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AN ALGORITHM FOR THE EVALUATION
OF THE TWO-DIMENSIONAL HILBERT TRANSFORM
WITH NON-STANDARD WEIGHT FUNCTIONS

Maria Carmela De Bonis

Abstract. The author proposes an algorithm for the numerical evaluation of
two-dimensional Cauchy principal value integrals with respect to generalized
Ditzian-Totik weight functions. Convergence results and some numerical exam-
ples are given.

1. Introduction

Let ®(f;s,t) denote the two-dimensional Cauchy principal value of the
function f, which is defined by

e f) = flay) .
B(fi) = [ o )m> »(y)drdy

(1) =i [ S @iy

5152

where I = [-1,1]%, De,e, = {(zyy) € I ¢ |z —s| > e, [y —t >
ea} (1,62 > 0), wy, we are two generalized Ditzian-Totik weight functions
(w1, we € GDT) of the following type:

e
|z —ts]”

(1.2) wy(x) =Y(z)(1+ ) (1 — )" |z — to|"? log™

where 9 is an Holder continuous function, v;,y; > —1,7 = 0,1,2,v3,73 >
0,-1 <t <t3 <1,-1 < 1o <13 <1and s € (—1,1)\{t2,t3}, t €

(=1, )\ {t2, 13}
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In [7] the author proposed an algorithm for the numerical evaluation of
the integral ®(f;s,t) when wy,wy are two Jacobi weight functions, i.e. vy, =
v3 =2 =3 = 0in (1.2) and (1.3).

The above mentioned algorithm makes use of a Gauss type quadrature
rule that results convergent and stable.

However, this Gauss type quadrature rule requires the knowledge of the
zeros and the Christoffel numbers of the orthogonal polynomials with respect
to the weight functions w; and ws.

Since the zeros and the Christoffel numbers of the orthogonal polynomials
with respect to the generalized Ditzian-Totik weight functions w, and ws are
not available in literature, the above mentioned algorithm cannot be used.

Following an idea proposed in [11] for the evaluation of one-dimensional
Hilbert transform, in this paper, we propose an algorithm that allow us to
overcome the above mentioned numerical difficulties. In fact, we approxi-
mate the integral ®(f;s,t) by using an interpolatory product rule in which,
irrespective of wy and ws, the quadrature knots are chosen to be the zeros
of the Chebyshev polynomials of first kind.

We show that the numerical amplification factor of the proposed quadra-
ture rule results bounded, except for logarithmic factors. Finally, we prove
the convergence of our method and we give error estimates for many classes
of function.

This paper is organized as follows. In Section 2 we state the above men-
tioned algorithm. In Section 3 we give some error estimates, while section 4
contains their proofs. In Section 5 we give some numerical examples and in
the Appendix we give the proof of Lemma 4.1.

2. An Algorithm for the Evaluation of Two-Dimensional
Hilbert Transform

Let Ly, .(f,x,y) be the Lagrange interpolating polynomial of f at the
Zeros

21 —1
xmi:cos% (z:l,,m)
and
(25 — 1)
n,j — - a5 = 17' )
Yn,j = COS o (j n)

of the Chebyshev orthonormal polynomials of first kind T, (z) and T, (y),
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respectively. We have

(21) Lm,n(fa €T, y) = Z Z lm,i(x)ln,j (y)f($m,i7 yn,j)a
i=1j=1
where
m—1
(2.2) () = = 37 Te(@) Te(wm.i)
k=0
and
n—1
(2:3) b (0) = = 3~ T (y) T ()
r=0

are the fundamental Lagrange polynomials.

Replacing f by Ly, »(f,z,y) into (1.1), we obtain the following Interpo-
latory Product Rule for the numerical evaluation of the integral ®(f;s,t)
where (s,t) € (—=1,1)2

(2.4) Dy (f58,1) = ZZA“” VB3 (8) f (@i Yn j),

=1 j=1
where
1

w lmz X
(25) Az = [ @)
and

w ! ln ](y)
(2.6) Bs(0) = [ ()

’ 1 y—t

The degree of exactness of this formula is (m,n) at least, i.e.,
O(z"y", s, t) = Opyn(x™y", s, 1).

