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ON THE DIVERGENT PROPERTIES OF TWO-SIDED
SOR WEIERSTRASS METHOD

N. Kjurkchiev and M. S. Petkovié¢

Abstract. In this paper the convergence properties of the two-side successive
over-relaxation (TSSOR) method of Weierstrass’ type is discussed. Initial con-
ditions under which this method is divergent are stated. The main theorem
generalizes some recent results concerning divergent properties of simultaneous
methods for finding polynomial zeros.
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be a monic polynomial with simple real roots & < & < ... < &,. We
assume that the roots are located in n nonintersecting real intervals X? =
29,7, i = 1,2,... ,n, that is, X? ﬂX]Q = fori # j and & € X? for
1=1,2,...,n.

In this paper we are concerned with the two-sided method
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0

j=1
and H;L:n 41 is assumed to be equal to one). This method is an obvious
generalization of Kjurkchiev-Markov’s method [3] which is obtained from (1)

for hj, = 1, h;, = 1, and has the form of the classical Weierstrass’ method

where hy, h;, € (0,1] are acceleration parameters. (The symbols []
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The method (1) is two-side successive over-relaxation (TSSOR) iteration,
ie.,
el SO ST <ah <&EST <<y <& ST,

and also 0 < Ez,i <1, 0< Q}Z’i < 1 for each Kk = 0,1,2,... . The details
are tedious and lengthy, and are therefore omitted. We refer to [3] for more
details.

It is well known that the simultaneous methods of Weierstrass’ type are
globally convergent for almost all initial approximations to the roots. The
aim of this paper is to present some divergent properties of the TSSOR
method (1). For this purpose we give first Theorem 1.

Theorem 1. For zF, ¥ i = 1,... ,n, determined by (1), and for k =

1,2,..., the following relations are valid
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and
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The proof follows the ideas given in [1], [2], [4] and [5] and will be omitted.

Now we state initial conditions under which the TSSOR method (1) is
divergent.

Theorem 2. The iteration (1) will fail if the endpoints 29, ... 2%, 79, ... 7%
of the inclusion initial intervals X9, ... , X0 satisfy the systems of nonlinear
equations
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Proof. Let us rewrite the equations (2), (3) in the vector form for k = 0
as

Ax =a, Bx'=b,

where Xt = {71,... ,ZL}7, x' = {z},... ,2.}7 are the vectors of approxi-
mations in the first step, a and b are the vectors which components are the
terms on the left-hand side of (4) and (5), respectively, and
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are the matrices of the systems. Evidently,
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n n
_ =0 _ =0 _ 0
We show that A4; = H(:cl — ;) and By = l_[(gZ
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we will omit the iteration index k£ = 0 and write x; instead of Eg orzx
1,...,n.
Fi : : n+l—r
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Evidently, for » = 1, DT'5. ., is identical with A;. Subtract the second

column from the first, the third column from the second, and so on, the last

from the (n — 1)th. The result is

n _
1;2;...5m —

Z Ty

li£1

Z Ly Ty
l1,l2#1
l1<la

xll...xl

n—1

l1,e s ln—1#1
< <ln—1

Z Ty

ll;én

Z Ly Ty
ll,lgfn
l1<la

xll..

l1,0\ln_1#n
h<-<lp-1

.xl

— g(;) For simplicity,

0

7

de-
. 1— . 1—
ginttmn) L i)

n—1




148

2

11#1,2

1< <lp—o
1;#1,2
j=1,...,n—2

Z xp, -

N. Kjurkchiev and M. S. Petkovié¢

(n)
1 Z Ty
ll;ﬁn
Ty N z Ty Z Ty, Ty
li#n—1,n l1,l2#n
1 <lz

" Llp_g e Z Liy = Ll Z ) P M
< <lp_2 < <lp—a
lj#n—1,n lj#n
j=1,... n—2 j=1,....n—1

n—1

where Ui(jn) = (1)1 H (x; — x;). From this it follows that
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Evidently, det A # 0, detB # 0. According to this fact and from
Ax' = a, Bx! = b (with a,b = 0 due to (4) and (5)) we get X' =
{0,...,0}, xt ={0,...,0}T and the method (1) cannot be defined at the
second step. This proves Theorem 2. [

Remark. Wang and Zhao [6] constructed the following prediction-correction

method &
R flai)

k _ .k
H (xz 5 )
J#i
The optimal value of hj;, in the sense of a guaranteed convergence is not known.
Concerning Wang-Zhao’s acceleration parameter (see [6])

L geh )
hy = min | 1, : 0.204378d), — %) :
’ (;}Iﬁg@fxﬁ
dp =minlzf — 2%, i=1,...,n; k=0,1,2,...,

L I;r;?m wil, i n

at each iteration a new value of hj can be evaluated taking into account the new
information.

In view of the last remark, we consider the following two-sided prediction-
correction method
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ji=1,2....,n k=0,1,2,... .

As approximations approach to the zeros, EZ, h;, become larger and
larger, until they get the value 1 defining two-sided variant of Weierstrass’
method in the continuation of the iterative procedure.
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