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Abstract. We propose a new scheme of discretization for solving ill–posed
problems and show that combination of this scheme with Morzov’s discrepancy
principle allows to obtain the best possible order of accuracy of Tikhonov Regu-
larization using an amount of information which is far less than for the standard
discretization.

1. The aim of this paper is to describe an economical method for the
discretization of ill–posed linear operator equations of the first kind

(1.1) Ax = f .

To construct this method we shall use the relations originally arisen within
the framework of Information–Based Complexity research [2], [3].

Let e1, e2, . . . , em, . . . be some orthonormal basis of Hilbert space X, and
let Pm be the orthogonal projector on span {e1, e2, . . . , em}. We denote by
Xr, r = 1, 2, . . . , the linear subspace of X which is equipped with the norm

‖ϕ‖Xr = ‖ϕ‖X +
r∑

j=1

‖Djϕ‖X ,

where Dj are some linear operators acting from Xr to X, and for any m =
1, 2, . . .

(1.2) ‖I − Pm‖Xr→X ≤ crm
−r ,
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where I is the identity operator and the constant cr is independent of m.
Following [4], we consider the class of operators

Hr
γ =


A : ‖A‖X→Xr + ‖A∗‖X→Xr +

r∑
j=1

‖(DjA)∗‖X→Xr ≤ γ


 ,

where B∗ denotes the adjoint operator of B : X → X, i.e. for any f, g ∈ X
(f,Bg) = (g,B∗f).

As illustrated in [4], the space Xr and the class Hr
γ are a generalization of

the spaces of differentiable functions and of the classes of integral operators
with kernels having mixed partial derivatives.

Let us introduce some notation: If N(b) and M(b) are functions defined
on some set B, we write N(b) 	 M(b) if there are the constants c, c1 > 0
such that for all b ∈ B cM(b) ≤ N(b) ≤ c1M(b). Moreover, for simplicity
we often use the same symbol c for possibly different constants.

We shall study the equations (1.1) with A ∈ Hr
γ and f ∈ Range(A), i.e.

equation (1.1) is solvable, but we assume that only an approximation fδ ∈ X
to f is available such that ‖f − fδ‖X ≤ δ, where δ is a known error bound.

The traditional approach to the discretization of the problem (1.1) lies in
the application of the Garlekin method. This means that instead of (1.1) we
consider now the equation

(1.3) PmAPlx = Pmfδ .

But if (1.1) is ill–posed in the sense of lack of continuity of its solutions
with respect to the data, regularization techniques are required for solving
(1.5). The most famous regularization method is the method of Tikhonov. In
Tikhonov regularization a solution of (1.3) and hence (1.1) is approximated
by a solution xα,m,l of equation

(1.4) αx+ PlA
∗PmAPlx = PlA

∗Pmfδ .

Note that finding an element xα,m,l reduces to solving a system of minm,l

linear algebraic equations.
One of the most widely used strategy for choosing regularization param-

eter α is Morzov’s “discrepancy principle” [1]. Following [5], we shall con-
sider discrepancy principle in the form tailored for discretized version of
Tikhonov regularization and A ∈ Hr

γ : Let 1 < d1 ≤ d2 and Adisc = PmAPl,
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xα = xα,m,l. If ‖Pmfδ‖X ≤ d1δ, then take x = 0 as approximation. If
‖Pmfδ‖X > d1δ, then choose α ≥ αmin = (γcrl−r)2 such that

(1.5) d1δ ≤ ‖Pmfδ −Adiscxα‖X ≤ d2δ .

If there is no α ≥ αmin, such that (1.5) holds, then choose α = αmin.
The usual discussion of order of accuracy of discretized regularization

methods for equations (1.1) is done under the assumption that the exact
free term f belongs to the set

AMp,ρ(A) := {f : f = Au, u ∈ Mp,ρ(A)} ,

where Mp,ρ(A) := {u : u = |A|pv, ‖v‖X ≤ ρ}, |A| = (A∗A)1/2. It is well
known that in this case equation (1.1) has a unique solution x0 ∈ Mp,ρ(A).
Moreover, from [6] it follows that xdisc(R,A, fδ) is an approximation to the
solution of (1.1) obtained within the framework of some discretized regular-
ization method R then

(1.6) inf
R

sup
f∈AMp,ρ(A)

inf
fδ:‖f−fδ‖X≤δ

‖x0 − xdisc(R,A, fδ)‖X 	 δp/(p+1) .

Therefore in the sequel we shall consider the class Φr,p
γ,p of equations (1.1)

with A ∈ Hr
γ , f ∈ AMp,ρ(A).