In order to describe the algorithm, we give a representation for the coef-
ficients (2.5) and (2.6).
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Substituting (2.2) into (2.5) and following an idea used in [11], we obtain

(2.7) ALli(s) = Z_ Tk(l’ml)/ Tk(x)wl(a:)dx

r—s
k= 1

31A

o

Ty (2m,6)Qr(wn; 5),

where

1
Qr(wy;s) —/ Tk(m)wl(x)dzc.

Analogously, we obtain
T n—1
(28) B3 = 2 37 T yn) Q0 (w2,

r=0

where

Qwsit) = [ iy

Applying (2.7) and (2.8) we can rewrite formula (2.4) in the form

(2.9)

Cn(fisit) = 23S (Z_ Ti (1) Qi (w1 s>> x
k=0

i=1 j=1 =

X (Z Tr(?/n,j)Qr('wQ;t)) F (@i Yn,j)-

r=0

Since the Chebyshev orthonormal polynomials of first kind 7;(z) satisfy
the following very simple three-term recurrence relation

Ti+1(Z) = QZT,(Z) - Ti,l(z), 1= 2, 3, ceey

Ty(z) = % Ti(z) = \/gz Ty(z) = 2\/;2 - \/g

where
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It is easy to verify that the functions @Q;(w, A) satisfy the following relation-
ship

(210) qurl(w; )\) = 2)\@1(11), )\) - Q,;l(w, )\) + 2Mz(w), 1=2,3,...,

where

1
Mi(w):/ Ti(w(z)dz,  i=01,...,

-1

are the so-called “modified moments” (see [8]). Here,

1 1 w(z)
Qo(w; \) = ﬁ/l P /\dz,
Q1(w; \) = AW2Qo (w; \) + V2Mo(w),
Q2(w; A) = 22Q1 (w3 A) — V2Qo (w; A) + 2M; (w).

Taking into account the above recurrence relationships, we observe that
in (2.9) the only non trivial computations are those of Qo(w;A) and of
M;(w), i=0,1,....

For some weight functions, M;(w), i = 0,1,..., may be computed by
using the recurrence relationships developed in [12] and in [1]. In [6] it can
be found the explicit expressions for Q(w, A) when w is one of the following
weight functions:

1° Jz—al’, v>—-1withy#0,1,2,... and a, A € (—1,1) with a # X;
20 (1—a2)%z], 232 —1 € (=1,1);

3 (1—x)%x—al", y>—-1and a, X € (—1,1) with a # X;

4° (1+z)f|lz—al’, v > —1and a, X € (—1,1) with a # );

50 (1—22)"2logle/(1+z)], A=0.

However, when Qo(w, \) is not available, it is possible to get its estimate,
for example, by numerical integration writing

QO(w’A):/1 Mdm—w()\)/l da

1 T — A 1T —A

B L w(z) —w(N) 1-A
—/_1ﬁdm—w(k)logl+)\.
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3. Stability and Convergence of Quadrature Rule &, ,

In this section we want to show that the proposed method converges for
many classes of functions and it is numerically efficient. For this purpose,
we need the following preliminary definitions and notations.

The symbol C stands for some positive constant which may take a different
value each time it is used.

If A and B are two expressions depending on some variables, then we
write A ~ B iff [AB~!| < C and |A~!'B| < C, uniformly for the considered
variables.

We define the modulus of continuity of the function f € C°(I) by
(31) W(f,(S) = h T}?X<6{|Ah1,h2f($7y)‘ : (xay) € I> (l‘ + h1>y + hz) € I}7

where Ay, p, = f(z+ h1,y+ ha) — f(z,y) and hy, he,d > 0.

