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ON THE LOG–QUADRATIC FUNCTIONAL EQUATION

Borislav D. Crstici and Nicolae N. Neamţu

Dedicated to Prof. Radosav Ž. D̄ord̄ević for his 65th birthday

Abstract. Our attention was drawn on log–quadratic functional equation
mentioned by Hiroshi Haruki and Themistocles M. Rassias in [4]:

f : C → C , f(x + y)f(x − y) = f(x)2f(y)2 , x, y ∈ C .

They stated the following result: The only entire solutions of this equation

are given by f(z) ≡ 0, f(z) = eaz2
and f(z) = −eaz2

, where a is an arbitrary
complex constant. In our paper, using some elementary methods we consider the
log–quadratic functional equation for functions f : R → C, supposing only that f

is continuous. The expected solutions are evidently f(x) ≡ 0, f(x) = e(α+i β)x2

and f(x) = −e(α+i β)x2
, but we will determine these solutions independently

of the above mentioned result.

1. We start with the solution of

(1) f : C → C , f(x + y)f(x − y) = f(x)2f(y)2 , x, y ∈ C ,

for real functions of a real variable, f : R → R, under the assumption that f
is continuous:

(1′) f : R → R , f(x + y)f(x − y) = f(x)2f(y)2 , x, y ∈ R .

With x = y = 0 we obtain f(0) = 0, f(0) = 1, f(0) = −1. The case
f(0) = 0 leads to f(x) ≡ 0 (putting y = 0 in (1′)). In the case f(0) = 1 we

Received October 18, 1998.
1991 Mathematics Subject Classification. Primary 39B22, 39B32, 39B52.

27



28 B. D. Crstici and N. N. Neamţu

shall first show that f(x) > 0, x ∈ R. Suppose that there exists x0 such that
f(x0) = 0, with x = y = x0/2, we obtain f(x0/2) = 0, and repeating the
procedure we reach to f(x0/2n) = 0. By continuity we have a contradiction.
Hence f(0) = 1, it follows f(x) > 0 for each x ∈ R. Now we can apply the
log and then we obtain the quadratic functional equation

ϕ(x + y) + ϕ(x − y) = 2ϕ(x) + 2ϕ(y)

for ϕ(x) := log f(x), whose continuous (nontrivial) solution ϕ(x) = ax2 (a is
an arbitrary real constant) is known. But we will determine the continuous
solution of (1′) in the case f(0) = 1 directly from this equation without
using the log-process. With x = y = t we have f(2t) = f(t)4. With
x = 2t, y = t we have f(3t)f(t) = f(2t)2f(t)2, f(3t) = f(2t)2f(t), because
f(t) > 0. Therefore, f(3t) = f(t)9 and so on, we obtain f(nx) = f(x)n2

.
With x = 1/n, we have f(1/n) = f(1)1/n2

, because f(1) > 0. Finally,
f(m/n) = f(1)(m/n)2 and we obtained the values of unknown function on a
dense set (see [1]). By continuity, f(x) = bx2

, b = f(1) > 0, f(x) = eax2
,

where a is an arbitrary real constant. The case f(0) = −1 can be reduced
to the previous case with g(x) = −f(x) also satisfying (1′).

2. Now we consider the functional equation for a continuous function
f : R → C,

(1′′) f(x + y)f(x − y) = f(x)2f(y)2 , x, y ∈ R .

With f(x) = u(x) + i v(x) we obtain the system of equations

(2)




u(x + y)u(x − y) − v(x + y)v(x − y)
=

(
u(x)2 − v(x)2

)(
u(y)2 − v(y)2

) − 4u(x)v(x)u(y)v(y) ,

u(x + y)v(x − y) + u(x − y)v(x + y)
= 2u(x)v(x)

(
u(y)2 − v(y)2

)
+ 2u(y)v(y)

(
u(x)2 − v(x)2

)
,

where u, v: R → R are continuous functions. With x = y = 0 we obtain

(3)

{
u(0)2 − v(0)2 =

(
u(0)2 − v(0)2

)2 − 4u(0)2v(0)2 ,

2u(0)v(0) = 4u(0)v(0)
(
u(0)2 − v(0)2

)
.

