FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. 15 (2000), 27–36

ON THE LOG-QUADRATIC FUNCTIONAL EQUATION

Borislav D. Crstici and Nicolae N. Neamţu

Dedicated to Prof. Radosav Ž. Đorđević for his 65th birthday

Abstract. Our attention was drawn on log–quadratic functional equation mentioned by Hiroshi Haruki and Themistocles M. Rassias in [4]:

$$f: \mathbb{C} \to \mathbb{C}$$
, $f(x+y)f(x-y) = f(x)^2 f(y)^2$, $x, y \in \mathbb{C}$.

They stated the following result: The only entire solutions of this equation are given by $f(z) \equiv 0$, $f(z) = e^{az^2}$ and $f(z) = -e^{az^2}$, where a is an arbitrary complex constant. In our paper, using some elementary methods we consider the log-quadratic functional equation for functions $f: \mathbb{R} \to \mathbb{C}$, supposing only that fis continuous. The expected solutions are evidently $f(x) \equiv 0$, $f(x) = e^{(\alpha+i\beta)x^2}$ and $f(x) = -e^{(\alpha+i\beta)x^2}$, but we will determine these solutions independently of the above mentioned result.

1. We start with the solution of

(1)
$$f: \mathbb{C} \to \mathbb{C}$$
, $f(x+y)f(x-y) = f(x)^2 f(y)^2$, $x, y \in \mathbb{C}$,

for real functions of a real variable, $f: \mathbb{R} \to \mathbb{R}$, under the assumption that f is continuous:

(1')
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x+y)f(x-y) = f(x)^2 f(y)^2$, $x, y \in \mathbb{R}$.

With x = y = 0 we obtain f(0) = 0, f(0) = 1, f(0) = -1. The case f(0) = 0 leads to $f(x) \equiv 0$ (putting y = 0 in (1')). In the case f(0) = 1 we

¹⁹⁹¹ Mathematics Subject Classification. Primary 39B22, 39B32, 39B52.

Received October 18, 1998.

B. D. Crstici and N. N. Neamţu

shall first show that $f(x) > 0, x \in \mathbb{R}$. Suppose that there exists x_0 such that $f(x_0) = 0$, with $x = y = x_0/2$, we obtain $f(x_0/2) = 0$, and repeating the procedure we reach to $f(x_0/2^n) = 0$. By continuity we have a contradiction. Hence f(0) = 1, it follows f(x) > 0 for each $x \in \mathbb{R}$. Now we can apply the log and then we obtain the quadratic functional equation

$$\varphi(x+y) + \varphi(x-y) = 2\varphi(x) + 2\varphi(y)$$

for $\varphi(x) := \log f(x)$, whose continuous (nontrivial) solution $\varphi(x) = ax^2$ (*a* is an arbitrary real constant) is known. But we will determine the continuous solution of (1') in the case f(0) = 1 directly from this equation without using the log-process. With x = y = t we have $f(2t) = f(t)^4$. With x = 2t, y = t we have $f(3t)f(t) = f(2t)^2f(t)^2$, $f(3t) = f(2t)^2f(t)$, because f(t) > 0. Therefore, $f(3t) = f(t)^9$ and so on, we obtain $f(nx) = f(x)^{n^2}$. With x = 1/n, we have $f(1/n) = f(1)^{1/n^2}$, because f(1) > 0. Finally, $f(m/n) = f(1)^{(m/n)^2}$ and we obtained the values of unknown function on a dense set (see [1]). By continuity, $f(x) = b^{x^2}$, b = f(1) > 0, $f(x) = e^{ax^2}$, where *a* is an arbitrary real constant. The case f(0) = -1 can be reduced to the previous case with g(x) = -f(x) also satisfying (1').