Through the modulus of continuity w(f;d) we may define the space of
the o— Holder continuous functions, Lip,, o, by

(3.2) Lipy,o={feC%) : w(f;0) <M, 0<o<1, M>0}.
We denote by C*(I),k > 0, the space of the continuous functions on I =

[—1,1]? with continuous partial derivatives of order i, where i = 0,1,... , k.

Furthermore, if f € C*(I), k > 0, we define the following uniform modulus
of continuity:

Qi(f;9)

where fF=% = 9k f/0xF—0y".
We denote by C**7(I), k > 0, the following class of functions:

max {w(fF750)),

i=0,1,...,

o (1) = {feck(f) CO(f:6) S M, 0< o <1, M>o}.

Obviously, if & = 0,Q(f;0) is equal to w(f;d), defined by (3.1), and
C**7 is equal to Lip,, o, defined by (3.2).

Let uq(z),u2(y) denote the singular parts of wi(z),wa(y) respectively.
For example, if wy () = (1 —2) Y2z 4+ 0.5|"/3 and ws(y) = |y|?/ log[e/|y]],
we define u; () = (1 — )~%2 and uy(y) = log [e/|y]].

Note that ®,, , can be regarded as a discrete operator of which the do-
main of definition is the space of the o-Ho6lder continuous functions. On the
other hand, by the following lemma, ®,, ,, f does not appear bounded on the
boundary of I. In fact, we have:
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Lemma 3.1. Let wy(z), w2(y) as in (1.2) and (1.3), respectively. Let vy (x)
and va(y) two Chebyshev weight functions of first kind. Let (s,t) € (—1,1)2.
Then the following inequalities

(3.3) Z]A“’l )| < Cuy(s) logm,

(3.4) Z 1B, ()| < Cua(t) logm

hold, where C is a positive constant independent of m,n,s,t, wy, ws, vy, and
V2.

Let u(z,y) = ujus. Let m,n be fixed, we have

sup |q)m7n(f;87t)u_l(s7t)| < +o0.
s,te[—1,1]

Therefore @, »,(f;s,t) is bounded on Cy-1, where

Cu*1 = {g : sup \g(w,y)ufl(m,y)] < +OO}
z,ye[—1,1]

Then, ®,, ,, is a map from Lip,; o into C,-1 and its norm is

[Pl = (|,

1= sup [[(@rng)u .
lgu=tl=1

We call ||®,, || the “numerical amplification factor” of the quadrature
rule ®,, »(f;s,1).

The following theorem shows that the “numerical amplification factor”
| @y || results bounded, except for logarithmic factors.

Theorem 3.1. Let (s,t) € (—1,1)2. Then the following inequality

P
(3.5) sup Nl < 400
m,neN logmlogn

holds.

The proof of the Theorem 3.1 easily follows by applying Lemma 3.1.

62

, an
V-2 (1-)

The convergence of quadrature rule ®,, ,, is established by the following
theorem.

Let Ryyp = © — Py, Y(s,t) = log dW =~"1u= L
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Theorem 3.2. Let wi(x), w2(y) as in (1.2) and (1.3), respectively. Let
(s,t) € (=1,1)2. Assume f € CkT7(I), k > 0. Then

1 k+o
(3.6) sup W (s, t)Rmn(f;s,t)] <C (— + —) logmlogn,
s,t€(—1,1) mon

where C is a positive constant independent of m,n,s,t and f.

4. Proofs
In order to prove Lemma 3.1 we need the following result:

Lemma 4.1. Letw(z) asin (1.2) andty = —1, t; = 1. Then the inequalities

(4.1) ‘/_11 ;U(xi\dx‘ <cC

(4.2) /_ 11 s

hold, where

o8 15 |0 [0

1 Vi = 0,
for j =0,1,2, and C is a positive constant independent on w, \,t; and ;.
The proof of the above lemma follows an idea used in [5, Lemma 3.1,
p. 24]. Because of completeness we give it in the Appendix.

