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MULTIPLIERS FROM H1(U) INTO BMOA(B)
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Dedicated to Prof. Radosav Ž. D̄ord̄ević for his 65th birthday

Abstract. In this paper we characterize multipliers from the Hardy space H1

on the unit disc U into the space BMOA of analytic functions of bounded mean
oscillation on the unit ball B in C

n, n > 1.

1. Introduction

Let B = Bn be the open unit ball in C
n, n ≥ 1 (U = B1 is the open unit

disc in C) and ν Lebesgue measure normalized so that ν(B) = 1, while σ is
the normalized surface measure on the boundary S of B.

For a measurable function f on B and 0 < r < 1:

fr(z) = f(rz) , z ∈ B ,

M∞(r, f) = sup
{
|fr(ξ)| : ξ ∈ S

}
;

Mp(r, f) =
(∫

S

|fr(ξ)|pdσ(ξ)
)1/p

, 0 < p < +∞ .

A function f holomorphic on B, f ∈ H(B), is said to belong to the Hardy
space Hp = Hp(B) if

‖f‖Hp = sup
r

Mp(r, f) < +∞.

We write BMOA for the space consisting of functions in H2 of bounded
mean oscillation.
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For a holomorphic function f on B with homogeneous expansion f =
+∞∑
k=0

fk the radial fractional derivative of order β > 0 is defined by

Dβf(z) =
+∞∑
k=0

(k + 1)βfk(z).

(Thus, for β = 1, D1f = f + Rf , where R denotes the radial derivative

operator defined by Rf(z) =
n∑

j=1

zj
∂f
∂zj

(z).)

A function f ∈ H(B) belongs to the Bloch space B = B(B) if

‖f‖B = |f(0)| + sup
r

(1 − r)M∞(r,D1f) < +∞.

If g(z) =
+∞∑
k=0

gk(z) is a function holomorphic on the unit ball B and

f(z) =
+∞∑
k=0

f̂kz
k is a function holomorphic on the unit disc U , we define

their convolution as

(g ∗ f)(z) =
+∞∑
k=0

f̂kgk(z).

If X is a space of analytic functions in the unit disc U , Y a space of
analytic functions in B, then by (X,Y ) we define the space of functions
g ∈ H(B), such that g ∗ f ∈ Y for every f ∈ X.

Theorem 1.1. Equation (H1(U), BMOA(B)) = B(B) holds.

Our work was motivated by the paper [5] where it is shown that
(H1(U), BMOA(U)) = B(U).

2. Preliminaries

We begin with a Hardy–Littlewood type theorem.

Theorem 2.1. Following assertions hold:

a) If f ∈ Hp, 0 < p ≤ 2, then
∫ 1

0

(1 − r)Mp(r,D1f)2dr < +∞;
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b) If f ∈ H(B) and
∫ 1

0

(1 − r)Mp(r,D1)2dr < +∞, where 2 ≤ p < +∞,

then f ∈ Hp.

Proof. For a function f ∈ H(B) let

g(f)(η) =
{∫ 1

0

|D1f(rη)|2(1 − r)dr
}1/2

, η ∈ S ,

be the Littlewood–Paley function of f . It is well–known that a function
f ∈ H(B) belongs to the Hardy space Hp, 0 < p < +∞, if and only if
g(f) ∈ Lp(σ) (see [1]).

An application of Minkowski’s inequality (continuous form) shows that

(∫ 1

0

(1 − r)
[
Mp(r,D1f)

]2
dr

)1/2

≤
(∫

S

[
g(f)(η)

]p
dσ(η)

)1/p

, 0 < p ≤ 2 ,

and

(∫
S

[
g(f)(η)

]p
dσ(η)

)1/p

≤
(∫ 1

0

(1−r)
[
Mp(r,D1f)

]2
dr

)1/2

, 2 ≤ p < +∞ .

Now, theorem follows from this. �
The following theorem may be viewed as a limiting case of the previous

one (part (b)).

Theorem 2.2. Let f ∈ H(B). If
∫ 1

0

(1 − r)M∞(r,D1f)2dr < +∞, then

f ∈ BMOA(B).

Proof. Recall that a positive measure µ on B is called a Carleson measure
if

µ(Q(ξ, δ)) ≤ Cδn , ξ ∈ S , δ > 0 ,

where Q(ξ, δ) = {z ∈ B : |1 − zξ| < δ} are nonisotropic balls. (Here
and elsewhere constants are denoted by C, which may indicate a different
constant from one occurrence to the next.)

It is easy to see that a positive measure µ on B is a Carleson measure if
and only if

sup
z∈B

∫
B

(1 − |z|2)n

|1 − zw|2n
dµ(w) < +∞ .
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On the other hand, in [4] it is shown that a holomorphic function f ∈ BMOA
if and only if a measure dµ(w) = (1 − |w|2)|D1f(w)|2dν(w) is a Carleson
measure. Thus, to prove Theorem 2.2 it suffices to show that

sup
z∈B

∫
B

(1 − |z|2)n(1 − |w|2)|D1f(w)|2
|1 − zw|2n

dν(w) < +∞ .

This follows from the following estimates

∫
B

(1 − |z|2)n

|1 − zw|2n
(1 − |w|2)|D1f(w)|2dν(w)

≤ C

∫ 1

0

(1 − |z|2)n(1 − ρ2)M∞(ρ,D1f)2dρ ·
∫

S

dσ(ξ)
|1 − zρξ|2n

≤ C

∫ 1

0

(1 − ρ)M∞(ρ,D1)2dρ < +∞ .

Here, we use the standard estimate (see [6])

∫
S

dσ(ξ)
|1 − zρξ|2n

≤ C

(1 − |z|ρ)n
. �

3. Proof of Theorem 1.1

Let g(z) =
+∞∑
k=0

gk(z) belongs to B(B) andf(z) =
+∞∑
k=0

f̂kz
k ∈ H1(U). Then

we have

|D2(g ∗ f)(z)| =
∣∣∣∣ 1
2π

∫ 2π

0

D1f(reiθ)D1g(ze−iθ)dθ
∣∣∣∣ ≤ C

1 − |z|M1(r,D1f) .

From this it follows that

(1 − r)3M2
∞(r,D2(g ∗ f)) ≤ C(1 − r)M2

1 (r,D1f) .

Since f ∈ H1(U), we see that
∫ 1

0
(1 − r)M2

1 (r,D1f)dr < +∞, by Theorem
2.1. Thus, ∫ 1

0

(1 − r)3M2
∞(r,D2(g ∗ f))dr < +∞
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which in turn implies that (see [2], [3])

∫ 1

0

(1 − r)M2
∞(r,D1(g ∗ f))dr < +∞ .

Now, by Theorem 2.2 we have that g ∗ f ∈ BMOA(B).
Conversely, let g ∈ (H1(U), BMOA(B)). Then we have that

‖g ∗ f‖B(B) ≤ C‖f‖H1(U) ,

for every f ∈ H1(U). Let f(z) =
+∞∑
k=0

(k + 1)zk, z ∈ U . Then

‖D1gr‖B(B) ≤ C

1 − r
.

From this it follows that

M∞(rρ,D2g) ≤ C(1 − ρ)−1(1 − r)−1 , 0 < ρ, r < 1 .

In particular, we have

M∞(r,D2g) ≤ C(1 − r)−2 .

Finally, we conclude that

sup
0<r<1

(1 − r)M∞(r,D1g) < +∞ .

Thus, g ∈ B(B). �
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