FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. 15 (2000), 37–48

FUNCTIONAL EQUATIONS FOR FRACTAL INTERPOLANTS

Lj. M. Kocić and A. C. Simoncelli

This paper is dedicated to Professor R. Ž. Djordjević

Abstract. For a given data set $Y = \{(x_i, y_i)\}_{i=0}^n$, a fractal interpolating function $\varphi : [x_0, x_n] \to \mathbf{R}$ can be defined by a hyperbolic iterated function system $\Sigma_{Y,\mathbf{d}} = \{\mathbf{R}^2; \{w_i\}_{i=1}^n\}$ where w_i are affine contractions in \mathbf{R}^2 depending on an n-dimensional vector \mathbf{d} . Typically, $w_i : (x, y) \mapsto (u_i(x), v_i(x, y))$ where $u_i(\cdot)$ and $v_i(x, \cdot)$ are contractions, and $v_i(\cdot, y)$ is a Lipschitz mapping.

The system $\Sigma_{Y,\mathbf{d}}$ has the unique attractor $\Phi_{Y,\mathbf{d}}$ which is the graph of a continuous function φ interpolating Y and satisfying the Read-Bajraktarević functional equation

$$\varphi(x) = v_i(u_i^{-1}(x), \varphi(u_i^{-1}(x))), \quad x \in [x_{i-1}, x_i], \quad i = 1, \dots, n.$$

Using this equation, it is shown that φ has only a limited affine invariant property. Correspondingly, the general form of affine transformations ω such that $\omega(\Phi_{Y,\mathbf{d}}) = \Phi_{\omega(Y),\mathbf{d}}$ is specified. An application of the functional equation and some examples are also given.

1. Introduction

Let an interpolatory data set $Y = \{(x_i, y_i)\}_{i=0}^n \ (n \ge 2)$ be given, that is a set of points from \mathbf{R}^2 such that either $\Delta x_i = x_{i+1} - x_i > 0 \ \forall i$, or $\Delta x_i < 0 \ \forall i$. Also let a scaling vector $\mathbf{d} = [d_1 \dots d_n]^T$ be given, namely a vector from \mathbf{R}^n whose components are intended as vertical scaling factors.

With the pair (Y, \mathbf{d}) one can associate the iterated function system (IFS for short) $\Sigma_{Y,\mathbf{d}} = \{\mathbf{R}^2; \{w_i\}_{i=1}^n\}$, in which w_1, \ldots, w_n are the affine transformations of \mathbf{R}^2 defined by

(1)
$$w_i: (x,y) \mapsto (a_i x + e_i, \ c_i x + d_i y + f_i),$$

Received June 16, 1999.

1991 Mathematics Subject Classification. Primary 41A05; Secondary 28A80, 39B22.

with the coefficients

(2)
$$a_{i} = \frac{\Delta x_{i-1}}{x_{n} - x_{0}}, \quad c_{i} = \frac{\Delta y_{i-1}}{x_{n} - x_{0}} - d_{i} \frac{y_{n} - y_{0}}{x_{n} - x_{0}}, \\ e_{i} = x_{i} - a_{i} x_{n}, \quad f_{i} = y_{i} - c_{i} x_{n} - d_{i} y_{n}.$$

Let $\mathcal{H}(\mathbf{R}^2)$ denote the set of nonempty compact subsets of \mathbf{R}^2 and let h_{θ} be the Hausdorff metric on $\mathcal{H}(\mathbf{R}^2)$ generated by the norm $\|\cdot\|_{\theta}$ defined as $\|(x,y)\|_{\theta} = |x| + \theta |y|, \ 0 < \theta < \min_i \{(1 - |a_i|)/(1 + |c_i|)\}$. The space $(\mathcal{H}(\mathbf{R}^2), h_{\theta})$ is a complete metric space. With $\Sigma = \Sigma_{Y,\mathbf{d}}$ is canonically associated the *Hutchinson* operator W_{Σ} acting on $(\mathcal{H}(\mathbf{R}^2), h_{\theta})$ and defined by

