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Ser. Math. Inform. 15 (2000), 1–14

G–INVERSES AND CANONICAL FORMS

Predrag S. Stanimirović

Dedicated to Prof. Radosav Ž. D̄ord̄ević for his 65th birthday

Abstract. We introduce an useful general representation of {2}–inverses
of an arbitrary real matrix A. This representation is based on the compu-
tational scheme W1(W2AW1)

−1W2, where W1 and W2 are two appropriate
matrices, such that W2AW1 is invertible matrix which satisfy the condition
rank(W2AW1) ≤ rank(A). In the case rank(W2AW1) = rank(A) we obtain
well–known general representation for {1, 2}–inverses of A. Using this general
representation, we generate two representations of {2}–inverses by means of the
Jordan canonical form and the rational canonical form of the matrix W2AW1,
respectively. Introduced representation for {2}–inverses can be simply reduced
to analogous representations of {1, 2} inverses.

1. Introduction

The set of m × n real (complex) matrices whose rank is r we denote by
R

m×n
r (Cm×n

r ). By O we denote the zero matrix of an appropriate size, and
by Ik the unit matrix of the order k. With A

k| and Ak
we denote the first k

columns of A and the first k rows of A, respectively. Similarly, A|k and A
k

denote the last k columns and the last k rows of A, respectively.
For any matrix A ∈ C

m×n consider the Penrose’s equations:

(1) AXA=A , (2) XAX=X ,

(3) (AX)T =AX , (4) (XA)T =XA ,

where ∗ denotes conjugate and transpose matrix. If m = n we also consider
the equation

(5) AX = XA .
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For any sequence S ⊆ {1, 2, 3, 4, 5} the set of matrices satisfying the condi-
tions contained in S is denoted by A{S}. A matrix G in A{S} is called an
S–inverse of A and is denoted by A(S). The unique {1, 2, 3, 4}–inverse of A
is said to be the Moore–Penrose inverse of A. In the case m = n, the group
inverse, A#, of A is the unique {1, 2, 5}–inverse of A.

For the sake of completeness, we present a brief description of the rational
canonical form and the Jordan canonical form (see for example [4], [11]).

The rational canonical representation of A ∈ R
n×n is given by

A = TBT−1 = T (B1 ⊕ · · · ⊕Bp)T−1 ,

where the blocks Bi, 1 ≤ i ≤ p are the companion matrices of elementary
divisors

tmi + ai
mi−1t

mi−1 + . . .+ ai
1t+ ai

0

of the minimal polynomial of A:

Bi =




0 0 . . . 0 −ai
0

1 0 . . . 0 −ai
1

0 1 . . . 0 −ai
2

. . . . . . . . . . . . . . .
0 0 . . . 1 −ai

mi−1


 =

[
O −ai

0

Imi−1 −�ai

]
∈ R

mi×mi .

In this formula the vector �ai contains the following elements:

�ai =


 ai

1

· · ·
ai

mi−1


 , 1 ≤ i ≤ p .

We can suppose, without loss of generality, that the blocks B1, . . . , Bq are
invertible, i.e. ai

0 �= 0, i = 1, . . . q and the blocks Bq+1, . . . , Bp are singular,
i.e. ai

0 = 0, i = q + 1, . . . p ([4], [11]).
For A ∈ R

n×n, let A = TJT−1 be its Jordan canonical representation.
Then, the block diagonal matrix J can be represented in the form

J = J1 ⊕ · · · ⊕ Jt ⊕ Jt+1 ⊕ · · · ⊕ Jh ,

where J1, . . . , Jt are lower Jordan and nonsingular matrices, and Jt+1,. . ., Jh

are lower Jordan and singular ([4], [11]).
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The plan of this paper is as follows. We derive the following general
representation of {2}–inverses of an arbitrary real matrix A ∈ C

m×n
r :

(1.1)
A{2} = {W1(W2AW1)−1W2 : W1 ∈ C

n×q
q , W2 ∈ C

q×m
q ,

rank(W2AW1) = q ≤ rank(A)} .
In the case rank(W2AW1) = rank(A) we obtain well–known general repre-
sentation of {1, 2}–inverses of A.