2. The ensuing theorem allows to estimate the efficiency of traditional
approach to discretization (1.3), (1.4).

Theorem 2.1. [5] Let the parameter α be chosen according to the discrep-
ancy principle. If equation (1.1) belongs to the class Φr,p

γ,ρ, 0 < p ≤ 1, then

‖x0 − xα,m,l‖X ≤ dp

(
δp/(p+1) + l−pr +m−pr

)
,

where dp is independent of δ, l, m.

Let us consider the following situation. We have the information that
equation (1.1) belongs to the class Φr,p

γ,ρ for some p ∈ (0, 1], but we don’t know
the exact value of p. From the Theorem 2.1 it follows that in this situation
within the framework of traditional approach (1.3), (1.4) with discrepancy
principle of parameter selection we can guarantee the optimal order of accu-
racy (1.6) in the case when for all p ∈ (0, 1] l ≥ δ−1/r(p+1), m ≥ δ−1/r(p+1).
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It is obvious that the minimal l and m satisfying above conditions for all
p ∈ (0, 1] have the order l 	 m 	 δ−1/r.

Denote by Card (IP) the number of inner products of the form

(2.1) (ei, Aej), (ei, fδ)

required to construct an approximate solution xα,m,l realizing the optimal
order of accuracy (1.6) for all p ∈ (0, 1]. Using above reasons for Card (IP)
we have

(2.2) Card (IP) = ml +m 	 δ−2/r .

3. Now we combine Morzov’s “discrepancy principle” of parameter se-
lection with some new discretization scheme and show that for all p ∈ (0, 1]
this combination allows to obtain the optimal order of accuracy (1.6) using
only O

(
δ−1.5/r log(1/δ)

)
values of inner products of the form (2.1).

Within the framework of above mentioned Morzov’s discrepancy principle
we set m = l = 2n and as operator Adisc we take the operator

(3.1) Adisc = An =
n∑

i=1

(P2k − P2k−1)AP21.5n−k + P1AP21.5n .

Lemma 3.1. For A ∈ Hr
γ and p ∈ (0, 1] we have

‖(An − P2nA)|A|p‖X→X ≤ c2−nr(p+3)/2 .

Proof. From the definition of operator An we find

‖(An − P2nA)|A|p‖X→X(3.2)

≤
n∑

k=1

‖(P2k − P2k−1)A(P21.5n−k − I)|A|p‖X→X

+‖P1A(P21.5n − I)|A|p‖X→X .

Using Lemma 4.3 [5] and arguments like that in the proof of Lemma 3.2 [4],
we get the estimate

‖(P2k − P2k−1)A(P21.5n−k − I)|A|p‖X→X ≤ c2−3nr(p+1)/22krp ,(3.3)
k = 0, 1, . . . , n .

The assertion of the lemma follows from (3.2), (3.3). �
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Corollary 3.1. Let A ∈ Hr
γ and f ∈ AMp,ρ(A), 0 < p ≤ 1. If x0 ∈ Mp,ρ(A)

is the solution of equation (1.1) then

‖Anx0 − P2nfδ‖X ≤ δ + c2−nr(p+3)/2 .

Indeed, for x0 ∈ Mp,ρ(A) we have x0 = |A|pz, ‖z‖X ≤ ρ. Then

‖Anx0 − P2nfδ‖X ≤ ‖Anx0 − P2nAx0‖X + ‖P2n(f − fδ)‖X

≤ δ + ‖(A− n− P2nA)|A|pz‖X ≤ δ + c2−nr(p+3)/2 .

Lemma 3.2. For A ∈ Hr
γ and p ∈ (0, 1] we have

‖P21.5n |A|p − |An|p‖X→X ≤ c2−nrp .

Proof. By analogy with Lemma 3 [3] we can obtain the inequality

(3.4) ‖A−An‖X→X ≤ c2−nr .

Moreover, from Lemma 4.3 [5] and from the definition of An it follows that
P21.5n |An|p = |An|p. Then, using (3.4) and Lemma 4.1 [5], we have

‖P21.5n |A|p − |An|p‖X→X ≤ ‖|A|p − |An|p‖X→X ≤
≤ 4

π
‖A−An‖p

X→X ≤ c2−nrp . �

4. Finally, we give the following result:

Theorem 4.1. Let xα,n be the approximate solution of equation (1.1) ob-
tained within the framework of Morzov’s “discrepancy principle” for Adisc =
An and l = m = 2n. If equation (1.1) belongs to the class Φr,p

γ,p 0 < p ≤ 1,
and x0 ∈ Mp,ρ(A) is the solution of (1.1) then

‖x0 − xα,n‖X ≤ c
(
2−nrp + δp/(p+1)

)
.