(3)
$$W_{\Sigma}(\cdot) = \cup_{1}^{n} w_{i}(\cdot).$$

If $\|\mathbf{d}\| = \max_i\{|d_i|\} < 1$, then $\Sigma_{Y,\mathbf{d}}$ is hyperbolic, and W_{Σ} is a contraction in $(\mathcal{H}(\mathbf{R}^2), h_{\theta})$. The unique fixed point of W_{Σ} , namely the nonempty, closed, bounded set $\Phi_{Y,\mathbf{d}} \subset \mathbf{R}^2$ such that

$$W_{\Sigma}(\Phi_{Y,\mathbf{d}}) = \Phi_{Y,\mathbf{d}}$$

is the unique *attractor* of $\Sigma_{Y,\mathbf{d}}$. Under such conditions the following theorem holds [1].

Theorem 1. The iterated function system $\Sigma_{Y,\mathbf{d}}$ corresponding to an arbitrary interpolatory data set Y and to a scaling vector \mathbf{d} such that $\|\mathbf{d}\| = \max_i\{|d_i|\} < 1$ is hyperbolic, and its attractor is the graph of a continuous function $\varphi : [x_0, x_n] \to \mathbf{R}$ that interpolates Y.

Because of this result, we refer to $\Sigma_{Y,\mathbf{d}}$ with $\|\mathbf{d}\| < 1$, as a fractal interpolatory scheme, and call the function $\varphi = \varphi_{Y,\mathbf{d}}$, whose graph is the attractor of $\Sigma_{Y,\mathbf{d}}$, a *fractal interpolating function*. Also, we use the acronym IFS with the meaning of iterated function system.

The Functional Equation

For i = 1, ..., n, denote the x and y components of $w_i(x, y)$ in (1) by

(4)
$$u_i(x) = a_i x + e_i, \quad v_i(x, y) = c_i x + d_i y + f_i,$$

respectively.

Functional Equations for Fractal Interpolants

Consider the functional equation

(5)
$$\varphi(x) = v_i(u_i^{-1}(x), \varphi(u_i^{-1}(x))), \quad x \in [x_{i-1}, x_i], \ i = 1, \dots, n.$$

If $u_i(x)$ and $v_i(x, y)$ are given by (4) with $|d_i| < 1$, then $u_i(x)$ is a bijection $[x_0, x_n] \to \mathbf{R}$, $v_i(x, \cdot) \in \operatorname{Lip}^{(<1)}(\mathbf{R})$, and $v_i(\cdot, y) \in \operatorname{Lip}(\mathbf{R})$, so that (5) is a functional equation of Read-Bajraktarević type [7]. It can be written as

(6)
$$\varphi(x) = c_i \frac{x - e_i}{a_i} + d_i \varphi\left(\frac{x - e_i}{a_i}\right) + f_i, \quad x \in [x_{i-1}, x_i], \ i = 1, \dots, n.$$

Also, introducing the operator $T: \varphi \mapsto T\varphi$ defined piecewise by

(7)
$$(T\varphi)(x) = (T_i\varphi)(x) = c_i \frac{x-e_i}{a_i} + d_i \varphi\left(\frac{x-e_i}{a_i}\right) + f_i, \ x \in [x_{i-1}, x_i],$$

where i = 1, ..., n, equation (6) can be put in the more compact form

(8)
$$\varphi(x) = (T\varphi)(x), \quad x \in [x_0, x_n].$$

By Theorem 2, below, fractal interpolating functions are characterized as solutions of equation (8). The following lemma states a preliminary result, namely that bounded solutions of (8) are continuous.

Lemma 1. Let $\varphi : [x_0, x_n] \to \mathbf{R}$ be a bounded function that satisfies equation (8). Then φ is continuous.