In section 3. we investigate computations of generalized inverses by means
of the introduced general representations and the rational canonical form or
the Jordan canonical form. In the paper [6] we introduce an explicit block
representation for {1}–inverses and the group inverse of a real square matrix
A, using the rational canonical form B = T−1AT . In [6] we use the following
idea in computation of an arbitrary {1}–inverse of A: compute an arbitrary
{1}–inverse Z ∈ B{1} of B, and then use the similarity transformation
X = TZT−1 to obtain X ∈ A{1}. Generalized inverses Z ∈ B{1} are
generated by splitting the matrices B and Z into the corresponding blocks,
and solving the corresponding matrix equations.

Also, representation of generalized inverses of a square matrix A in terms
of its Jordan canonical form is the well–known method ([2], [3], [5], [9], [10]).
In the papers [3], [9], the corresponding results are obtained by splitting the
matrices A and X into the corresponding blocks and solving the correspond-
ing matrix equations.

In this paper we use a new algorithm, applicable to arbitrary, rectangular
or square, real matrices. Instead of the rational canonical form (the Jordan
canonical form) of A, we use the rational canonical form (the Jordan canon-
ical form) corresponding to W2AW1, where W1 and W2 are matrices of the
corresponding dimensions, such that W2AW1 is regular matrix of an arbi-
trary order q ≤ rank(A). Then we compute (W2AW1)−1 by inverting the
corresponding companion submatrices or the corresponding Jordan blocks.
Finally, an arbitrary {2}–inverse of A can be computed using the matrix
product W1(W2AW1)−1W2, according to the introduced general representa-
tion of {2}–inverses.

Introduced canonical form representations of {2}–inverses can be simply
reduced into the corresponding canonical form representations of {1, 2}–
inverses, without solving the equation (1).

2. General Representations

In the following lemma we obtain general representation of reflexive g–
inverses for complex matrices, using full–rank factorization.
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Lemma 2.1. Let A = PQ be a full–rank decomposition for A ∈ C
m×n.

Also, letW1, W2 be arbitrary n×r and r×m matrices, respectively, satisfying

(2.1) rank(QW1) = rank(W2P ) = rank(A) ,

and U , V are m×m and n× n matrices, respectively, such that

(2.2) rank(QV Q∗) = rank(Q), rank(P ∗UP ) = rank(P ) .

Then

(2.3) X=V Q∗(QV Q∗)−1(P ∗UP )−1P ∗U ⇔ X=W1(QW1)−1(W2P )−1W2 .

Also, X represents the general solution of the equations (1), (2).

Proof. Using the results from [8] (Theorem 2.1.1 and Lemma 2.5.2), one
can proved that X ∈ C

n×m is reflexive g–inverse of A if and only if it can
be expressed as

X = V Q∗(QV Q∗)−1(P ∗UP )−1P ∗U .

To complete the proof we prove the equivalence in (2.3). It is evident
that X=V Q∗(QV Q∗)−1(P ∗UP )−1P ∗U implies X=W1(QW1)−1(W2P )−1W2.
On the other hand, the equation X = W1(QW1)−1(W2P )−1W2 implies
X = V Q∗(QV Q∗)−1(P ∗UP )−1P ∗U , because of consistency of the equations
W1 = V Q∗ and W2 = P ∗U. For example, the matrix equation W1 = V Q∗ is
consistent if and only if V (Q∗)(1)Q∗ = V , for some (Q∗)(1). Observe that in
the place of (Q∗)(1) we can use an arbitrary left inverse of Q∗. �

In the following theorem we introduce a general representation of {2}–
inverses of a given real matrix.

