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Abstract. In this paper, we use the Jensen’s inequality to obtain conditions on
the weight functions u(x) and v(x) which ensures that the weighted estimates
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holds, where C is a constant independent of f and T is the Hardy’s operator.

1. Introduction

In a recent paper Bloom and Kerman [1] proved the following results:

Theorem 1.1. Let u and v be nonnegative measurable functions on (0,+∞)
with 0 < u, v < +∞ almost everywhere. Then for 1 < p < +∞,

(1)
∫ +∞

0

(uTf)P ≤ C

∫ +∞

0

(vf)p

for all nonnegative f if and only if

(2) T �
[(

v−1T �uP
)p′]

≤ CT �up < +∞ ,

where T is the Hardy’s operator defined by

Tf(x) =
∫ x

0

f(y)dy, x > 0 and
1
p
+
1
p′
= 1 .
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They employed the use of the adjoint operator T � defined by

T �g(x) =
∫ +∞

x

g(y)dy

to obtain conditions on the nonnegative weight functions u(x) and v(x) which
ensures that the inequality (1) is satisfied. The objective of this paper is to
obtain conditions on the nonnegative weight functions u(x) and v(x) using
the Jensen’s inequality to obtain a result which is more general than Theorem
1.1 obtained by Bloom and Kerman [1].

2. Main Results

Theorem 2.1. Let u and v be nonnegative measurable functions on (0,+∞)
with 0 < u, v < +∞ almost everywhere. Then for 1 < p ≤ q < +∞,

(3)
∫ +∞

0

(uTf)q ≤ C

∫ +∞

0

(
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for all nonnegative f if and only if

(4) T �
[(

v−1T �uqyq−p
)p′]

≤ CT �upxq−p < +∞ .

Proof. Assume that f is nonnegative and that f is compactly supported
in (0,+∞), we have

∫ +∞

0
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∫ +∞

0

uq

(∫ x

0

f

)q

=
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and, by Jensen’s inequality,
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Integration by parts yields

∫ +∞

0
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0
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Hence ∫ +∞

0
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0
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(
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Now if we assume that ∫ +∞

0

(
vfq/p

)p

= 1 ,
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then by Holder’s inequality, (6) gives

∫ +∞

0

(uTf)q ≤ p

∫ +∞
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Integration by parts yields
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We have from (4) that

∫ +∞

0

(uTf)q ≤ p
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Integration by parts again gives

∫ +∞

0

(uTf)q ≤ C
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It follows from this that

∫ +∞

0

(uTf)q ≤ C .

To show that (3) is implied by (4), we observe that for any of our f with

∫ +∞

0

(
vfq/px

q−p
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< +∞ ,

we have
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0

(uTf)q ≤ p
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0
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≤ C
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0

(
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From this, we have that

T �uqyq−p < +∞ on (0,+∞) .

If we substitute
h(.) = u(.)qyq−pχ(x,+∞)(.)
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into the equivalent inequality

∫ +∞

0

(
v−1T �h

)p′
≤ C

∫ +∞

0

(
u−1h

)p′
,

dual to (3), we obtain (4). This completes the proof of our result. �
Remark. If we set p = q in Theorem 2.1, then we shall obtain Theorem 1.1

obtained by Bloom and Kerman [1].
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