ON THE LOG-QUADRATIC FUNCTIONAL EQUATION

Borislav D. Crstici and Nicolae N. Neamţu

Dedicated to Prof. Radosav Ž. Đorđević for his 65th birthday

Abstract

Our attention was drawn on log-quadratic functional equation mentioned by Hiroshi Haruki and Themistocles M. Rassias in [4]: $$
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(x+y) f(x-y)=f(x)^{2} f(y)^{2}, \quad x, y \in \mathbb{C}
$$

They stated the following result: The only entire solutions of this equation are given by $f(z) \equiv 0, f(z)=e^{a z^{2}}$ and $f(z)=-e^{a z^{2}}$, where a is an arbitrary complex constant. In our paper, using some elementary methods we consider the \log-quadratic functional equation for functions $f: \mathbb{R} \rightarrow \mathbb{C}$, supposing only that f is continuous. The expected solutions are evidently $f(x) \equiv 0, f(x)=e^{(\alpha+i \beta) x^{2}}$ and $f(x)=-e^{(\alpha+i \beta) x^{2}}$, but we will determine these solutions independently of the above mentioned result.

1. We start with the solution of

$$
\begin{equation*}
f: \mathbb{C} \rightarrow \mathbb{C}, \quad f(x+y) f(x-y)=f(x)^{2} f(y)^{2}, \quad x, y \in \mathbb{C}, \tag{1}
\end{equation*}
$$

for real functions of a real variable, $f: \mathbb{R} \rightarrow \mathbb{R}$, under the assumption that f is continuous:

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x+y) f(x-y)=f(x)^{2} f(y)^{2}, x, y \in \mathbb{R}
$$

With $x=y=0$ we obtain $f(0)=0, f(0)=1, f(0)=-1$. The case $f(0)=0$ leads to $f(x) \equiv 0$ (putting $y=0$ in $\left(1^{\prime}\right)$). In the case $f(0)=1$ we
shall first show that $f(x)>0, x \in \mathbb{R}$. Suppose that there exists x_{0} such that $f\left(x_{0}\right)=0$, with $x=y=x_{0} / 2$, we obtain $f\left(x_{0} / 2\right)=0$, and repeating the procedure we reach to $f\left(x_{0} / 2^{n}\right)=0$. By continuity we have a contradiction. Hence $f(0)=1$, it follows $f(x)>0$ for each $x \in \mathbb{R}$. Now we can apply the \log and then we obtain the quadratic functional equation

$$
\varphi(x+y)+\varphi(x-y)=2 \varphi(x)+2 \varphi(y)
$$

for $\varphi(x):=\log f(x)$, whose continuous (nontrivial) solution $\varphi(x)=a x^{2}(a$ is an arbitrary real constant) is known. But we will determine the continuous solution of $\left(1^{\prime}\right)$ in the case $f(0)=1$ directly from this equation without using the log-process. With $x=y=t$ we have $f(2 t)=f(t)^{4}$. With $x=2 t, y=t$ we have $f(3 t) f(t)=f(2 t)^{2} f(t)^{2}, f(3 t)=f(2 t)^{2} f(t)$, because $f(t)>0$. Therefore, $f(3 t)=f(t)^{9}$ and so on, we obtain $f(n x)=f(x)^{n^{2}}$. With $x=1 / n$, we have $f(1 / n)=f(1)^{1 / n^{2}}$, because $f(1)>0$. Finally, $f(m / n)=f(1)^{(m / n)^{2}}$ and we obtained the values of unknown function on a dense set (see [1]). By continuity, $f(x)=b^{x^{2}}, b=f(1)>0, f(x)=e^{a x^{2}}$, where a is an arbitrary real constant. The case $f(0)=-1$ can be reduced to the previous case with $g(x)=-f(x)$ also satisfying (1^{\prime}).
2. Now we consider the functional equation for a continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$,