Proof. Suppose that φ be discontinuous at the point $t_0 \in [x_{i_1-1}, x_{i_1}]$, $i_1 \in \{1, \ldots, n\}$, with the jump $L_0 = |\varphi(t_0 - 0) - \varphi(t_0 + 0)| > 0$. Consider the point $t_1 = u_{i_1}^{-1}(t_0)$ and let $i_2 \in \{1, \ldots, n\}$ be the index such that $t_1 = u_{i_1}^{-1}(t_0) \in [x_{i_2-1}, x_{i_2}]$. Being, by (8), $\varphi = T_{i_1}\varphi$ on the interval $[x_{i_1-1}, x_{i_1}]$, and being $|d_{i_1}| \leq ||\mathbf{d}|| < 1$, we have

$$0 < L_0 = |(T_{i_1}\varphi)(t_0-0) - (T_{i_1}\varphi)(t_0+0)| = |d_{i_1}||\varphi(t_1-0) - \varphi(t_1+0)| \le ||\mathbf{d}||L_1|$$

so that t_1 is also a discontinuity point with a corresponding positive jump L_1 . The discontinuity at t_1 is, in turn, the "image" of a discontinuity at $t_2 = u_{i_2}^{-1}(t_1)$, with a corresponding jump L_2 , and $L_1 \leq ||\mathbf{d}|| L_2$. Continuing this process, after k steps, a point is reached where φ has a jump L_k such that

$$\|\mathbf{d}\|^{k} L_{k} \geq \cdots \geq \|\mathbf{d}\|^{2} L_{2} \geq \|\mathbf{d}\| L_{1} \geq L_{0}, k \geq 1$$

Therefore $L_k \geq L_0 \|\mathbf{d}\|^{-k} \to \infty$ if $k \to \infty$, which leads to the conclusion that φ is unbounded. Thus, φ must be a continuous function. \Box

Theorem 2. Let \mathcal{B} denote the set of bounded functions $[x_0, x_n] \to \mathbf{R}$. Let $\varphi \in \mathcal{B}$. A necessary and sufficient condition for φ to be a fractal interpolating function of the data set Y is that φ satisfy the Read-Bajraktarević functional equation (8) with T given by (7), where a_i, c_i, e_i, f_i are given by (2) and $\|\mathbf{d}\| < 1$.

Proof. (i) Let φ be a fractal interpolant for Y associated with the vertical scaling vector $\mathbf{d} = [d_1 \dots d_n]^T$, $\|\mathbf{d}\| < 1$. Then, by Theorem 1, its graph $\Phi_Y \subset \mathbf{R}^2$ is the fixed point of the operator W_{Σ} given by (3). Therefore, for any $P = (x, \varphi(x)) \in \Phi_Y$ there exist $i \in \{1, \dots, n\}$ and $P' = (x', \varphi(x')) \in \Phi_Y$ such that $x \in [x_{i-1}, x_i]$, and $P = w_i(P')$, which means

(9)
$$x = a_i x' + e_i$$
, $\varphi(x) = c_i x' + d_i \varphi(x') + f_i$, $x \in [x_{i-1}, x_i]$.

Being $a_i \neq 0$ since $\Delta x_i \neq 0$ for each i, (9) yields $x' = (x - e_i)/a_i$ and

$$\varphi(x) = c_i \frac{x - e_i}{a_i} + d_i \, \varphi\Big(\frac{x - e_i}{a_i}\Big) + f_i$$

which is (6).

(ii) Let φ satisfy (8). Let (\mathcal{B}, d) be the metric space obtained by endowing \mathcal{B} with the max-norm $d(\psi, \varphi) = \max\{|\psi(x) - \varphi(x)|, x \in [x_0, x_n]\}$. The operator T defined by (7) is a contraction in (\mathcal{B}, d) since

$$|(T\varphi)(x) - (T\psi)(x)| = |d_i| |\varphi(u_i^{-1}(x)) - \psi(u_i^{-1}(x))| \le |d_i| d(\varphi, \psi),$$

and therefore $d(T\psi, T\varphi) \leq \|\mathbf{d}\| d(\psi, \varphi)$.