The real solutions of (3) are

u(0) = 0 , v(0) = 0 ; u(0) = 1 , v(0) = 0 ; u(0) = −1 , v(0) = 0 .
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The first solution of (3) leads to the trivial solution of (2), i.e. u(x) ≡ 0,
v(x) ≡ 0, and therefore f(x) ≡ 0 for (1′′). By squaring and addition in (2)
we find

[u(x + y)2 + v(x + y)2] [u(x − y)2 + v(x − y)2]

= [u(x)2 + v(x)2]2 [u(y)2 + v(y)2]2 .

Therefore, with g(x) = u(x)2 + v(x)2 we obtain the functional equation
(1′), g(0) = 1, in the both cases u(0) = 1, u(0) = −1.

Consequently, u(x)2 + v(x)2 = e2αx2
,

(
u(x)
eαx2

)2

+
(

v(x)
eαx2

)2

= 1 .

We put now u(x) = eαx2
cosω(x), v(x) = eαx2

sinω(x) and substitute
them in the first equation of (2). In this way we get

ω(x + y) + ω(x − y) = 2kπ ± (
2ω(x) + 2ω(y)

)
.

In different cases we have:
“ + ”: ω(x) = βx2 − kπ , k ∈ Z,

“ − ”: ω(x) = kπ/3 , k ∈ Z.

“ + ”: It leads to u(x) = eαx2
cos(βx2 − kπ) , v(x) = eαx2

sin(βx2 − kπ) ,

(4) f(x) = ±e(α+i β)x2
.

“ − ”: It leads to k = 3q, q ∈ Z, and therefore f(x) = ±eαx2
. That is a

particular case of (4) with β = 0.
Remark 1. From (1′′) we get

(5)
∣∣f(x + y)

∣∣ ∣∣f(x − y)
∣∣ =

∣∣f(x)
∣∣2 ∣∣f(y)

∣∣2 ,

which represents the equation (1′) for nonnegative functions. The solutions of (5)

are
∣∣f(x)

∣∣ ≡ 0,
∣∣f(x)

∣∣ = eax2
, where a is an arbitrary real constant.

With f(x) =
∣∣f(x)

∣∣ei arg f(x) we obtain

arg f(x + y) + arg f(x − y) = 2 arg f(x) + 2 arg f(y) + 2kπ ,

arg f(x) = bx2 − kπ , f(x) = ±e(a+i b)x2
.
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In this way we avoid the second case of the functional equation for ω(x)
(“ − ”).

Therefore, the continuous nontrivial solution of (1) for the complex func-
tions of real variable (equation (1′′)) is f(x) = ±eAx2

, A is an arbitrary
complex constant, A = a + i b, a, b ∈ R. This solution was expected in view
of the above cited result for (1), but here we have obtained this result inde-
pendently using elementary methods and functional equation techniques.

3. A new situation occurs in the case f : R → A, where A is a finite–
dimensional real algebra with other elements satisfying the equation

(6) f(0)2 = f(0)4

besides the zero and the unity. In this case we have besides the trivial
solution (corresponding to the solution f(0) = 0 of the equation (6)) and
a “regular” solution (corresponding to the root f(0) = 1 of (6)), also other
solutions corresponding to the other roots of (6), named “singular solutions”
(the norm of these solutions are equal to the zero). For example, let A3 be
an algebra of the real square matrices of the form

 a b c
c a b
b c a




(a subalgebra of the complete algebra of square matrices of third order
M3(R)). This algebra is isomorphic with the algebra of “hypercomplex”
numbers a + θb + θ2c, θ3 = 1, used by Lagrange in the solution of the
algebraic equation of third degree (see [6]).

Now, we consider the log–quadratic functional equation for f : R → A3,
f(x) = a(x) + θb(x) + θ2c(x), (a, b, c: R → R are continuous),

(1′′′) f(x + y)f(x − y) = f(x)2f(y)2 , f : R → A3 .

As in the previous cases we have

(7) f(0)2 = f(0)4 ,

but now we have seven distinct solutions of this equation

j1 = 0 , j2,3 = ±1 , j4,5 = ±1
3
(1 + θ + θ2) , j6,7 = ±

(2
3
− 1

3
θ − 1

3
θ2

)
.
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Multiply (1′′′) with 1 + θ + θ2. It gives

(
a(x + y) + b(x + y) + c(x + y)

) · (a(x − y) + b(x − y) + c(x − y)
)

=
(
a(x) + b(x) + c(x)

)2 · (a(y) + b(y) + c(y)
)2

,

i.e. (6):

a(x) + b(x) + c(x) =
{

0 ,

±eγx2
.