For any s € (—1,1) \ {t2,t3},m € N, we denote by z,, . the closest knots
to s, defined by

Tm,d ifs —Tmd < Tm,dr1 — S
Tm,c = .
Tm,d+1 0fS — Tmd > Tmdr1 — S,
where z,, 4 < s < Ty, q41 for some d € {0,1,...,m} with z,,0 = —1,

Tm,m+1 = 1.
Analogously, for any t € (—=1,1) \ {t2,%3}, n € N, we denote by y, . the
closest knots to t.
Let
— Am,i(w)
ie1 ’xm,i - )\‘ .
itc
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Lemma 4.2. If w(z) = v*%(x) = (1 — 2)*(1 + z)P, then the inequalities

(4.3) o, (A) <Clogm if a,32>0,

(4.4) of (\) <Cv*P(Nlogm if —1<a,B<0,

hold uniformly for A\ € (—1,1).

The proof of the above lemma can be found in [4, Lemma 3.4, p. 454].
Let

. - ‘Tm—l(wm,i”
A) = Z Am,i(w)m-
i#c

Lemma 4.3. If w(z) = v*%(x) = (1 — 2)%(1 + z)P, then the inequality
(4.5) 0, (A) < Cy/ok,(N) logm

holds uniformly for A € (—1,1).

The proof of the above lemma can be found in [2, Lemma 3.1, p. 730].

Proof of Lemma 3.1. We first prove (3.3). Since the following decompo-
sition

A%IZ(S) = / lini() wi(@) = wi(s) dr + w(s) / () v1(s)dx

1 T—s vi(s) J_; ©=—s
= /_1 lm,i(x)—wl(x:z : ;Ul(s) dx

wi(s) [, v@) —wils) o wils)
— i [ T e+ DAL

holds, we have

(16) ZrA < o)) [ |22 0e)

r— S

dzx

vi(z) — v1(s)

dx
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m
Let us evaluate ) [A;] ;(s)|. Putting
i=1

1
1
AL (v, 8) :/ Ul(x)d:c T
1 T—S M “— T — S
i#c
we can see at once that
1°if 5 # Xy ¢, then for k # ¢
s 1
4.7 A (s) = A L i AR
( ) m,z(s) m(vl7 5) ) (S) + M T — S
TYm—1 7T_ Tm—l(xm z) T ( )
2 m\'c
Ym M S — Tm,i
and for £k = ¢
(4.8) AR (5) = Al (01,8l o(8) + Ly (71—
9 b m
where 7., 7. € (8, Zm,c);
2°if s = xy ¢, then for k # ¢
1 T2 T, ;
(4.9) A i(Tme) = . + Tm=t ) - 1<xm,Z)Tr/n(xm,c)
’ MITmi — Tm,c Ym MM Tm,c — Tm,i
and for £k = ¢
T
(4.10) A (Tme) = AL (V1, T ) + lin,c(fvm,c)a :

We observe that by [5, Lemma 3.2, p. 26], we have
(4.11) |AY (v1,8)] < Cvq(s).

Applying Bernstein’s inequality for a derivative of a polynomial (see [10,
p. 92]) and taking into account that z,, . ~ s and ||l,, c|| ~ 1, we have

(4.12)
WJ1—22
o

s
m lm’c($m,c)

El'lm,c(xmﬁ)

B T
/1 a:%n’c
T
< —————llmell
W1 — x%@’c

< Cuy(s).
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Moreover, taking into account the expression of the derivative of the
Chebyshev polynomial of first kind, we get

-1 c+1
(4.13) ‘ LT (@me) |= ™ mEDT 2 e (s).
m m - :C72n c

Since T, T, ~ T, in the same manner we can prove that
b

(4.14) FUARCAIETNE)
and
(4.15) ‘%m(n) < Cur(s).