Since T is a contraction in (\mathcal{B}, d) , it has a unique fixed point and, according to (8), this is φ . By Lemma 1, φ is also continuous. Let Φ' be the graph of φ . As a consequence of (6) we have

$$(T\varphi)(u_i(x)) = v_i(x,\varphi(x)), \ x \in [x_0, x_n], \ i = 1, ..., n$$

which implies that, for $x \in [x_0, x_n]$,

$$w_i(x,\varphi(x)) = (u_i(x), v_i(x,\varphi(x))) = (u_i(x), (T\varphi)(u_i(x))) = (u_i(x), \varphi(u_i(x)))$$

which, in connection with the continuity of φ , leads to

$$\Phi' = \bigcup_{i=1}^n w_i(\Phi') \,.$$

This means that Φ' is a fixed point of the Hutchinson operator (3). Since it is also a nonempty compact set of \mathbf{R}^2 , it must be the unique attractor of the IFS $\Sigma_{Y,\mathbf{d}}$, which, by Theorem 1, is the graph of the interpolating fractal function. \Box

Remark 1. Notice that the interpolation property of φ can also be derived directly from (8), by the following argument. From (6) it can be seen immediately that $\varphi(x_0) = y_0$ and $\varphi(x_n) = y_n$. Furthermore, being the fixed point of T, φ satisfies $\varphi(x_i) = (T\varphi)(x_i) = c_i u_i^{-1}(x_i) + d_i \varphi(u_i^{-1}(x_i)) + f_i = c_i x_n + d_i \varphi(x_n) + f_i = c_i x_n + d_i y_n + y_i - c_i x_n - d_i y_n = y_i$ for $i = 1, \ldots, n$. Therefore φ interpolates the set of data Y.

Affine Transformation of The Interpolatory Scheme

Lemma 2. Let ω be a regular affine mapping $\mathbf{R}^2 \to \mathbf{R}^2$ given by

(10)
$$\omega: (x,y) \mapsto (px+qy+g, rx+sy+h), \quad p,q,r,s,g,h \in \mathbf{R}$$

and let F denote the graph of an arbitrary function $f : I \to \mathbf{R}$ $(I \subset \mathbf{R})$. The set $\omega(F)$ is the graph of a function if and only if q = 0.

Proof. Let $\alpha(x) = px + qf(x) + g$ and $\beta(x) = rx + sf(x) + h$, so that the image under ω of the point $(x, f(x)) \in F$ has coordinates $(\alpha(x), \beta(x))$.

(i) Suppose q = 0. Since ω is regular, it must be $p \neq 0$, therefore $\alpha(x)$ is invertible and $\beta(x) = \beta(\alpha^{-1} \circ \alpha(x)) = \beta \circ \alpha^{-1}(\alpha(x))$ is obviously a function, mapping $\alpha(I) \to \mathbf{R}$.

(ii) Let now $\hat{F} = \omega(F)$ be the graph of a function \hat{f} . Let $\xi, \eta \in I$ and $\xi \neq \eta$. Since ω is a regular affine mapping, it maps $P = (\xi, f(\xi)) \in F$ and $Q = (\eta, f(\eta)) \in F$, $P \neq Q$, into two different points $\omega(P) = (\alpha(\xi), \beta(\xi)) \in \hat{F}$ and $\omega(Q) = (\alpha(\eta), \beta(\eta)) \in \hat{F}$. Two cases are possible: either $\beta(\xi) = \beta(\eta)$, and then, since $\omega(P) \neq \omega(Q)$, it must be $\alpha(\xi) \neq \alpha(\eta)$; or $\beta(\xi) \neq \beta(\eta)$, and in this case again it must be $\alpha(\xi) \neq \alpha(\eta)$ by the fact that \hat{f} is a function. Therefore, the implication $\xi \neq \eta \Rightarrow \alpha(\xi) \neq \alpha(\eta)$ holds in any case. Now, since $\alpha(\xi) - \alpha(\eta) = p(\xi - \eta) + q[f(\xi) - f(\eta)]$ for any f, in order that the inequality $\alpha(\xi) - \alpha(\eta) \neq 0$ be valid whenever $\xi - \eta \neq 0$, it must be q = 0. Otherwise, a function f can be found such that $[f(\xi) - f(\eta)]/(\xi - \eta) = -p/q$ and then $\alpha(\xi) - \alpha(\eta) = 0$. \Box