2. Now we consider the functional equation for a continuous function $f: \mathbb{R} \to \mathbb{C}$,

(1")
$$f(x+y)f(x-y) = f(x)^2 f(y)^2, \quad x, y \in \mathbb{R}$$

With f(x) = u(x) + iv(x) we obtain the system of equations

(2)
$$\begin{cases} u(x+y)u(x-y) - v(x+y)v(x-y) \\ = (u(x)^2 - v(x)^2)(u(y)^2 - v(y)^2) - 4u(x)v(x)u(y)v(y), \\ u(x+y)v(x-y) + u(x-y)v(x+y) \\ = 2u(x)v(x)(u(y)^2 - v(y)^2) + 2u(y)v(y)(u(x)^2 - v(x)^2), \end{cases}$$

where $u, v: \mathbb{R} \to \mathbb{R}$ are continuous functions. With x = y = 0 we obtain

(3)
$$\begin{cases} u(0)^2 - v(0)^2 = (u(0)^2 - v(0)^2)^2 - 4u(0)^2 v(0)^2, \\ 2u(0)v(0) = 4u(0)v(0)(u(0)^2 - v(0)^2). \end{cases}$$

The real solutions of (3) are

$$u(0) = 0$$
, $v(0) = 0$; $u(0) = 1$, $v(0) = 0$; $u(0) = -1$, $v(0) = 0$.

The first solution of (3) leads to the trivial solution of (2), i.e. $u(x) \equiv 0$, $v(x) \equiv 0$, and therefore $f(x) \equiv 0$ for (1"). By squaring and addition in (2) we find

$$[u(x+y)^{2} + v(x+y)^{2}] [u(x-y)^{2} + v(x-y)^{2}]$$

= $[u(x)^{2} + v(x)^{2}]^{2} [u(y)^{2} + v(y)^{2}]^{2}.$

Therefore, with $g(x) = u(x)^2 + v(x)^2$ we obtain the functional equation (1'), g(0) = 1, in the both cases u(0) = 1, u(0) = -1.

Consequently, $u(x)^2 + v(x)^2 = e^{2\alpha x^2}$,

$$\left(\frac{u(x)}{e^{\alpha x^2}}\right)^2 + \left(\frac{v(x)}{e^{\alpha x^2}}\right)^2 = 1.$$

We put now $u(x) = e^{\alpha x^2} \cos \omega(x)$, $v(x) = e^{\alpha x^2} \sin \omega(x)$ and substitute them in the first equation of (2). In this way we get

$$\omega(x+y) + \omega(x-y) = 2k\pi \pm (2\omega(x) + 2\omega(y)).$$

In different cases we have:

"-": It leads to k = 3q, $q \in \mathbb{Z}$, and therefore $f(x) = \pm e^{\alpha x^2}$. That is a particular case of (4) with $\beta = 0$.

Remark 1. From (1'') we get

(5)
$$|f(x+y)||f(x-y)| = |f(x)|^2 |f(y)|^2$$
,

which represents the equation (1') for nonnegative functions. The solutions of (5) are $|f(x)| \equiv 0$, $|f(x)| = e^{ax^2}$, where a is an arbitrary real constant.

With $f(x) = |f(x)|e^{i \arg f(x)}$ we obtain

$$\arg f(x+y) + \arg f(x-y) = 2 \arg f(x) + 2 \arg f(y) + 2k\pi,$$

$$\arg f(x) = bx^2 - k\pi, \quad f(x) = \pm e^{(a+ib)x^2}.$$

B. D. Crstici and N. N. Neamţu

In this way we avoid the second case of the functional equation for $\omega(x)$ ("-").

Therefore, the continuous nontrivial solution of (1) for the complex functions of real variable (equation (1'')) is $f(x) = \pm e^{Ax^2}$, A is an arbitrary complex constant, A = a + i b, $a, b \in \mathbb{R}$. This solution was expected in view of the above cited result for (1), but here we have obtained this result independently using elementary methods and functional equation techniques.