Combining (4.7), (4.8), (4.9) and (4.10) with (4.11), (4.12), (4.13), (4.14),
and (4.15), we obtain

(4.16) A ()] < Cu(s)
and
. 1 T Tmfl(xmi)
. 1 < _—— —— .
(@IT) A5 ()] < Co@)limals)| + o+ Cuns) ot e

Thus, we have

Z!A“ \<Z!A“1 )+ 145.(5)]

77ﬁc

< 07 (8) + Cor(s)[1 + [[ L (v1)[| + 67, ()]-

By (4.4), (4.5) and taking into account that ||L,(v1)|| ~ 1 (see [13, The-
orem 14.4, p. 335]), we have

m

(4.18) Z |Apy i (8)] < Cui(s) logm.

i=1

Finally, combining (4.6) with (4.2) and (4.18), we complete the proof of
(3.3).

In the same manner we can prove (3.4). O

In order to prove Theorem 3.2 we need the following auxiliary results.
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Lemma 4.4. For any function f € CF(I),k > 0, and for any (m,n) €
N x N, there exists an algebraic polynomial Py, »(z,y) such that,

(4.19) Fmnllr < Cm™Y + 0 Y5 1 (f;m™ +nh)
and
(4.20) W(rm.n; 0) < Cw(f; V0)

where vy = f — Pyon and C is a positive constant independent of m, n,
and f. Moreover, for any function f € Lip,; o the following inequalities

(4.21) imn(8,9) = Tmn(s, 1) < C ly =1 (m™! 071772

(4.22) [P (2,8) = P 1(8,8)| < C o — 8|S (m™! 4 n71)77%
hold, where 2§ < o,x,y, s,t € [—1,1] and C is a positive constant independent
of m,n,s,t, and f.

The proof of Lemma 4.4 can be found in [3].

Let

z,y) — g(s, z,y) —glx,t
Hl(g;s,y):/ 9(@.y) —9(s:9) ;. Hg(g;x,t):/ 9(z.y) — g(z,t) |
1 r— S 1 y—t
and H = HHy = HyHq, we have the following result:

Lemma 4.5. For any function f € C*t7(I), k > 0, and for sufficiently
large m and n, the following inequalities

(4.23) |H1(Pmn; s, 1) <C(m™ +n~ 1) logn,

1 1

)

(4.24) |Hy (rns s, t] < C(m™' +n7 1) logm

hold uniformly for (s,t) € (—1,1)%, where C is a positive constant indepen-
dent of m,n,s,t, and f.

Proof. We first prove (4.24). Note that, for every e sufficiently small,

[

/t+m_’\ (Tm,n<3; y> _ Tm,n(sa t))l—e (

—m—A Yy — t

(4.25)  [Hy(rmn;s,t)] <

_l’_

rm,n(sa y) - Tm,n(sa t))sdy

holds for A > 0.
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By choosing A = 2, we give the proof for the case k = 0.
By (4.25) we have

|Ho (Trmn; 8, 6)] < 2||rmnll ‘logm2(1 +1)+ 10gm2(1 — t)‘

t+m > e
— t
b2l P8 0) = 08
t—m—A |y - 75|

and applying Lemma 4.4, we obtain:

| Ha (T n; s, t)] < C(m_1 + n_l)a logm
A

t+m”

+ C(m_l + n—l)a(a—2§)+a(l—e) / X ’Z/ _ t|§a—1dy
t—m~—

<Cm ™t +n"H%logm

+ C(mfl + n71)5(072£)+a(175)+2£5

<Cm ' 4+n"Hlogm

which proves (4.24). In the same manner we can prove (4.23). The case
k > 0 follows by the same method, by choosing A = (2§ + k)/¢. O

Lemma 4.6. For any function f € C*t7(I), k > 0, and for sufficiently
large m and n, the following inequality

|H(7mn; 8, )| < C(m_1 + n_l)kJ“’ log nlogm

holds uniformly for (s,t) € (—1,1)%, where C is a positive constant indepen-
dent of m,n,s,t, and f.