Lemma 2 suggests that affine transformation of a fractal interpolating function φ can only be performed by means of a mapping ω with q = 0, i.e.,

(11)
$$\omega: (x, y) \mapsto (\alpha(x), \ \beta(x, y)) = (px + g, \ rx + sy + h).$$

In fact, ω maps the data set Y into the data set $\hat{Y} = \omega(Y) = \{(\hat{x}_i, \hat{y}_i)\}_{i=0}^n$, with $\hat{x}_i = \alpha(x_i), \ \hat{y}_i = \beta(x_i, y_i)$. Since $\operatorname{sign}(\Delta \hat{x}_i) = \operatorname{sign}(p) \operatorname{sign}(\Delta x_i), \ \forall i$, coefficients $\hat{a}_i, \ \hat{c}_i, \ \hat{f}_i$ can be defined according to (2) for the new data set \hat{Y} , and the new fractal interpolating scheme is well defined. So is also the function $\hat{\varphi}$ having graph $\hat{\Phi}$, the attractor of $\Sigma_{\hat{Y},\mathbf{d}}$. Note that the new coefficients are related to the old ones by

(12)
$$\hat{a}_i = a_i, \quad \hat{c}_i = (r/p)(a_i - d_i) + (s/p)c_i, \quad \hat{e}_i = pe_i + g(1 - a_i), \\ \hat{f}_i = sf_i + re_i + h(1 - d_i) + (rg/p)(d_i - a_i) + (sg/p)c_i,$$

and by Theorem 2, $\hat{\varphi}$ satisfies a functional equation having the form of (6) with the coefficients (12), namely

(13)
$$\hat{\varphi}(x) = \hat{c}_i \frac{x - \hat{e}_i}{\hat{a}_i} + d_i \,\hat{\varphi}\left(\frac{x - \hat{e}_i}{\hat{a}_i}\right) + \hat{f}_i \,, \quad x \in [\hat{x}_{i-1}, \hat{x}_i].$$

The following theorem establishes affine invariance of the fractal interpolatory scheme $\Sigma_{Y,\mathbf{d}}$ under a regular transformation of the type of ω .

Theorem 3. Let φ be the fractal interpolant of Y associated with \mathbf{d} and let $\Phi = \Phi_{Y,\mathbf{d}}$ be the graph of φ . Let ω be the regular affine mapping given by (11), and let $\hat{Y} = \omega(Y)$. If $\hat{\varphi}$ is the interpolant of \hat{Y} associated with the same \mathbf{d} , and $\hat{\Phi} = \Phi_{\omega(Y),\mathbf{d}}$ is its graph, then

(14)
$$\omega(\Phi) = \hat{\Phi}.$$

Proof. Denoting the interval $[x_0, x_n]$ by I, consider the function $\varphi : I \to \mathbf{R}$, and its graph Φ . By Lemma 2, the set $\omega(\Phi)$ is also the graph of a function, say $f : \alpha(I) \to \mathbf{R}$, so that any point $P \in \omega(\Phi)$ has coordinates $P = (x, f(x)), x \in \alpha(I)$. On the other hand, this point is the image under ω of some point $Q = (\alpha^{-1}(x), \varphi(\alpha^{-1}(x))) \in \Phi$, therefore its ordinate must also satisfy

(15)
$$f(x) = \beta(\alpha^{-1}(x), \ \varphi(\alpha^{-1}(x))), \quad x \in \alpha(I).$$