3. A new situation occurs in the case $f: \mathbb{R} \to \mathcal{A}$, where \mathcal{A} is a finitedimensional real algebra with other elements satisfying the equation

(6)
$$f(0)^2 = f(0)^4$$

besides the zero and the unity. In this case we have besides the trivial solution (corresponding to the solution f(0) = 0 of the equation (6)) and a "regular" solution (corresponding to the root f(0) = 1 of (6)), also other solutions corresponding to the other roots of (6), named "singular solutions" (the norm of these solutions are equal to the zero). For example, let \mathcal{A}_3 be an algebra of the real square matrices of the form

$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

(a subalgebra of the complete algebra of square matrices of third order $\mathcal{M}_3(\mathbb{R})$). This algebra is isomorphic with the algebra of "hypercomplex" numbers $a + \theta b + \theta^2 c$, $\theta^3 = 1$, used by Lagrange in the solution of the algebraic equation of third degree (see [6]).

Now, we consider the log-quadratic functional equation for $f: \mathbb{R} \to \mathcal{A}_3$, $f(x) = a(x) + \theta b(x) + \theta^2 c(x), (a, b, c: \mathbb{R} \to \mathbb{R} \text{ are continuous}),$

(1''')
$$f(x+y)f(x-y) = f(x)^2 f(y)^2 , \quad f: \mathbb{R} \to \mathcal{A}_3.$$

As in the previous cases we have

(7)
$$f(0)^2 = f(0)^4,$$

but now we have seven distinct solutions of this equation

$$j_1 = \mathbf{0}$$
, $j_{2,3} = \pm \mathbf{1}$, $j_{4,5} = \pm \frac{1}{3}(1 + \theta + \theta^2)$, $j_{6,7} = \pm \left(\frac{2}{3} - \frac{1}{3}\theta - \frac{1}{3}\theta^2\right)$.

Multiply (1''') with $1 + \theta + \theta^2$. It gives

$$(a(x+y) + b(x+y) + c(x+y)) \cdot (a(x-y) + b(x-y) + c(x-y)) = (a(x) + b(x) + c(x))^2 \cdot (a(y) + b(y) + c(y))^2,$$

i.e. (6):

$$a(x) + b(x) + c(x) = \begin{cases} 0, \\ \pm e^{\gamma x^2} \end{cases}$$

Denoting $\mathcal{A}_3^0 = \{a + \theta b - (a + b)\theta^2 \mid a, b \in \mathbb{R}\}$, we can establish an isomorphism between \mathcal{A}_3^0 and \mathbb{C} considered it as a real linear two-dimensional algebra by

$$a + \theta b - (a + b)\theta^2 \rightarrow \frac{3}{2}a + i\frac{\sqrt{3}}{2}(a + 2b).$$

In view of this isomorphism the equation (1''') in the case $f(0) = \pm \frac{1}{3}(2 - \frac{1}{3})$ $\theta - \theta^2$) reduces to

$$\left[\frac{3}{2}a(x+y) + i\frac{\sqrt{3}}{2}(a(x+y) + 2b(x+y))\right] \cdot \left[\frac{3}{2}a(x-y) + i\frac{\sqrt{3}}{2}(a(x-y) + 2b(x-y))\right] = \left[\frac{3}{2}a(x) + i\frac{\sqrt{3}}{2}(a(x) + 2b(x))\right]^2 \left[\frac{3}{2}a(y) + i\frac{\sqrt{3}}{2}(a(y) + 2b(y))\right]^2.$$

Therefore

$$\frac{3}{2}a(x) + i\frac{\sqrt{3}}{2}(a(x) + 2b(x)) = \pm e^{(\alpha + i\beta)x^2}$$

(8)
$$\begin{cases} a(x) = \pm \frac{2}{3} e^{\alpha x^2} \cos \beta x^2, \\ b(x) = \pm \frac{1}{3} e^{\alpha x^2} \cos \beta x^2 \pm \frac{1}{\sqrt{3}} e^{\alpha x^2} \sin \beta x^2, \\ c(x) = -(a(x) + b(x)). \end{cases}$$

This is a solution corresponding to $f(0) = \pm \frac{1}{3}(2 - \theta - \theta^2)$. We denote $\mathcal{A}_3^1 = \{a + \theta b + \theta^2(\pm e^{\gamma x_1^2} - a - b) \mid a, b \in \mathbb{R}\}$, where γ is an arbitrary real constant, and x_1 is fixed if a and b are given.

