are proving that in the sense of L_q equality

$$(2.11) \quad f^{(r_1,\dots,r_n)} \stackrel{(q)}{=} T^{(r_1,\dots,r_n)}_{1,\dots,1} \\ + \sum_{\nu=0}^{+\infty} \Big[T^{(r_1,\dots,r_n)}_{2^{l_1(\nu+1)},\dots,2^{\nu+1},\dots,2^{l_n(\nu+1)}} - T^{(r_1,\dots,r_n)}_{2^{l_1\nu},\dots,2^{\nu},\dots,2^{l_n\nu}} \Big]$$

holds.

Applying the same procedure which yielded inequality (2.9)), and using the Bernstein type inequality (see [3], 4.8.62(30); see also proof of Lemma 1 in [1]), we conclude that

$$(2.12) \left\| S_t^{(r_1,\dots,r_n)} - S_m^{(r_1,\dots,r_n)} \right\|_q \ll \left\{ \sum_{\nu=m+1}^t 2^{\nu q \sigma} E_{2^{l_1 \nu},\dots,2^{\nu},\dots,2^{l_n \nu}}^q(f)_p \right\}^{1/q}$$

holds.

On Converse Theorem of Approximation in Various Metrics ...

53

In view of (2.12) and (2.1) we conclude that the sequence $S_m^{(r_1,\ldots,r_n)}$ converges in L_q . Since equality (2.8) holds in L_q , it means that in the sense of L_q equality (2.11) holds (see [2], 4.4.7; [3], 6.3.31).

For modulus of smoothness of the function $f^{(r_1,\ldots,r_n)}$ we have

(2.13)
$$\omega_k \left(f^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q \leq \omega_k \left(f^{(r_1, \dots, r_n)} - S_m^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q$$
$$+ \omega_k \left(S_m^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q = I_1 + I_2 \,.$$

Now, we get

(2.14)
$$I_1 \ll \left\| f^{(r_1, \dots, r_n)} - S_m^{(r_1, \dots, r_n)} \right\|_q.$$

Using the procedure which yielded inequality (2.12), and in view of equality (2.11) and (2.5), we obtain

(2.15)
$$\left\| f^{(r_1,\dots,r_n)} - S^{(r_1,\dots,r_n)}_m \right\|_q \ll \left\{ \sum_{\nu=m+1}^{+\infty} 2^{\nu q \sigma} E^q_{2^{l_1\nu},\dots,2^{\nu},\dots,2^{l_n\nu}}(f)_p \right\}^{\frac{1}{q}}.$$

In virtue of the properties of modulus of smoothness we have

(2.16)
$$I_2 = \omega_k \left(S_m^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q \ll \frac{1}{m_i^k} \left\| S_m^{(r_1, \dots, r_i + k, \dots, r_n)} \right\|_q.$$

The estimate for the norm $\|S_m^{(r_1,\ldots,r_i+k,\ldots,r_n)}\|_q$ follows from (2.5), in the same way as inequality (2.12). Only instead of number r_i we write $r_i + k$. Therefore, we get

(2.17)
$$\left\|S_{m}^{(r_{1},\ldots,r_{i}+k,\ldots,r_{n})}\right\|_{q} \ll \left\|T_{1,\ldots,1}\right\|_{p} + \left\{\sum_{\nu=0}^{m} 2^{\nu q(\sigma+k)} E_{2^{l_{1}\nu},\ldots,2^{\nu},\ldots,2^{l_{n}\nu}}^{q}(f)_{p}\right\}^{1/q}.$$

To get (2.17) we use inequality

$$||G_{2^{\nu+1}} - G_{2^{\nu}}|| \le ||G_{2^{\nu+1}} - f|| + ||f - G_{2^{\nu}}||.$$

Hence

(2.18)
$$\left\| S_m^{(r_1,\dots,r_i+k,\dots,r_n)} \right\|_q \\ \ll \left\{ \|f\|_p^q + \sum_{\nu=0}^m 2^{\nu q(\sigma+k)} E_{2^{l_1\nu},\dots,2^{\nu},\dots,2^{l_n\nu}}^q(f)_p \right\}^{1/q}$$

From (2.13), in view of (2.14), (2.15), (2.16) and (2.18), it follows

(2.19)
$$\omega_k \left(f^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q \\ \ll \frac{1}{m_i^k} \left\{ \|f\|_p^q + \sum_{\nu=0}^m 2^{\nu q(\sigma+k)} E_{2^{l_1\nu}, \dots, 2^{\nu}, \dots, 2^{l_n\nu}}^q(f)_p \right\}^{1/q} \\ + \left\{ \sum_{\nu=m+1}^{+\infty} 2^{\nu q\sigma} E_{2^{l_1\nu}, \dots, 2^{\nu}, \dots, 2^{l_n\nu}}^q(f)_p \right\}^{1/q}.$$

Let us denote

(2.20)
$$F_{2^{\nu}} = E_{(2^{\nu})^{l_1}, \dots, 2^{\nu}, \dots, (2^{\nu})^{l_n}}.$$

Then

(2.21)
$$F_{\mu} = E_{\mu^{l_1}, \dots, \mu, \dots, \mu^{l_n}}$$

and $F_{\mu} \downarrow 0$ as $\mu \to +\infty$.