Proof. We put Rα,n = (αI +A∗
nAn)−1

A∗
n, Sα,n = I −Rα,nAn. From [5]

one sees that for α > 0

(4.1) ‖Rα,n‖X→X ≤ c1α
−1/2 , ‖Sα,n‖X→X ≤ c2 ,
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(4.2)
‖I −AnRα,n‖X→X ≤ 1 ,

‖AnSα,n|An|p‖X→X ≤ cpα
(p+1)/2 , p ∈ [0, 1] .

Using (4.1) and Corollary 3.1, from the definition xα,n we find

‖x0 − xα,n‖X = ‖Sα,nx0 +Rα,n(Anx0 − P2nfδ‖X(4.3)

≤ ‖Sα,nx0‖X + c1α
−1/2

(
δ + c2−nr(p+3)/2

)

≤ c1α
−1/2δ + ‖Sα,nx0‖X + c2−nr(p+1)/2 .

Now following [5], we consider the element

AnSα,nx0 = (P2nfδ −Anxα,n) + (I −AnRα,n)(Anx0 − P2nfδ) .

From (4.2) and (1.5) we have

(4.4) d1δ − ‖Anx0 − P2nfδ‖X ≤ ‖AnSα,nx0‖X ≤ d2δ + ‖Anx0 − P2nfδ‖X .

Thus, from Corollary 3.1 one sees that

(4.5) α−1/2δ ≤ (d1 − 1)−1
(
α−1/2‖AnSα,nx0‖X + c2−nr(p+1)/2

)
.

Note that AnSα,n = AnSal,nP21.5n . Then, using (4.2) and Lemma 3.2 for
x0 ∈ Mp,ρ(A) we have

α−1/2‖AnSα,nx0‖X ≤ α−1/2 (‖AnSα,n|An|pv‖X(4.6)
+‖AnSα,n(P21.5n |A|p − |An|p)v‖X)

≤ α−1/2
(
cpα

(p+1)/2 + c0α
1/2c2−nrp

)

≤ cpα
p/2 + c2−nrp .

Let us estimate ‖Sα,nx0‖X . Note that

(4.7) ‖Sα,nx0‖X ≤ ‖Sα,nP21.5nx0‖X + ‖Sα,n(x0 − P21.5nx0)‖X .

It is easy to see that for x0 ∈ Mp,ρ(A)

(4.8) ‖Sα,n(x0 − P21.5nx0)‖X = ‖x0 − P21.5nx0‖X ≤ (crγ)pρ2−1.5nrp .
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Moreover, the same steps like in the proof of (4.6) lead to the estimate

(4.9) ‖Sα,nP21.5nx0‖X ≤ c
(
αp/2 + 2−nrp

)
.

If α ≤ δ2/(p+1)+2−2nr, the assertion of the theorem follows from (4.3), (4.5),
(4.6) and (4.7)–(4.8).

Assume now that α > β = δ2/(p+1) + 2−2nr. With an argument like that
in the proof of Theorem 3.3 [5] we get the estimate

(4.10) ‖Sα,nP21.5nx0‖2
X ≤ c

(‖Sβ,nP21.5nx0‖2
X + β−1‖AnSα,nP21.5nx0‖2

X

)
.

On the other hand, from (4.4) and Corollary we know that

β−1‖AnSα,nP21.5nx0‖2
X ≤ β−1

[
(d2 + 1)δ + c2−nr(p+3)/2

]
(4.11)

≤ c
(
δ2p/(p+1) + 2−nr(p+1)

)
.

Again using the inequality (4.9) we obtain

(4.12) ‖Sβ,nP21.5nx0‖2
X ≤ c

(
δ2p/(p+1) + 2−2nrp

)
.

Uniting (4.3), (4.7), (4.8) and (4.10)–(4.12) for α > δ2/(p+1) +2−2nr we have

‖x0 − xα,n‖X ≤ c1δα
−1/2 + c

(
δp/(p+1) + 2−nrp

)
≤ c

(
δp/(p+1) + 2−nrp

)
.

The theorem is proved. �
Let now Card (IP) be the number of inner products of the form (2.1)

required to construct an approximate solution xα,n From the Theorem 4.1 it
follows that within the framework of combination of Morzov’s “discrepancy
principle” with discretization scheme (3.1) we can guarantee on the classes
Φr,p

γ,ρ the optimal order of accuracy (1.6) for all p ∈ (0, 1] in case when
2n = δ−1/r (it is clear that for such n ‖x0 − xα,n‖X = O

(
δp/(p+1)

)
for all

p ∈ (0, 1]). Now from (3.1) it follows that

Card (IP) 	
n∑

k=0

21.5n 	 n21.5n 	 δ−1.5/r log
1
δ
.
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When this relation is compared with (2.2) it is apparent that for the classes
Φr,p

γ,ρ, 0 < p ≤ 1, the discretization scheme (3.1) is more economical then
traditional approach (1.3), (1.4).
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