Theorem 2.1. For A ∈ C
m×n
r the set A{2} is equal to

{W1(W2AW1)−1W2 : W1 ∈ C
n×t , W2 ∈ C

t×m ,(2.4)

rank(W2AW1)= t ≤ r} .
Proof. Consider an arbitrary {2}–inverse X of A. According to [8](The-

orem 3.4.1), it can be represented in the form X = C(DAC)(1,2)D, where
C ∈ C

n×u, D ∈ C
v×m are arbitrary, and rank(X) = rank(DAC). Let

rank(DAC) = q ≤ min{u, v} ≤ r. According to Lemma 2.1, we get the
following representation for X:

X=CF (HDACF )−1HD, F ∈ C
u×q, H ∈ C

q×v, rank(HDACF )=q .

After the substitutions CF = W1, HD = W2, it is easy to verify that X is
an element of the set defined in (2.4).

Conversely, it is an exercise to verify that an arbitrary element from the
set (2.4) satisfies the equation XAX = X. �
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3. Application of Canonical Forms

Using general representations and the rational canonical form of the ma-
trix W2AW1 we develop a rational canonical form representation of {2}–
inverses.

Theorem 3.1. Let A ∈ R
m×n
r , and let W1, W2 be arbitrary n×q and q×m

matrices, respectively, such that rank(W2AW1) = q ≤ rank(A). Suppose
that the rational canonical form of W2AW1 is equal to

W2AW1 = TBW2AW1T
−1 = T ·BW2AW1 · T−1 = T ·B1 ⊕ · · · ⊕Bt · T−1 ,

where blocks Bi =
[

O −ai
0

Imi−1 −�ai

]
are of the order mi ×mi, i = 1, . . . , t.

Let the matrix U =W1T is divided into the blocks Uαβ of the order mα×mβ,(
α=1,... ,p

β=1,... ,t

)
, and the matrix V = T−1W2 is partitioned into blocks Vγδ of the

order mγ ×mδ,
(

γ=1,... ,t

β=1,... ,s

)
. Then (α, β) block Gα,β from {2}–inverse G of

A corresponding to W1 and W2 can be represented as follows:

(3.1) Gαβ =
t∑

γ=1

(
− 1
aγ
0

(
(Uαγ)mγ−1|�a

γ+(Uαγ)|1
)
(Vγβ)1+(Uαγ)mγ−1|(Vγβ)

mγ−1

)

for each α = 1, . . . , p,β = 1, . . . , s.
In the case q = r block Gαβ, defined in (3.1) represents the corresponding

(α, β) block from G ∈ A{1, 2}.
Proof. According to Theorem 2.1, G ∈ A{2} if and only if G can be

represented in the form G = W1(W2AW1)−1W2, where W1 ∈ C
n×q, W2 ∈

C
q×m and rank(W2AW1) = q ≤ rank(A). The matrix W2AW1 is regular,

which implies the following [1]:

(W2AW1)−1 = TB−1
W2AW1

T−1 = T
(
B−1

1 ⊕ · · · ⊕B−1
t

)
T−1 .

Applying G =W1(W2AW1)−1W2, we get G = U
(
B−1

1 ⊕ · · · ⊕B−1
t

)
V .

It is easy to verify

B−1
θ =


− 1

aθ
0
�aθ

Imθ−1

− 1
aθ
0

O


 , θ = 1, . . . , t .
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Consequently,

UαγB
−1
γ =

[
(Uαγ)mγ−1| (Uαγ)|1

] ·

− 1

aγ
0
�aγ

Imγ−1

− 1
aγ
0

O




=
[
− 1

aγ
0

(
(Uαγ)mγ−1|�a

γ+(Uαγ)|1
)

(Uαγ)mγ−1|

]
, γ∈{1, . . . , t} .