So, equation (15) characterizes functions whose graph is the image under ω of the graph of φ . Therefore (14) is equivalent to

(16)
$$\hat{\varphi}(x) = \beta(\alpha^{-1}(x), \ \varphi(\alpha^{-1}(x))), \quad x \in \alpha(I).$$

Functional Equations for Fractal Interpolants

Plugging this equation into (13) yields the functional equation for φ

(17)
$$\beta(\alpha^{-1}(x),\varphi(\alpha^{-1}(x))) = \hat{c}_i \frac{x - \hat{e}_i}{\hat{a}_i} + d_i \beta\left(\alpha^{-1}(\frac{x - \hat{e}_i}{\hat{a}_i}),\varphi(\alpha^{-1}(\frac{x - \hat{e}_i}{\hat{a}_i}))\right) + \hat{f}_i,$$

that is also equivalent to (14).

We will show that (17) reduces to (6). This will lead to the conclusion that (14) holds if and only if φ is a solution of (6), namely (by Theorem 2) the fractal interpolating function for (Y, \mathbf{d}) . So, our assertion will be proved.

Since any affine transformation is a composition of a translation and a linear transformation, it is sufficient to prove the equivalence for these two special cases of ω , separately:

a) The affine transformation given by (11) is a translation if p = s = 1, r = 0, and $g, h \neq 0$.

In this case $\alpha(x) = x + g$, $\beta(x, y) = y + h$, and, by (12),

$$\hat{a}_i = a_i$$
, $\hat{c}_i = c_i$, $\hat{e}_i = e_i + g(1 - a_i)$, $\hat{f}_i = f_i + h(1 - d_i) - c_i g$.

Therefore, equation (17) takes the form

$$\varphi(x-g) + h = c_i \left(\frac{x-e_i - g(1-a_i)}{a_i}\right) + d_i \varphi \left(\frac{x-e_i - g(1-a_i)}{a_i} - g\right)$$
$$+ d_i h + f_i + h - c_i g - d_i h,$$

which, by easy computations, becomes

$$\varphi(x-g) = c_i \left(\frac{(x-g)-e_i}{a_i}\right) + d_i \varphi\left(\frac{(x-g)-e_i}{a_i}\right) + f_i \,,$$

which, in turn, by the position t = x - g yields

$$\varphi(t) = c_i \left(\frac{t - e_i}{a_i}\right) + d_i \varphi\left(\frac{t - e_i}{a_i}\right) + f_i \,,$$

that is (6).

b) Transformation ω in (11) is a linear map if g = h = 0 and $ps \neq 0$.

In this case $\alpha(x) = p x$, $\beta(x, y) = r x + s y$, and

$$\hat{a}_i = a_i$$
, $\hat{c}_i = (r/p)(a_i - d_i) + (s/p)c_i$, $\hat{e}_i = pe_i$, $\hat{f}_i = sf_i + re_i$,

so (17) becomes

$$rx/p + s\varphi(x/p) = sc_i \left(\frac{x/p - e_i}{a_i}\right) + sd_i\varphi\left(\frac{x/p - e_i}{a_i}\right) + r(a_i - d_i)\left(\frac{x - pe_i}{pa_i}\right) + rd_i \left(\frac{x - pe_i}{pa_i}\right) + re_i + sf_i,$$

which gives

$$s\varphi(x/p) = sc_i\left(\frac{x/p - e_i}{a_i}\right) + sd_i\varphi\left(\frac{x/p - e_i}{a_i}\right) + ra_i\left(\frac{x - pe_i}{pa_i}\right) + re_i + sf_i - (rx)/p,$$

and finally

$$\varphi(x/p) = c_i \left(\frac{x/p - e_i}{a_i}\right) + d_i \varphi\left(\frac{x/p - e_i}{a_i}\right) + f_i$$

which again yields (6) by the variable transformation t = x/p. \Box

Remark 2. For another proof of (14), see [6]. For monotonicity preserving property of φ , see [4].