Proof. Our proof starts with the observation that

1 1
m,n ) - I'm,n\°, -~ I'm,n 7t m,n 7t
|m%m&m%//r,@y>r,@@ (@) (1) g
—1J-1 (z—s)(y—1)

// 1 1
L A AR O
L y— 1 — — 1 — — 1
le—s|>—5,ly—t|>—5 1J]z—s|<—3 L y—t[<—5

<

)
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ie.,
dx dy

osl> L 1T =8| Jjy—g> 2y [y — 1

H m,n; at - H m,ns at
P et Hamsiedl,,
|3£—s|<n—12 |'T_5‘

(4.26) |H(Tm.n; 8, t)| < 4||rmnll

H m,ns S, - H m,n; 7t
b Cmeied) - Hilrmaindl,,
|y7t|<# ‘y_ﬂ

= A + Ay + As.
We consider now the case k = 0. Applying (4.19) we obtain

(4.27) Ay < Olrmnlllogmlogn < C(m™ +n~ 1) logmlogn.

In order to estimate As we need the following estimate. Namely, since f €
Lip,; o, using (4.20) we have

‘HQ(Tm;n;xa t) - HQ(rm,n; 57t)| =

‘/1 Tm,n(sa y) — Tm,n(x7t) - rmm(&@/) - Tm,n(sat) ‘
= dy
-1 (y - t)

ly—t|<|z—s| ly—t|=|z—s|

|y — ly — ]
|z —s|
§C/ w(f; Vu)u~tdu + Cw(f; |z — s|Y?) log |z — 5|~}
0
< Clz — 5|7 log |z — 5|7t

holds. From what has already been proved it follows that

(4.28) Ay <C |z — 5|72 L log |z — 5| tdx

\z—s\<nl—2
’I’L_2
< C/ u?/?* ogu'du
0
C

< — logn.
nO’
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In the same manner we can see that
C

(4.29) Az < —logm
mO'

Finally, combining (4.27), (4.28) and (4.29) with (4.26) we prove the lemma
for k = 0.

We can proceed analogously to the proof of lemma for £ > 0. O

Lemma 4.7. Let wy(x), w2(y) as in (1.2) and (1.3), respectively. Supposing
that |s| <1, |t| <1, we have

(430) ‘/ / e dxdy’

<cC

) 1—s
(o)
gl—l-s

1—
log u(s, t),

t
1+t

where u is the singular part of wiws and C is a positive constant independent
of s and t.

Proof. Adding and subtracting wy (z)w2(t) we get

v |[ [ 2t
V/Maﬂﬁﬂwwﬂ

| )

=A+B.
Applying Lemma 4.1, we have

wgy

w(y) — ws(t) -
(4.32) A< dy <CJl t
‘/13;—3 y—t ysC s u(s,?)
and
1 1
d — 1—t
(4.33)B§w2(t)‘/ —y‘/ Mdl‘gClog u(s,t).
qy—t|J_q T —s 1+¢
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The combination of (4.32) and (4.33) with (4.31) proves (4.30). O
We are now able to prove Theorem 3.2.

Proof of Theorem 3.2. The proof is based on the following observation:

(4.34) Ry n(f;5,t) = Rinn(Fimn — Tmon(8,1); 8, 1)

= QT —Tmn(8,1);5,8) = Lo n (T — Tmon(S,1); 8, 1)

/ / rmn T,Y) — Tm.n(S,t) wn (2)ws(y)dedy

(x —s)(y—1t)

— Z Z A sz )(?"m,n(xm,ia yn,j) - rm,n(sv t))

=1 j5=1

= A+ B.
We begin by proving that (3.6) holds for £ = 0, i.e., f € Lip,, 0. Note
that by (4.19) and Lemma 3.1, we have

(4.35) Bl < 2[rm.nl ZZ [ A (9)]1B, 5 (1)

i=1 j=1

1 1\’
<cC <— + —> u(s,t) logmlogn,
m n

where u is the singular part of wjws.