Now, an arbitrary (α, β) block in G, denoted by Gαβ , can be computed as
follows:

Gαβ=
t∑

γ=1

UαγB
−1
γ Vγβ

=
t∑

γ=1

[
− 1

aγ
0

(
(Uαγ)mγ−1|�a

γ+(Uαγ)|1
)

(Uαγ)mγ−1|

]
·

 (Vγβ)1

(Vγβ)
mγ−1




=
t∑

γ=1

(
− 1
aγ
0

(
(Uαγ)mγ−1|�a

γ+(Uαγ)|1
)
(Vγβ)1+(Uαγ)mγ−1|(Vγβ)

mγ−1|

)
.

In the case q = r, According to Theorem 3.1, Theorem 2.1 and Lemma
2.1, we conclude G ∈ A{1, 2}. �

The same principle can be used in representations of {2} and {1, 2}–
inverses in terms of the Jordan canonical form.

Theorem 3.2. Let A ∈ R
m×n
r , and let W1, W2 be arbitrary n×q and q×m

matrices, respectively, such that rank(W2AW1) = q ≤ rank(A). Suppose
that

JW2AW1 = J1 ⊕ · · · ⊕ Jt

is the Jordan canonical form ofW2AW1, where the lower Jordan blocks Ji are
of the order mi ×mi, i = 1, . . . , t. Let the matrix U = W1T is divided into
the blocks Uαβ of the order mα×mβ,

(
α=1,... ,p

β=1,... ,t

)
, and the matrix V =T−1W2

is partitioned into the blocks Vγδ of the order mγ ×mδ,
(

γ=1,... ,t

β=1,... ,s

)
. Also,

let (i, j)th element of (α, β) block in U and V is denoted by uαβ
ij and vαβ

ij ,
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respectively. Then (i, j)th element of the (α, β) block from an arbitrary g–
inverse G ∈ A{2} can be represented as follows:

gαβ
ij =

t∑
γ=1

mγ∑
k=1

k∑
l=1

uαγ
il (−1)k−l 1

λk−l+1
γ

vγβ
kj ,(3.2)

(
α=1,... ,p
β=1,... ,s

)
,

(
i=1,... ,mα
j=1,... ,mβ

)
, r, s ≥ t .

In the case q = r, the real number gαβ
ij , defined in (3.2), represents the

corresponding (i, j)th element contained in (α, β) block from G ∈ A{1, 2}.
Proof. The matrix W2AW1 is regular, which means the following ([1]):

(W2AW1)−1 = TJ−1
W2AW1

T−1 = T
(
J−1

1 ⊕ · · · ⊕ J−1
t

)
T−1 .

An application of Theorem 2.1 gives G = UJ−1
W2AW1

V.
It is easy to verify the following:

(
J−1

θ

)
ij
=

{
0, i > j,

(−1)j−i 1

λj−i+1
θ

, i ≤ j,
θ = 1, . . . , t .

Consequently,

(
UαγJ

−1
γ

)
ij
=

j∑
l=1

uαγ
il (−1)j−l 1

λj−l+1
α

, γ ∈ {1, . . . , t} .

The (α, β) block in G, denoted by Gαβ , is equal to

Gαβ =
t∑

γ=1

UαγJ
−1
γ Vγβ ,

(
α=1,... ,p

β=1,... ,s

)
.

Now, for arbitrary i ∈ {1, . . . ,mα}, j ∈ {1, . . . ,mβ}, we obtain

gαβ
ij =

(
t∑

γ=1

UαγJ
−1
γ Vγβ

)
ij

=
t∑

γ=1

mγ∑
k=1

(
UαγJ

−1
γ

)
ik
vγβ

kj

=
t∑

γ=1

mγ∑
k=1

k∑
l=1

uαγ
il (−1)k−l 1

λk−l+1
γ

vγβ
kj . �

Using the result of Theorem 3.2, we obtain representation of an arbitrary
element from G ∈ A{2}.
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Corollary 3.1. Under the suppositions of Theorem 3.2, the elements from
G ∈ A{2} can be represented as follows:

gm0+m1+...+mα−1+i,m0+m1+...+mβ−1+j

=
t∑

γ=1

mγ∑
k=1

k∑
l=1

um0+m1+...+mα−1+i, m0+m1+...+mγ−1+l

× (−1)k−l 1
λk−l+1

γ

vm0+m1+...+mγ−1+k, m0+m1+...+mβ−1+j ,

for each α = 1, . . . , p, β = 1, . . . , s, i = 1, . . . ,mα and j = 1, . . . ,mβ, where
m0 = 0.