B.D. Crstici and N.N. Neamţu

The mapping

$$a + \theta b + \theta^2 (\pm e^{\gamma x_1^2} - a - b) \rightarrow \frac{3}{2}a \mp \frac{1}{2}e^{\gamma x_1^2} + i\frac{\sqrt{3}}{2}(a + 2b \mp e^{\gamma x_1^2})$$

represents an isomorphism between \mathcal{A}_3^1 and \mathbb{C} . Based on this isomorphism we obtain

$$\frac{3}{2}a(x) \mp \frac{1}{2}e^{\gamma x^2} + i\frac{\sqrt{3}}{2}(a(x) + 2b(x) \mp e^{\gamma x^2}) = \pm e^{(\alpha + i\beta)x^2}.$$

Therefore

(9)
$$\begin{cases} a(x) = \pm \frac{1}{3}e^{\gamma x^2} \pm \frac{2}{3}e^{\alpha x^2}\cos\beta x^2, \\ b(x) = \pm \frac{1}{3}e^{\gamma x^2} \mp \frac{1}{3}e^{\alpha x^2}\cos\beta x^2 \pm \frac{1}{\sqrt{3}}e^{\alpha x^2}\sin\beta x^2, \\ c(x) = \pm e^{\gamma x^2} - (a(x) + b(x)). \end{cases}$$

This is a solution of (1''') corresponding to $f(0) = \pm \mathbf{1}$. In the case $f(0) = \pm \frac{1}{3}(1 + \theta + \theta^2)$ from the relation $f(x)^2 = f(x)^2 f(0)^2$ (obtained with y = 0) it gives

$$\begin{cases} a(x)^2 + 2b(x)c(x) &= \frac{1}{3}(a(x) + b(x) + c(x))^2, \\ c(x)^2 + 2a(x)b(x) &= \frac{1}{3}(a(x) + b(x) + c(x))^2, \\ b(x)^2 + 2a(x)c(x) &= \frac{1}{3}(a(x) + b(x) + c(x))^2, \end{cases}$$

consequently a(x) = b(x) = c(x). Then we have $f(x) = a(x)(1 + \theta + \theta^2)$ and

$$3a(x+y)a(x-y) = 27a(x)^2a(y)^2$$
.

Hence

(10)
$$a(x) = b(x) = c(x) = \pm \frac{1}{3}e^{\gamma x^2}$$

Thus, this is the solution corresponding to $f(0) = \pm \frac{1}{3}(1 + \theta + \theta^2)$.

4. Following Hille–Phillips book [5] the continuous solutions of

$$f: \mathbb{R} \to \mathcal{A}$$
, $f(x+y) = f(x)f(y)$,

are given by

(11)
$$f(x) = j + \sum_{n=1}^{+\infty} \frac{x^n}{n!} A^n,$$

where \mathcal{A} is Banach algebra, j is an idempotent of \mathcal{A} and A is a constant from this algebra such that Aj = jA = A.

We will show that the solutions of (1'') can be represented in the form given by (11), putting x^2 instead of x.

For the solution (10) we have $A = \delta(1+\theta+\theta^2)$, where δ is a real constant, $(1+\theta+\theta^2)^n = 3^{n-1}(1+\theta+\theta^2)$. Substituting in (11) we get

$$f(x) = \frac{1}{3}(1+\theta+\theta^2) + \left[\sum_{n=1}^{\infty} \frac{(x^2)^n}{n!} 3^{n-1}(1+\theta+\theta^2)\delta^n\right]$$
$$= \frac{1}{3}(1+\theta+\theta^2)\left[1+\sum_{n=1}^{\infty} \frac{(3\delta)^n x^{2n}}{n!}\right] = \frac{1}{3}(1+\theta+\theta^2)e^{3\delta x^2}$$

With $3\delta = \gamma$ we obtain (10). (The function -f(x) also verifies the equation (1''').