Choosing m so that $2^m \le m_i < 2^{m+1}$, from (2.19) we get

(2.22)
$$\omega_k \left(f^{(r_1, \dots, r_n)}; \frac{1}{m_i} \right)_q \ll \frac{1}{m_i^k} \left\{ \|f\|_p^q + \sum_{\nu=1}^{m_i} \nu^{q(\sigma+k)-1} F_\nu^q \right\}^{1/q} \\ + \left\{ \sum_{\nu=m_i+1}^{+\infty} \nu^{q\sigma-1} F_\nu^q \right\}^{1/q}.$$

Inequality (2.3) follows from (2.22) in view of (2.21). \Box

3. Some Consequences

We give now a few basic consequences of Theorem 2.1.

On Converse Theorem of Approximation in Various Metrics ... 55

Corollary 3.1. For n = 1 $(l_j = 1, r_j = r, \sigma = r + \frac{1}{p} - \frac{1}{q})$, Theorem 1 in [1] follows.

Corollary 3.2. If the condition

(3.1)
$$\sum_{\nu=1}^{+\infty} \nu^{q \left[r+n(\frac{1}{p}-\frac{1}{q})\right]-1} E^{q}_{\nu,\dots,\nu,\dots,\nu}(f)_{p} < +\infty$$

holds, then the function f has a derivative $\frac{\partial^r f}{\partial x_i^r}$ with respect to any variable x_i . The derivative belongs to the space L_q . Also for the modulus of smoothness the corresponding inequality (2.3) holds.

Corollary 3.2 follows from the theorem for $l_1 = l_2 = \cdots = l_n = 1$, $r_j = 0$ for $j \neq i$, $r_i = r$.

Corollary 3.3. If

(3.2)
$$\sum_{\nu=1}^{+\infty} \nu^{q \left[r + \left(\frac{1}{p} - \frac{1}{q}\right)(l_1 + \dots + l_n) \right] - 1} E_{\nu^{l_1}, \dots, \nu, \dots, \nu^{l_n}}^q (f)_p < +\infty,$$

then the function f has a derivative $\frac{\partial^r f}{\partial x_i^r} \in L_q$ and the corresponding inequality (2.3) holds.

This corollary follows from the theorem for $r_i = r$, $r_j = 0$ for $j \neq i$.

Corollary 3.4. For p = q, Theorem 2.1 implies Theorem 6.3.5 in [3]. Indeed, from (2.19) using inequality $(\sum a_k)^s \leq \sum (a_k)^s$, $a_k \geq 0$, $0 < s \leq 1$, we get

(3.3)
$$\omega_{k} \left(f^{(r_{1},\dots,r_{n})}; \frac{1}{m_{i}} \right)_{q} \\ \ll \frac{1}{m_{i}^{k}} \left\{ \|f\|_{p} + \sum_{\nu=0}^{m} 2^{\nu(\sigma+k)} E_{2^{l_{1}\nu},\dots,2^{\nu},\dots,2^{l_{n}\nu}}(f)_{p} \right\} \\ + \sum_{\nu=m+1}^{+\infty} 2^{\nu\sigma} E_{2^{l_{1}\nu},\dots,2^{\nu},\dots,2^{l_{n}\nu}}(f)_{p},$$

and then

(3.4)
$$\omega_{k} \Big(f^{(r_{1},\dots,r_{n})}; \frac{1}{m_{i}} \Big)_{q} \\ \ll \frac{1}{m_{i}^{k}} \Big\{ \|f\|_{p} + \sum_{\nu=1}^{m_{i}} \nu^{\sigma+k-1} E_{\nu^{l_{1}},\dots,\nu,\dots,\nu^{l_{n}}}(f)_{p} \Big\} \\ + \sum_{\nu=m_{i}+1}^{+\infty} \nu^{\sigma-1} E_{\nu^{l_{1}},\dots,\nu,\dots,\nu^{l_{n}}}(f)_{p} \,.$$

For q = p we have $\sigma = \sum_{j=1}^{n} l_j r_j$, and inequality 6.3.5 (24) in [3] follows from (3.4).

REFERENCES

- 1. N. A. ILYSSOV: The converse theorem of theory of approximation in various metrics. Mat. Zametki **50** (1991), 57–65 (Russian).
- S. M. NIKOL'SKII: Approximation of Functions of Several Variables and Imbedding Theorems. (Second edition, revised and supplemented), Nauka, Moscow, 1977 (Russian).
- 3. A.F. TIMAN: Theory of Approximation of Functions of a Real Variable. Dover Publ., New York, 1994.

Faculty of Mechanical Engineering Department of Mathematics University of Pristina Serbia, Yugoslavia

Faculty of Technology University of Republika Srpska Zvornik Republika Srpska