Application and Examples

It was suggested in [2, Chap. 6] that the integral of the interpolating fractal function φ satisfying equation (8) can be calculated by

$$I = \int_{x_0}^{x_n} \varphi(x) dx = \int_{x_0}^{x_n} (T\varphi)(x) dx = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} (T_i\varphi)(x) dx$$
$$= \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \left[c_i \frac{x - e_i}{a_i} + d_i \varphi \left(\frac{x - e_i}{a_i} \right) + f_i \right] dx,$$

which, by the substitution $x = a_i t + e_i$ becomes

(18)
$$I = \sum_{i=1}^{n} \int_{x_0}^{x_n} (c_i t + d_i \varphi(t) + f_i) a_i dt = \alpha I + \beta,$$

where

(19)
$$\alpha = \sum_{i=1}^{n} a_i d_i, \quad \beta = \sum_{i=1}^{n} a_i \int_{x_0}^{x_n} (c_i t + f_i) dt.$$

And it follows from (18) that

(20)
$$I = \frac{\beta}{1 - \alpha}.$$

Also in [2, p. 221], Barnsley suggests that β equals $\int_{x_0}^{x_n} \varphi_0(x) dx$ where

(21)
$$\varphi_0(x) = y_i + \frac{\Delta y_i}{\Delta x_i}(x - x_i), \quad x_i \le x \le x_{i+1}, \quad i = 0, 1, \dots, n-1,$$

is the piecewise linear interpolant to the data Y. But, by (19),

$$\beta = \sum_{i=1}^{n} a_i \int_{x_0}^{x_n} (c_i t + f_i) dt = \sum_{i=1}^{n} a_i \left(c_i \frac{x_n^2 - x_0^2}{2} + f_i (x_n - x_0) \right)$$
$$= \sum_{i=1}^{n} \frac{\Delta x_{i-1}}{2} \left[c_i (x_n + x_0) + 2f_i \right],$$

which, after replacing a_i, c_i and f_i by their expression (2) gives

$$\beta = \sum_{i=1}^{n} \frac{\Delta x_{i-1}}{2} [y_{i-1} + y_i - d_i(y_0 + y_n)],$$

or

(22)
$$\beta = \sum_{i=1}^{n} \frac{y_{i-1} + y_i}{2} \Delta x_{i-1} - \frac{y_0 + y_n}{2} \sum_{i=1}^{n} d_i \Delta x_{i-1}.$$

Note that the first term on the right hand side of (22) is, by itself, the value of $\int_{x_0}^{x_n} \varphi_0(x) dx$. Therefore $\beta = \int_{x_0}^{x_n} \varphi_0(x) dx$ is valid if and only if

(23)
$$y_0 + y_n = 0$$
,

or

(24)
$$d_i = 0, \quad i = 1, 2, \dots, n$$

Example 1. The Cantor function $x \mapsto f(x)$ is the interpolating fractal function that is defined by the data $Y = \{(0,0), (1/3, 1/2), (2/3, 1/2), (1,1)\}$ and the scaling vector $\mathbf{d} = [1/2 \ 0 \ 1/2]^T$.

Thus, by (19), $\alpha = 1/3$ and by (22) $\beta = 1/3$, which gives, by (20), $I = \int_0^1 f(x) dx = 1/2$, which is the known result [3]. Here, neither condition (23) nor (24) is satisfied, and in fact β differs from $\int_0^1 \varphi_0(x) dx = 1/2$, where φ_0 is the piecewise linear interpolant to Y.