$$
f(x+y) f(x-y)=f(x)^{2} f(y)^{2}, \quad x, y \in \mathbb{R}
$$

With $f(x)=u(x)+i v(x)$ we obtain the system of equations

$$
\left\{\begin{array}{l}
u(x+y) u(x-y)-v(x+y) v(x-y) \tag{2}\\
\quad=\left(u(x)^{2}-v(x)^{2}\right)\left(u(y)^{2}-v(y)^{2}\right)-4 u(x) v(x) u(y) v(y) \\
u(x+y) v(x-y)+u(x-y) v(x+y) \\
\quad=2 u(x) v(x)\left(u(y)^{2}-v(y)^{2}\right)+2 u(y) v(y)\left(u(x)^{2}-v(x)^{2}\right)
\end{array}\right.
$$

where $u, v: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions. With $x=y=0$ we obtain

$$
\left\{\begin{align*}
u(0)^{2}-v(0)^{2} & =\left(u(0)^{2}-v(0)^{2}\right)^{2}-4 u(0)^{2} v(0)^{2} \tag{3}\\
2 u(0) v(0) & =4 u(0) v(0)\left(u(0)^{2}-v(0)^{2}\right)
\end{align*}\right.
$$

The real solutions of (3) are

$$
u(0)=0, v(0)=0 ; \quad u(0)=1, v(0)=0 ; \quad u(0)=-1, v(0)=0 .
$$

The first solution of (3) leads to the trivial solution of (2), i.e. $u(x) \equiv 0$, $v(x) \equiv 0$, and therefore $f(x) \equiv 0$ for $\left(1^{\prime \prime}\right)$. By squaring and addition in (2) we find

$$
\begin{aligned}
{\left[u(x+y)^{2}\right.} & \left.+v(x+y)^{2}\right]\left[u(x-y)^{2}+v(x-y)^{2}\right] \\
& =\left[u(x)^{2}+v(x)^{2}\right]^{2}\left[u(y)^{2}+v(y)^{2}\right]^{2}
\end{aligned}
$$

Therefore, with $g(x)=u(x)^{2}+v(x)^{2}$ we obtain the functional equation $\left(1^{\prime}\right), g(0)=1$, in the both cases $u(0)=1, u(0)=-1$.

Consequently, $u(x)^{2}+v(x)^{2}=e^{2 \alpha x^{2}}$,

$$
\left(\frac{u(x)}{e^{\alpha x^{2}}}\right)^{2}+\left(\frac{v(x)}{e^{\alpha x^{2}}}\right)^{2}=1
$$

We put now $u(x)=e^{\alpha x^{2}} \cos \omega(x), v(x)=e^{\alpha x^{2}} \sin \omega(x)$ and substitute them in the first equation of (2). In this way we get

$$
\omega(x+y)+\omega(x-y)=2 k \pi \pm(2 \omega(x)+2 \omega(y)) .
$$

In different cases we have:
$"+": \omega(x)=\beta x^{2}-k \pi, \quad k \in \mathbb{Z}$,
$"-": \omega(x)=k \pi / 3, \quad k \in \mathbb{Z}$.
$"+":$ It leads to $u(x)=e^{\alpha x^{2}} \cos \left(\beta x^{2}-k \pi\right), v(x)=e^{\alpha x^{2}} \sin \left(\beta x^{2}-k \pi\right)$,

$$
\begin{equation*}
f(x)= \pm e^{(\alpha+i \beta) x^{2}} \tag{4}
\end{equation*}
$$

" - ": It leads to $k=3 q, q \in \mathbb{Z}$, and therefore $f(x)= \pm e^{\alpha x^{2}}$. That is a particular case of (4) with $\beta=0$.

Remark 1. From ($1^{\prime \prime}$) we get

$$
\begin{equation*}
|f(x+y)||f(x-y)|=|f(x)|^{2}|f(y)|^{2}, \tag{5}
\end{equation*}
$$

which represents the equation $\left(1^{\prime}\right)$ for nonnegative functions. The solutions of (5) are $|f(x)| \equiv 0,|f(x)|=e^{a x^{2}}$, where a is an arbitrary real constant.