In what concerns the solution (8) we have $A = \delta + \theta \varepsilon - \theta^2 (\delta + \varepsilon)$. Hence

$$f(x) = \frac{2}{3} - \frac{1}{3}\theta - \frac{1}{3}\theta^2 + (\delta + \varepsilon\theta - \theta^2(\delta + \varepsilon))x^2 + \frac{1}{2}(\delta + \varepsilon\theta - (\delta + \varepsilon)\theta^2)^2x^4 + \frac{1}{6}(\delta + \varepsilon\theta - (\delta + \varepsilon)\theta^2)^3x^6 + \cdots,$$

i.e.

$$f(x) = \left[\frac{2}{3} + \delta x^2 + \frac{1}{2}(\delta^2 - 2\delta\varepsilon - 2\varepsilon^2)x^4 + \frac{1}{6}(\delta^3 + \varepsilon^3 - 6\delta\varepsilon(\delta + \varepsilon) - (\delta + \varepsilon)^3)x^6 + \cdots\right] \\ + \theta \left[-\frac{1}{3} + \varepsilon x^2 + \frac{1}{2}(\delta^2 + 4\delta\varepsilon + \varepsilon^2)x^4 + \cdots\right] \\ - \theta^2 \left[\frac{1}{3} + (\delta + \varepsilon)x^2 + \frac{1}{2}(2\delta^2 + 2\delta\varepsilon - \varepsilon^2)x^4 + \cdots\right].$$

B.D. Crstici and N.N. Neamţu

Putting $\delta = \frac{2}{3}\alpha$, $\varepsilon + \frac{1}{2}\delta = \frac{\beta}{\sqrt{3}}$, $\varepsilon = -\frac{1}{3}\alpha + \frac{\beta}{\sqrt{3}}$, we have

$$\begin{split} f(x) &= \frac{2}{3} + \frac{2}{3}\alpha x^2 + \frac{1}{3}(\alpha^2 - \beta^2)x^4 - \frac{3}{2}(-\frac{2}{27}\alpha^3 + \frac{2}{9}\beta^2\alpha)x^6 + \cdots \\ &+ \theta \big[-\frac{1}{3} + \varepsilon x^2 + \frac{1}{2}(\delta^2 + 4\delta\varepsilon + \varepsilon^2)x^4 + \frac{1}{2}(\delta^3 - \varepsilon^3 + 3\delta^2\varepsilon)x^6 + \cdots \big] \\ &- \theta^2 \big[\frac{1}{3} + (\delta + \varepsilon)x^2 + \frac{1}{2}(2\delta^2 + 2\delta\varepsilon - \varepsilon^2)x^4 \\ &+ \frac{1}{2}(\delta^3 - \varepsilon^3 - 3\delta^2\varepsilon)x^6 + \cdots \big] \,, \end{split}$$

i.e.

$$f(x) = \frac{2}{3} + \frac{2}{3}\alpha x^2 + \frac{1}{3}(\alpha^2 - \beta^2)x^4 + (\frac{1}{9}\alpha^3 - \frac{1}{3}\alpha\beta^2)x^6 + \dots + \theta(\dots) + \theta^2(\dots)$$

and

$$a(x) = \frac{2}{3} + \frac{2}{3}\alpha x^{2} + \frac{1}{3}(\alpha^{2} - \beta^{2})x^{4} + (\frac{1}{9}\alpha^{3} - \frac{1}{3}\alpha\beta^{2})x^{6} + \cdots$$

= $\frac{2}{3}(1 + \alpha x^{2} + \frac{1}{2}(\alpha^{2} - \beta^{2})x^{4} + (\frac{1}{6}\alpha^{3} - \frac{1}{2}\alpha\beta^{2})x^{6} + \cdots),$

i.e.

$$a(x) = \frac{2}{3}e^{\alpha x^2}\cos\beta x^2$$

After some calculations we obtain (8) (taking into account that -f is also solution of (1''')).