Denoting A0
3 =

{
a + θb − (a + b)θ2

∣∣ a, b ∈ R
}
, we can establish an

isomorphism between A0
3 and C considered it as a real linear two–dimensional

algebra by

a + θb − (a + b)θ2 → 3
2
a + i

√
3

2
(a + 2b) .

In view of this isomorphism the equation (1′′′) in the case f(0) = ± 1
3 (2−

θ − θ2) reduces to

[3
2
a(x + y) + i

√
3

2
(
a(x + y) + 2b(x + y)

)]

·
[3
2
a(x − y) + i

√
3

2
(
a(x − y) + 2b(x − y)

)]

=
[3
2
a(x) + i

√
3

2
(
a(x) + 2b(x)

)]2[3
2
a(y) + i

√
3

2
(
a(y) + 2b(y)

)]2

.

Therefore

3
2
a(x) + i

√
3

2
(
a(x) + 2b(x)

)
= ±e(α+i β)x2

,

(8)




a(x) = ± 2
3eαx2

cosβx2 ,

b(x) = ∓ 1
3eαx2

cosβx2 ± 1√
3
eαx2

sinβx2 ,

c(x) = −(
a(x) + b(x)

)
.

This is a solution corresponding to f(0) = ± 1
3 (2 − θ − θ2).

We denote A1
3 =

{
a + θb + θ2(±eγx2

1 − a − b)
∣∣ a, b ∈ R

}
, where γ is an

arbitrary real constant, and x1 is fixed if a and b are given.
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The mapping

a + θb + θ2(±eγx2
1 − a − b) → 3

2
a ∓ 1

2
eγx2

1 + i

√
3

2
(a + 2b ∓ eγx2

1)

represents an isomorphism between A1
3 and C. Based on this isomorphism

we obtain

3
2
a(x) ∓ 1

2
eγx2

+ i

√
3

2
(
a(x) + 2b(x) ∓ eγx2)

= ±e(α+i β)x2
.

Therefore

(9)




a(x) = ± 1
3eγx2 ± 2

3eαx2
cosβx2 ,

b(x) = ± 1
3eγx2 ∓ 1

3eαx2
cosβx2 ± 1√

3
eαx2

sinβx2 ,

c(x) = ±eγx2 − (
a(x) + b(x)

)
.

This is a solution of (1′′′) corresponding to f(0) = ±1. In the case f(0) =
± 1

3 (1 + θ + θ2) from the relation f(x)2 = f(x)2f(0)2 (obtained with y = 0)
it gives 


a(x)2 + 2b(x)c(x) = 1

3

(
a(x) + b(x) + c(x)

)2
,

c(x)2 + 2a(x)b(x) = 1
3

(
a(x) + b(x) + c(x)

)2
,

b(x)2 + 2a(x)c(x) = 1
3

(
a(x) + b(x) + c(x)

)2
,

consequently a(x) = b(x) = c(x). Then we have f(x) = a(x)(1+ θ + θ2) and

3a(x + y)a(x − y) = 27a(x)2a(y)2 .

Hence

(10) a(x) = b(x) = c(x) = ±1
3
eγx2

.

Thus, this is the solution corresponding to f(0) = ± 1
3 (1 + θ + θ2).

4. Following Hille–Phillips book [5] the continuous solutions of

f : R → A , f(x + y) = f(x)f(y) ,
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are given by

(11) f(x) = j +
+∞∑
n=1

xn

n!
An ,

where A is Banach algebra, j is an idempotent of A and A is a constant
from this algebra such that Aj = jA = A.

We will show that the solutions of (1′′′) can be represented in the form
given by (11), putting x2 instead of x.

For the solution (10) we have A = δ(1+θ+θ2), where δ is a real constant,
(1 + θ + θ2)n = 3n−1(1 + θ + θ2). Substituting in (11) we get

f(x) =
1
3
(1 + θ + θ2) +

[ ∞∑
n=1

(x2)n

n!
3n−1(1 + θ + θ2)δn

]

=
1
3
(1 + θ + θ2)

[
1 +

∞∑
n=1

(3δ)nx2n

n!

]
=

1
3
(1 + θ + θ2)e3δx2

.

With 3δ = γ we obtain (10). (The function −f(x) also verifies the equa-
tion (1′′′).