With $f(x)=|f(x)| e^{i \arg f(x)}$ we obtain

$$
\begin{aligned}
\arg f(x+y)+\arg f(x-y) & =2 \arg f(x)+2 \arg f(y)+2 k \pi \\
\arg f(x) & =b x^{2}-k \pi, \quad f(x)= \pm e^{(a+i b) x^{2}}
\end{aligned}
$$

In this way we avoid the second case of the functional equation for $\omega(x)$ (" - ").

Therefore, the continuous nontrivial solution of (1) for the complex functions of real variable (equation $\left(1^{\prime \prime}\right)$) is $f(x)= \pm e^{A x^{2}}, A$ is an arbitrary complex constant, $A=a+i b, a, b \in \mathbb{R}$. This solution was expected in view of the above cited result for (1), but here we have obtained this result independently using elementary methods and functional equation techniques.
3. A new situation occurs in the case $f: \mathbb{R} \rightarrow \mathcal{A}$, where \mathcal{A} is a finitedimensional real algebra with other elements satisfying the equation

$$
\begin{equation*}
f(0)^{2}=f(0)^{4} \tag{6}
\end{equation*}
$$

besides the zero and the unity. In this case we have besides the trivial solution (corresponding to the solution $f(0)=\mathbf{0}$ of the equation (6)) and a "regular" solution (corresponding to the root $f(0)=\mathbf{1}$ of (6)), also other solutions corresponding to the other roots of (6), named "singular solutions" (the norm of these solutions are equal to the zero). For example, let \mathcal{A}_{3} be an algebra of the real square matrices of the form

$$
\left[\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right]
$$

(a subalgebra of the complete algebra of square matrices of third order $\mathcal{M}_{3}(\mathbb{R})$). This algebra is isomorphic with the algebra of "hypercomplex" numbers $a+\theta b+\theta^{2} c, \theta^{3}=1$, used by Lagrange in the solution of the algebraic equation of third degree (see [6]).

Now, we consider the \log-quadratic functional equation for $f: \mathbb{R} \rightarrow \mathcal{A}_{3}$, $f(x)=a(x)+\theta b(x)+\theta^{2} c(x),(a, b, c: \mathbb{R} \rightarrow \mathbb{R}$ are continuous $)$,

$$
f(x+y) f(x-y)=f(x)^{2} f(y)^{2}, \quad f: \mathbb{R} \rightarrow \mathcal{A}_{3} .
$$

As in the previous cases we have

$$
\begin{equation*}
f(0)^{2}=f(0)^{4}, \tag{7}
\end{equation*}
$$

but now we have seven distinct solutions of this equation

$$
j_{1}=\mathbf{0}, j_{2,3}= \pm \mathbf{1}, j_{4,5}= \pm \frac{1}{3}\left(1+\theta+\theta^{2}\right), j_{6,7}= \pm\left(\frac{2}{3}-\frac{1}{3} \theta-\frac{1}{3} \theta^{2}\right) .
$$

Multiply ($1^{\prime \prime \prime}$) with $1+\theta+\theta^{2}$. It gives

$$
\begin{aligned}
& (a(x+y)+b(x+y)+c(x+y)) \cdot(a(x-y)+b(x-y)+c(x-y)) \\
& =(a(x)+b(x)+c(x))^{2} \cdot(a(y)+b(y)+c(y))^{2}
\end{aligned}
$$

i.e. (6):

$$
a(x)+b(x)+c(x)=\left\{\begin{array}{l}
0 \\
\pm e^{\gamma x^{2}}
\end{array}\right.
$$

Denoting $\mathcal{A}_{3}^{0}=\left\{a+\theta b-(a+b) \theta^{2} \mid a, b \in \mathbb{R}\right\}$, we can establish an isomorphism between \mathcal{A}_{3}^{0} and \mathbb{C} considered it as a real linear two-dimensional algebra by

$$
a+\theta b-(a+b) \theta^{2} \rightarrow \frac{3}{2} a+i \frac{\sqrt{3}}{2}(a+2 b)
$$