Proof. The proof follows from Theorem 3.2 and from the following fact,
valid for arbitrary (i, j)th element inside of any (α, β) block in a matrix H:

(Hα,β)ij = hαβ
ij = hm0+m1+...+mα−1+i, m0+m1+...+mβ−1+j . �

4. Conclusion

We can suggest at least four advantages contained in our approach in
representations of {2} and {1, 2}–inverses:

1. Simplification of derivations used in [3] and [6], which are based on
adequate splitting of the matrices B, Z and solving corresponding system of
matrix equations. Moreover, the splitting technique used in these papers is
valid only for the set of {1, 2}–inverses of square matrices. Also, the method
used in [3], [6] and [10] is not convenient in solving of the matrix equation
(2) without the matrix equation (1).

2. The method developed in Section 3. is applicable to arbitrary, square
and rectangular, real matrices.

3. Introduced representation for all the reflexive g–inverses can be simply
reduced into the corresponding representations of different classes of gener-
alized inverses, without solving the corresponding set of matrix equations,
contained in (1)–(5). For this purpose we can use the following general
representations of different generalized inverses:

Proposition 2.1. If A = PQ is a full–rank factorization of A and W1 ∈
C

n×r, W2 ∈ C
r×m satisfy the conditions (2.1), then:
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general solution of the system of matrix equations (1), (2), (3) is ([8])

W1(QW1)−1(P ∗P )−1P ∗=W1(P ∗AW1)−1P ∗ ,

general solution of the system of matrix equations (1), (2), (4) is ([8])

Q∗(QQ∗)−1(W2P )−1W2 = Q∗(W2AQ
∗)−1W2 ,

and the Moore–Penrose inverse of A is equal to

A† = Q∗(QQ∗)−1(P ∗P )−1P ∗ = Q∗(P ∗AQ∗)−1P ∗ .

4. General representations of {2}–inverses, introduced in Theorem 2.1, is
practical and universal pattern for computation of generalized inverses. But
it is also of interest a theoretical power of these representations.

5. Examples

Example 5.1. Consider

A =
[
3 5 1 2
0 −2 −1 1

]

and

W1 =


 1 0
0 1
0 0
0 0


 , W2 =

[
1 0
0 1

]
.

It is easy to verify JW2AW1 =
[
3 0
0−2

]
, T =

[
1 −1
0 1

]
. This implies

U =W1T =


 1 −1
0 1
0 0
0 0


 , V = T−1W2 =

[
1 1
0 1

]
.

According to Theorem 3.2 and Corollary 3.1, the elements gij of the reflexive
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g–inverse of A can be computed as follows:

g11
11 = g11 = u11

1
λ1
v11 + u12

1
λ2
v21 =

1
3
;

g12
11 = g12 = u11

1
λ1
v11 + u12

1
λ2
v22 =

5
6
;

g21
11 = g21 = u21

1
λ1
v11 + u22

1
λ2
v21 = 0 ;

g22
11 = g22 = u21

1
λ1
v12 + u22

1
λ2
v22 = −1

2
;

g31
11 = g31 = u31

1
λ1
v11 + u32

1
λ2
v21 = 0 ;

g32
11 = g32 = u31

1
λ1
v12 + u32

1
λ2
v22 = 0 ;

g41
11 = g41 = u41

1
λ1
v11 + u42

1
λ2
v21 = 0 ;

g42
11 = g42 = u41

1
λ1
v12 + u42

1
λ2
v22 = 0 .