In what concerns the solution (8) we have A = δ + θε − θ2(δ + ε). Hence

f(x) =
2
3
− 1

3
θ − 1

3
θ2 +

(
δ + εθ − θ2(δ + ε)

)
x2

+
1
2
(
δ + εθ − (δ + ε)θ2

)2
x4 +

1
6
(
δ + εθ − (δ + ε)θ2

)3
x6 + · · · ,

i.e.

f(x) =
[2
3

+ δx2 +
1
2
(δ2 − 2δε − 2ε2)x4

+
1
6
(
δ3 + ε3 − 6δε(δ + ε) − (δ + ε)3

)
x6 + · · ·

]
+ θ

[−1
3

+ εx2 +
1
2
(δ2 + 4δε + ε2)x4 + · · · ]

− θ2
[1
3

+ (δ + ε)x2 +
1
2
(2δ2 + 2δε − ε2)x4 + · · · ] .
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Putting δ = 2
3α, ε + 1

2δ = β√
3
, ε = − 1

3α + β√
3
, we have

f(x) =
2
3

+
2
3
αx2 +

1
3
(α2 − β2)x4 − 3

2
(− 2

27
α3 +

2
9
β2α)x6 + · · ·

+ θ
[−1

3
+ εx2 +

1
2
(δ2 + 4δε + ε2)x4 +

1
2
(δ3 − ε3 + 3δ2ε)x6 + · · · ]

− θ2
[1
3

+ (δ + ε)x2 +
1
2
(2δ2 + 2δε − ε2)x4

+
1
2
(δ3 − ε3 − 3δ2ε)x6 + · · · ] ,

i.e.

f(x) =
2
3

+
2
3
αx2 +

1
3
(α2 − β2)x4 +(

1
9
α3 − 1

3
αβ2)x6 + · · ·+ θ(. . . )+ θ2(. . . )

and

a(x) =
2
3

+
2
3
αx2 +

1
3
(α2 − β2)x4 + (

1
9
α3 − 1

3
αβ2)x6 + · · ·

=
2
3
(
1 + αx2 +

1
2
(α2 − β2)x4 + (

1
6
α3 − 1

2
αβ2)x6 + · · · ) ,

i.e.
a(x) =

2
3
eαx2

cosβx2 .

After some calculations we obtain (8) (taking into account that −f is also
solution of (1′′′)).

In the case of “regular solution” (9) corresponds to f(0) = 1 (unit element
of algebra), the condition Aj = jA = A from (11) left the constant A
arbitrary

A = δ + θε + ωθ2 .

We have

A2 = δ2 + 2εω + θ(ω2 + 2δε) + θ2(ε2 + 2δω) ,

A3 = δ3 + ε3 + ω3 + 6δεω + 3θ(ε2ω + δ2ε + ω2δ) + 3θ2(ε2δ + δ2ω + ω2ε) ,

and

f(x) = 1 + δx2 +
1
2
(δ2 + 2εω)x4 +

1
6
(δ3 + ε3 + ω3 + 6δεω)x6

+ 3θ(ε2ω + δ2ε + ω2δ) + 3θ2(ε2δ + δ2ω + ω2ε) .
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Putting 


δ = 2
3α + 1

3γ ,

ε = 1
3γ − 1

3α + 1√
3
β ,

ω = − 1
3α − 1√

3
β + 1

3γ ,

we obtain

a(x) = 1 +
(

2
3
α +

1
3
γ

)
x2 +

(
1
3
α2 − 1

3
β2 +

1
6
γ2

)
x4 + · · ·

=
1
3
eγx2

+
2
3
eαx2

cosβx2 .

Finally, with some calculations we obtain that the solutions of (1′′′) can
be represented in the Hille–Phillips form with x2 instead of x. (Further we
take into account that −f is also solution of (1′′′)).

Remark 2. One can directly verify that the Hille–Phillips series

f(x) = j +

+∞∑
n=1

An

n!
x2n

satisfies the log–quadratic functional equation

f(x + y)f(x − y) = f(x)2f(y)2

for functions f : R → A, where A is a Banach algebra.

In this paper we have obtained via functional equation elementary tech-
niques the continuous solution of a system of functional equations which
cannot easily be obtained in finite terms from the above general result.

Remark 3. In the case of A3 the solutions of the log–quadratic functional
equation (1′′′) can be expressed in finite terms with aid of so called functions of P.
Appell (see [2], [3]).
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