In view of this isomorphism the equation $\left(1^{\prime \prime \prime}\right)$ in the case $f(0)= \pm \frac{1}{3}(2-$ $\theta-\theta^{2}$) reduces to

$$
\begin{aligned}
& {\left[\frac{3}{2} a(x+y)+i \frac{\sqrt{3}}{2}(a(x+y)+2 b(x+y))\right] } \\
\cdot & {\left[\frac{3}{2} a(x-y)+i \frac{\sqrt{3}}{2}(a(x-y)+2 b(x-y))\right] } \\
= & {\left[\frac{3}{2} a(x)+i \frac{\sqrt{3}}{2}(a(x)+2 b(x))\right]^{2}\left[\frac{3}{2} a(y)+i \frac{\sqrt{3}}{2}(a(y)+2 b(y))\right]^{2} . }
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \frac{3}{2} a(x)+i \frac{\sqrt{3}}{2}(a(x)+2 b(x))= \pm e^{(\alpha+i \beta) x^{2}} \\
& \left\{\begin{array}{l}
a(x)= \pm \frac{2}{3} e^{\alpha x^{2}} \cos \beta x^{2} \\
b(x)=\mp \frac{1}{3} e^{\alpha x^{2}} \cos \beta x^{2} \pm \frac{1}{\sqrt{3}} e^{\alpha x^{2}} \sin \beta x^{2} \\
c(x)=-(a(x)+b(x))
\end{array}\right. \tag{8}
\end{align*}
$$

This is a solution corresponding to $f(0)= \pm \frac{1}{3}\left(2-\theta-\theta^{2}\right)$.
We denote $\mathcal{A}_{3}^{1}=\left\{a+\theta b+\theta^{2}\left(\pm e^{\gamma x_{1}^{2}}-a-b\right) \mid a, b \in \mathbb{R}\right\}$, where γ is an arbitrary real constant, and x_{1} is fixed if a and b are given.

The mapping

$$
a+\theta b+\theta^{2}\left(\pm e^{\gamma x_{1}^{2}}-a-b\right) \rightarrow \frac{3}{2} a \mp \frac{1}{2} e^{\gamma x_{1}^{2}}+i \frac{\sqrt{3}}{2}\left(a+2 b \mp e^{\gamma x_{1}^{2}}\right)
$$

represents an isomorphism between \mathcal{A}_{3}^{1} and \mathbb{C}. Based on this isomorphism we obtain

$$
\frac{3}{2} a(x) \mp \frac{1}{2} e^{\gamma x^{2}}+i \frac{\sqrt{3}}{2}\left(a(x)+2 b(x) \mp e^{\gamma x^{2}}\right)= \pm e^{(\alpha+i \beta) x^{2}}
$$

Therefore

$$
\left\{\begin{align*}
a(x) & = \pm \frac{1}{3} e^{\gamma x^{2}} \pm \frac{2}{3} e^{\alpha x^{2}} \cos \beta x^{2} \tag{9}\\
b(x) & = \pm \frac{1}{3} e^{\gamma x^{2}} \mp \frac{1}{3} e^{\alpha x^{2}} \cos \beta x^{2} \pm \frac{1}{\sqrt{3}} e^{\alpha x^{2}} \sin \beta x^{2} \\
c(x) & = \pm e^{\gamma x^{2}}-(a(x)+b(x))
\end{align*}\right.
$$