Example 5.2. In this example we compute the reflexive g–inverse of the
matrix

A =
[ 23 −2 4 8

4 20 5 0
−2 8 20 2

]

determined by the following two matrices

W1 =


 1 0 0
0 1 0
0 0 1
0 0 0


 , W2 =

[ 1 0 0
0 1 0
0 0 1

]
.

The Jordan matrix for W2AW1 and the corresponding similarity matrix are

JW2AW1 =

[ 27 0 0
0
0

18 1
0 18

]
, T =

[ 1 2 2
2 1 −2
2 −2 1

]
.

Consequently,

U=W1T =



1 2 2
2
2

1 −2
−2 1

0 0 0


 , V =T−1W2=

1
9

[ 1 2 2
2
2

1 −2
−2 1

]
.
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According to Corollary 3.1, we get

g11
11 = g11 =

2∑
γ=1

mγ∑
k=1

l∑
k=1

u1,m0+...+mγ−1+l(−1)k−l 1
λk−l+1

γ

v1,m0+...+mγ−1+k,1

= u11
1
λ1
v11 + u12

1
λ2
v21 +

2∑
l=1

u1,1+l(−1)2−l 1
λ2−l+1

γ

v1+2,1

= u11
1
λ1
v11 + u12

1
λ2
v21 − u12

1
λ2

2

v31 + u13
1
λ2
v31 =

1
81

· 10
3
.

Similarly,

g12
11 = g12 = u11

1
λ1
v12 + u12

1
λ2
v22 − u12

1
λ2

2

v32 + u13
1
λ2
v32 =

1
81

· 2
3
;

g22
11 = g22 = u21

1
λ1
v12 + u22

1
λ2
v22 − u22

1
λ2

2

v32 + u23
1
λ2
v32 =

1
81

· 13
3
;

g22
12 = g23 = u21

1
λ1
v13 + u22

1
λ2
v23 − u22

1
λ2

2

v33 + u23
1
λ2
v33 =

1
81

·
(
−11
12

)
;

g22
22 = g33 = u31

1
λ1
v13 + u32

1
λ2
v23 − u32

1
λ2

2

v33 + u33
1
λ2
v33 =

1
81

· 13
3
;

g32
12 = g43 = u41

1
λ1
v13 + u42

1
λ2
v23 − u42

1
λ2

2

v33 + u43
1
λ2
v33 = 0 .

Continuing in the same manner, we obtain

A(1,2) =
1
81




10
3

2
3 − 5

6

− 5
6

2
3

13
3 − 11

12

− 5
3

13
3

0 0 0


 .

Example 5.3. Consider

A =



2 1 0 0 −5
0 2 1 0 0
0 0 2 0 3
0 0 0 2 4
3 4 −3 −1 1


 ,



12 Predrag S. Stanimirović

W2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 , W1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

The rational canonical representation of the matrix

W2AW1=



2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2




is determined by the matrices

B=B1 ⊕B2=



0 0 8
1 0 −12
0 1 6

0
0
0

0 0 0 2


 , T =



0 0 1 0
0 1 4 0
1 2 4 1
0 0 0 1


 .

Using

B−1
1 =


 12 8 0
−6 0 8
1 0 0


 , B−1

2 = [ 1
2 ] ,

U=W1T =
[
U11 U12

U21 U22

]
=



0 0 1
0 1 4
1 2 4
0 0 0

0
0
0
1

0 0 0 0


 ,

V =T−1W2=
[
V11 V12 V13

V21 V22 V23

]
=




4 −2 1
−4 1 0
0 0 0

0
0
0

0
0
0

0 0 0 1 0


 .

According to Theorem 3.1, we obtain the following {2}–inverse of A:

G =
[
G11 G12 G13

G21 G22 G23

]
=



g11 g12 g13
g21 g22 g23
g31 g32 g33
g41 g42 g43

g14
g24
g34
g44

g15
g25
g35
g45

g51 g52 g53 g54 g55
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i.e.,

G =
1
8



4 2 1 0 0
0 4 −2 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 0


 .
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