Direct computation, based on (18) and on the functional equation for Cantor function

$$f(x) = \begin{cases} \frac{1}{2}f(3x), & 0 \le x \le \frac{1}{3}, \\ \frac{1}{2}, & \frac{1}{3} \le x \le \frac{2}{3}, \\ \frac{1}{2}f(3x-2) + \frac{1}{2}, & \frac{2}{3} \le x \le 1. \end{cases}$$

also gives

$$I = \int_0^1 \varphi_0(x) dx = \int_0^1 \frac{1}{2} f(t) \frac{dt}{3} + \int_0^1 \frac{1}{2} \frac{dt}{3} + \int_0^1 \left(\frac{1}{2} f(t) + \frac{1}{2}\right) \frac{dt}{3}$$

i.e., $I = \frac{1}{3}I + \frac{1}{3}$, which yields I = 1/2.

Example 2. Consider the functional equation of type (6)

(25)
$$f(x) = \begin{cases} \lambda f(2x) + x, & 0 \le x \le 1/2, \\ \mu f(2x-1) - x + 1, & 1/2 \le x \le 1, \end{cases}$$

where $|\lambda| < 1, |\mu| < 1$.

Comparing (25) with (6) immediately gives $d_1 = \lambda$, $d_2 = \mu$ and $x_0 = 0$, $x_1 = 1/2$, $x_2 = 1$. Letting $x = x_i$, i = 0, 1, 2 in (25) results in the following linear system:

$$f(0) = \lambda f(0),$$

$$f(1/2) = \lambda f(1) + 1/2,$$

$$f(1/2) = \mu f(0) + 1/2,$$

$$f(1) = \mu f(1),$$

wherefrom it follows f(0) = f(1) = 0 and f(1/2) = 1/2. Thus, the interpolating data set is $Y = \{(0,0), (1/2, 1/2), (1,0)\}$, and therefore, $a_1 = a_2 = 1/2$ which gives (by (19)) $\alpha = (\lambda + \mu)/2$ and (by (22)) $\beta = 1/4$.

Thus,

$$I = \frac{1}{2(2 - \lambda - \mu)}.$$

Note that the condition (23) is valid and, accordingly, $\beta = \int_0^1 f_0(x) dx$, where f_0 is a "tent function" which interpolates the data Y.

It is interesting to note that for $\lambda = \mu = 1/4$ the interpolant given by (25) is in fact a smooth function, namely the quadratic polynomial f(x) = 2x(1-x). For other smooth fractal objects and their applications, see [5].

Acknowledgments. A first draft of this paper was prepared while the first author was visiting the *Dipartimento di Matematica ed Applicazioni* of *Universitá Federico II, Naples (Italy)* in October 1998. The visit was supported by the *Italia-Yugoslavia Joint Protocol for Scientific Collaboration* 1998/2000.

REFERENCES

- M. F. BARNSLEY: Fractal functions and interpolation. Constr. Approx. 2 (1986), 303–329.
- 2. M. F. BARNSLEY: Fractals Everywhere. Academic Press, 1993.
- 3. E. HILLE and J.D. TAMARKIN: Remarks on a known example of a monotone continuous function. Amer. Math. Monthly **36** (1929), 255–264.
- LJ. M. KOCIĆ: Monotone interpolation by fractal functions. In: Approximation and Optimization (Proceedings of ICAOR) (D.D.Stancu et al., eds.), pp. 291–298, Transilvania Press, 1997.
- LJ. M. KOCIĆ and A. C. SIMONCELLI: Towards free-form fractal modelling. In: Mathematical Methods for Curves and Surfaces II (M. Dæhlen, T. Lyche, and L.L. Schumaker, eds), pp. 287–294, Vanderbilt University Press, Nashville (TN.), 1998.
- LJ. M. KOCIĆ and A. C. SIMONCELLI: Notes on fractal interpolation. Novi Sad J. Math., n. 3, 30 (2000), 59–68 [≡ Publ. Dip. Mat. Appl. "R.Caccioppoli" – Napoli, n. 14 (1999) (preprint)].
- P. R. MASSOPUST: Fractal Functions, Fractal Surfaces and Wavelets. Academic Press, 1994.

Faculty of Electronic Engineering Department of Mathematics 18000 Niš, Yugoslavia

Dip. Matematica ed Applicazioni Università Federico II Napoli, Italy

48