This is a solution of $\left(1^{\prime \prime \prime}\right)$ corresponding to $f(0)= \pm \mathbf{1}$. In the case $f(0)=$ $\pm \frac{1}{3}\left(1+\theta+\theta^{2}\right)$ from the relation $f(x)^{2}=f(x)^{2} f(0)^{2}$ (obtained with $\left.y=0\right)$ it gives

$$
\left\{\begin{aligned}
a(x)^{2}+2 b(x) c(x) & =\frac{1}{3}(a(x)+b(x)+c(x))^{2} \\
c(x)^{2}+2 a(x) b(x) & =\frac{1}{3}(a(x)+b(x)+c(x))^{2} \\
b(x)^{2}+2 a(x) c(x) & =\frac{1}{3}(a(x)+b(x)+c(x))^{2}
\end{aligned}\right.
$$

consequently $a(x)=b(x)=c(x)$. Then we have $f(x)=a(x)\left(1+\theta+\theta^{2}\right)$ and

$$
3 a(x+y) a(x-y)=27 a(x)^{2} a(y)^{2}
$$

Hence

$$
\begin{equation*}
a(x)=b(x)=c(x)= \pm \frac{1}{3} e^{\gamma x^{2}} \tag{10}
\end{equation*}
$$

Thus, this is the solution corresponding to $f(0)= \pm \frac{1}{3}\left(1+\theta+\theta^{2}\right)$.
4. Following Hille-Phillips book [5] the continuous solutions of

$$
f: \mathbb{R} \rightarrow \mathcal{A}, \quad f(x+y)=f(x) f(y)
$$

are given by

$$
\begin{equation*}
f(x)=j+\sum_{n=1}^{+\infty} \frac{x^{n}}{n!} A^{n} \tag{11}
\end{equation*}
$$

where \mathcal{A} is Banach algebra, j is an idempotent of \mathcal{A} and A is a constant from this algebra such that $A j=j A=A$.

We will show that the solutions of $\left(1^{\prime \prime \prime}\right)$ can be represented in the form given by (11), putting x^{2} instead of x.

For the solution (10) we have $A=\delta\left(1+\theta+\theta^{2}\right)$, where δ is a real constant, $\left(1+\theta+\theta^{2}\right)^{n}=3^{n-1}\left(1+\theta+\theta^{2}\right)$. Substituting in (11) we get

$$
\begin{aligned}
f(x) & =\frac{1}{3}\left(1+\theta+\theta^{2}\right)+\left[\sum_{n=1}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!} 3^{n-1}\left(1+\theta+\theta^{2}\right) \delta^{n}\right] \\
& =\frac{1}{3}\left(1+\theta+\theta^{2}\right)\left[1+\sum_{n=1}^{\infty} \frac{(3 \delta)^{n} x^{2 n}}{n!}\right]=\frac{1}{3}\left(1+\theta+\theta^{2}\right) e^{3 \delta x^{2}} .
\end{aligned}
$$

With $3 \delta=\gamma$ we obtain (10). (The function $-f(x)$ also verifies the equation ($1^{\prime \prime \prime}$).

In what concerns the solution (8) we have $A=\delta+\theta \varepsilon-\theta^{2}(\delta+\varepsilon)$. Hence

$$
\begin{aligned}
f(x) & =\frac{2}{3}-\frac{1}{3} \theta-\frac{1}{3} \theta^{2}+\left(\delta+\varepsilon \theta-\theta^{2}(\delta+\varepsilon)\right) x^{2} \\
& +\frac{1}{2}\left(\delta+\varepsilon \theta-(\delta+\varepsilon) \theta^{2}\right)^{2} x^{4}+\frac{1}{6}\left(\delta+\varepsilon \theta-(\delta+\varepsilon) \theta^{2}\right)^{3} x^{6}+\cdots
\end{aligned}
$$

i.e.

$$
\begin{aligned}
f(x) & =\left[\frac{2}{3}+\delta x^{2}+\frac{1}{2}\left(\delta^{2}-2 \delta \varepsilon-2 \varepsilon^{2}\right) x^{4}\right. \\
& \left.+\frac{1}{6}\left(\delta^{3}+\varepsilon^{3}-6 \delta \varepsilon(\delta+\varepsilon)-(\delta+\varepsilon)^{3}\right) x^{6}+\cdots\right] \\
& +\theta\left[-\frac{1}{3}+\varepsilon x^{2}+\frac{1}{2}\left(\delta^{2}+4 \delta \varepsilon+\varepsilon^{2}\right) x^{4}+\cdots\right] \\
& -\theta^{2}\left[\frac{1}{3}+(\delta+\varepsilon) x^{2}+\frac{1}{2}\left(2 \delta^{2}+2 \delta \varepsilon-\varepsilon^{2}\right) x^{4}+\cdots\right]
\end{aligned}
$$