In the case of "regular solution" (9) corresponds to $f(0) = \mathbf{1}$ (unit element of algebra), the condition Aj = jA = A from (11) left the constant Aarbitrary

$$A = \delta + \theta \varepsilon + \omega \theta^2 \,.$$

We have

$$A^{2} = \delta^{2} + 2\varepsilon\omega + \theta(\omega^{2} + 2\delta\varepsilon) + \theta^{2}(\varepsilon^{2} + 2\delta\omega),$$

$$A^{3} = \delta^{3} + \varepsilon^{3} + \omega^{3} + 6\delta\varepsilon\omega + 3\theta(\varepsilon^{2}\omega + \delta^{2}\varepsilon + \omega^{2}\delta) + 3\theta^{2}(\varepsilon^{2}\delta + \delta^{2}\omega + \omega^{2}\varepsilon),$$

and

$$\begin{split} f(x) &= 1 + \delta x^2 + \frac{1}{2} (\delta^2 + 2\varepsilon\omega) x^4 + \frac{1}{6} (\delta^3 + \varepsilon^3 + \omega^3 + 6\delta\varepsilon\omega) x^6 \\ &+ 3\theta (\varepsilon^2\omega + \delta^2\varepsilon + \omega^2\delta) + 3\theta^2 (\varepsilon^2\delta + \delta^2\omega + \omega^2\varepsilon) \,. \end{split}$$

Putting

$$\begin{cases} \delta &= \frac{2}{3}\alpha + \frac{1}{3}\gamma \,, \\ \varepsilon &= \frac{1}{3}\gamma - \frac{1}{3}\alpha + \frac{1}{\sqrt{3}}\beta \,, \\ \omega &= -\frac{1}{3}\alpha - \frac{1}{\sqrt{3}}\beta + \frac{1}{3}\gamma \end{cases}$$

we obtain

$$a(x) = 1 + \left(\frac{2}{3}\alpha + \frac{1}{3}\gamma\right)x^2 + \left(\frac{1}{3}\alpha^2 - \frac{1}{3}\beta^2 + \frac{1}{6}\gamma^2\right)x^4 + \cdots$$
$$= \frac{1}{3}e^{\gamma x^2} + \frac{2}{3}e^{\alpha x^2}\cos\beta x^2.$$

Finally, with some calculations we obtain that the solutions of (1''') can be represented in the Hille–Phillips form with x^2 instead of x. (Further we take into account that -f is also solution of (1''')).

Remark 2. One can directly verify that the Hille–Phillips series

$$f(x) = j + \sum_{n=1}^{+\infty} \frac{A^n}{n!} x^{2n}$$

satisfies the log-quadratic functional equation

$$f(x+y)f(x-y) = f(x)^{2}f(y)^{2}$$

for functions $f: \mathbb{R} \to \mathcal{A}$, where \mathcal{A} is a Banach algebra.

In this paper we have obtained via functional equation elementary techniques the continuous solution of a system of functional equations which cannot easily be obtained in finite terms from the above general result.

Remark 3. In the case of \mathcal{A}_3 the solutions of the log-quadratic functional equation (1''') can be expressed in finite terms with aid of so called functions of P. Appell (see [2], [3]).

REFERENCES

- 1. J. ACŹEL: Lectures on Functional Equations and Their Applications. Academic Press, New-York and London, 1966.
- P. APPELL: Propositions d'algebre et de géométrie déduites de la cosidération des racines cubiques de l'unité. C. R. Acad. Sci. Paris 84 (1877), 540.
- P. APPELL: Sur certaines functions analogues aux functions circularies. C.R. Acad. Sci. Paris 84 (1877), 1378.

B.D. Crstici and N.N. Neamţu

- H. HARUKI and TH. M. RASSIAS: A new functional equational of Pexider type related to the complex exponential function. Trans. Amer. Math. Soc. 347 (1995), 3111–3119.
- 5. E. HILLE and R. S. PHILLIPS: *Functional Analysis and Semi-groups*. AMS Coll. Publ. Vol. 31, Providence R. I., 1957.
- 6. J. LAGRANGE: Traité de la résolution des équations numériques de tous degrés. Paris, 1798.

"Politehnica" University of Timişoara Department of Mathematics Piaţa Horaţiu, Nr. 1, 1900 Timişoara Romania