Putting $\delta=\frac{2}{3} \alpha, \varepsilon+\frac{1}{2} \delta=\frac{\beta}{\sqrt{3}}, \varepsilon=-\frac{1}{3} \alpha+\frac{\beta}{\sqrt{3}}$, we have

$$
\begin{aligned}
f(x) & =\frac{2}{3}+\frac{2}{3} \alpha x^{2}+\frac{1}{3}\left(\alpha^{2}-\beta^{2}\right) x^{4}-\frac{3}{2}\left(-\frac{2}{27} \alpha^{3}+\frac{2}{9} \beta^{2} \alpha\right) x^{6}+\cdots \\
& +\theta\left[-\frac{1}{3}+\varepsilon x^{2}+\frac{1}{2}\left(\delta^{2}+4 \delta \varepsilon+\varepsilon^{2}\right) x^{4}+\frac{1}{2}\left(\delta^{3}-\varepsilon^{3}+3 \delta^{2} \varepsilon\right) x^{6}+\cdots\right] \\
& -\theta^{2}\left[\frac{1}{3}+(\delta+\varepsilon) x^{2}+\frac{1}{2}\left(2 \delta^{2}+2 \delta \varepsilon-\varepsilon^{2}\right) x^{4}\right. \\
& \left.+\frac{1}{2}\left(\delta^{3}-\varepsilon^{3}-3 \delta^{2} \varepsilon\right) x^{6}+\cdots\right]
\end{aligned}
$$

i.e.
$f(x)=\frac{2}{3}+\frac{2}{3} \alpha x^{2}+\frac{1}{3}\left(\alpha^{2}-\beta^{2}\right) x^{4}+\left(\frac{1}{9} \alpha^{3}-\frac{1}{3} \alpha \beta^{2}\right) x^{6}+\cdots+\theta(\ldots)+\theta^{2}(\ldots)$
and

$$
\begin{aligned}
a(x) & =\frac{2}{3}+\frac{2}{3} \alpha x^{2}+\frac{1}{3}\left(\alpha^{2}-\beta^{2}\right) x^{4}+\left(\frac{1}{9} \alpha^{3}-\frac{1}{3} \alpha \beta^{2}\right) x^{6}+\cdots \\
& =\frac{2}{3}\left(1+\alpha x^{2}+\frac{1}{2}\left(\alpha^{2}-\beta^{2}\right) x^{4}+\left(\frac{1}{6} \alpha^{3}-\frac{1}{2} \alpha \beta^{2}\right) x^{6}+\cdots\right)
\end{aligned}
$$

i.e.

$$
a(x)=\frac{2}{3} e^{\alpha x^{2}} \cos \beta x^{2}
$$

After some calculations we obtain (8) (taking into account that $-f$ is also solution of $\left.\left(1^{\prime \prime \prime}\right)\right)$.

In the case of "regular solution" (9) corresponds to $f(0)=\mathbf{1}$ (unit element of algebra), the condition $A j=j A=A$ from (11) left the constant A arbitrary

$$
A=\delta+\theta \varepsilon+\omega \theta^{2}
$$

We have

$$
\begin{aligned}
& A^{2}=\delta^{2}+2 \varepsilon \omega+\theta\left(\omega^{2}+2 \delta \varepsilon\right)+\theta^{2}\left(\varepsilon^{2}+2 \delta \omega\right) \\
& A^{3}=\delta^{3}+\varepsilon^{3}+\omega^{3}+6 \delta \varepsilon \omega+3 \theta\left(\varepsilon^{2} \omega+\delta^{2} \varepsilon+\omega^{2} \delta\right)+3 \theta^{2}\left(\varepsilon^{2} \delta+\delta^{2} \omega+\omega^{2} \varepsilon\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f(x) & =1+\delta x^{2}+\frac{1}{2}\left(\delta^{2}+2 \varepsilon \omega\right) x^{4}+\frac{1}{6}\left(\delta^{3}+\varepsilon^{3}+\omega^{3}+6 \delta \varepsilon \omega\right) x^{6} \\
& +3 \theta\left(\varepsilon^{2} \omega+\delta^{2} \varepsilon+\omega^{2} \delta\right)+3 \theta^{2}\left(\varepsilon^{2} \delta+\delta^{2} \omega+\omega^{2} \varepsilon\right)
\end{aligned}
$$

Putting

$$
\left\{\begin{array}{l}
\delta=\frac{2}{3} \alpha+\frac{1}{3} \gamma \\
\varepsilon=\frac{1}{3} \gamma-\frac{1}{3} \alpha+\frac{1}{\sqrt{3}} \beta \\
\omega=-\frac{1}{3} \alpha-\frac{1}{\sqrt{3}} \beta+\frac{1}{3} \gamma
\end{array}\right.
$$

we obtain

$$
\begin{aligned}
a(x) & =1+\left(\frac{2}{3} \alpha+\frac{1}{3} \gamma\right) x^{2}+\left(\frac{1}{3} \alpha^{2}-\frac{1}{3} \beta^{2}+\frac{1}{6} \gamma^{2}\right) x^{4}+\cdots \\
& =\frac{1}{3} e^{\gamma x^{2}}+\frac{2}{3} e^{\alpha x^{2}} \cos \beta x^{2}
\end{aligned}
$$

Finally, with some calculations we obtain that the solutions of ($1^{\prime \prime \prime}$) can be represented in the Hille-Phillips form with x^{2} instead of x. (Further we take into account that $-f$ is also solution of $\left.\left(1^{\prime \prime \prime}\right)\right)$.

Remark 2. One can directly verify that the Hille-Phillips series

$$
f(x)=j+\sum_{n=1}^{+\infty} \frac{A^{n}}{n!} x^{2 n}
$$

satisfies the log-quadratic functional equation

$$
f(x+y) f(x-y)=f(x)^{2} f(y)^{2}
$$

for functions $f: \mathbb{R} \rightarrow \mathcal{A}$, where \mathcal{A} is a Banach algebra.
In this paper we have obtained via functional equation elementary techniques the continuous solution of a system of functional equations which cannot easily be obtained in finite terms from the above general result.

Remark 3. In the case of \mathcal{A}_{3} the solutions of the log-quadratic functional equation $\left(1^{\prime \prime \prime}\right)$ can be expressed in finite terms with aid of so called functions of P . Appell (see [2], [3]).

REFERENCES

1. J. Acźel: Lectures on Functional Equations and Their Applications. Academic Press, New-York and London, 1966.
2. P. Appell: Propositions d'algebre et de géométrie déduites de la cosidération des racines cubiques de l'unité. C. R. Acad. Sci. Paris 84 (1877), 540.
3. P. Appell: Sur certaines functions analogues aux functions circularies. C.R. Acad. Sci. Paris 84 (1877), 1378.
4. H. Haruki and Th. M. Rassias: A new functional equational of Pexider type related to the complex exponential function. Trans. Amer. Math. Soc. 347 (1995), 3111-3119.
5. E. Hille and R. S. Phillips: Functional Analysis and Semi-groups. AMS Coll. Publ. Vol. 31, Providence R. I., 1957.
6. J. Lagrange: Traité de la résolution des équations numériques de tous degrés. Paris, 1798.
"Politehnica" University of Timişoara
Department of Mathematics
Piaţa Horaţiu, Nr. 1, 1900 Timişoara
Romania