In order to estimate A, we note that

/ / e xs)(ywl(;)wz(t)dxdy’

+ wl(s)wz(t){|H(va”; st +

(4.36) Al < Cllrmnl

1
1
08 1

— S
n S‘ ’H2(rm7n; S,t)|

+ |log

1—|—t"H1 Tm.n S, t)|}

Hence, by (4.19), (4.30) and Lemmas 4.5 and 4.6, we have

O
1+t 8145

og u(s,t) logmlogn.

(4.37) \m§c<i+l) 1
m n




An Algorithm for the Evaluation of the Two-Dimensional Hilbert ... 125
Finally, observing that

1 ) 1—t1 1-s <
0 0
v(s,t) 1+t % 11|

62

o 0B

(4.34), we complete the proof for & = 0. The same proof works for &k > 0. O

where (s, t) = and combining (4.35) and (4.37) with

5. Numerical Evaluations
In this section we show some approximate values for the integral ®(f; s, t),
(s,t) € (—1,1)2, obtained by using the algorithm described in Section 2.

Since in the following examples the exact answer is not known, the value
in the last line of each table that follow is thought to be correct to the
number of figures shown.

Example 1. Let

. —-1/2
flay) =™, wi(z) = \/11_—x210g (1+x) w2(y):\|}41|7__y2.

Let us evaluate the following integral

o(f;0, / / eyl c e
t) xdy.
1z(y — V1 —22y/1
Since, when w(z) = (1 — 2?)~"?loge/(1+ ) the explicit expression for
Qo(w, A) is available only for A = 0, we give the approximations of the above

integral for s = 0 and some selected values of ¢ (see Tables 5.1 and 5.2).

Table 5.1: Approximations ®y, pn in Example 1

m| n s=0,t=0.1 s=0,t=0.99
41 4(71. 25.
8| 8]71.4488 25.0177
1212 71.4488804461 25.017773973
16 | 16 | 71.4488804461501287 25.017773973233205
2020 | 71.448880446150128793911 25.017773973233205549400
24124 |71.4488804461501287939112183712 | 25.0177739732332055494003732408
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Table 5.2: Approximations @, in Example 1

m|n s=0,t=—-0.99 s=0,t=-0.5
4] 418.21 1.
8| 8|8.217 1.2608
12 128.2177020368 1.26086110111
16|16 | 8.217702036892015 1.2608611011106082
20|20 | 8.217702036892015633672 1.26086110111060823083358
24 (24| 8.2177020368920156336723146425 | 1.26086110111060823083358917389

Example 2. Let f(z,y) = sin(z +y) and wy(z) = wy(y) = 1. Let us
evaluate the following integral

O(f;5,t) = // Smxﬂ/) SMETY) edy.
(x —s)(y —t)

The corresponding numerical results for some selected values of s and ¢ are
presented in Tables 5.3 and 5.4.

Table 5.3: Approximations ®y, , in Example 2

m|n s=0.1,t=0.1 s =0.99,t=0.99
4| 4| -1. 21.5
8| 8| —1.10958 21.51974
12 (12| —1.1095876430 21.519746844
16|16 | —1.1095876430890965 21.5197468440861562
20|20 [ —1.1095876430890965997847 21.5197468440861562386179
2424 | —1.10958764308909659978475010769 | 21.5197468440861562386179778436

Table 5.4: Approximations @y, » in Example 2

m|n s=10.5,t=-0.99 s=-0.99,t=0.1
4| 418.9 7.9
8| 818.95737 7.925821
1212 8.95737672093 7.9258219285
16 | 16 | 8.9573767209349373 7.9258219285504369
20|20 [ 8.95737672093493733377544 7.92582192855043697557251
26|26 | 8.957376720934937333775440603043 | 7.925821928550436975572519016997

In the above example w; and ws are two Legendre weight functions. As we
said in the introduction, since the zeros and the Christoffel numbers of the
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orthogonal Legendre polynomials are known, for the numerical evaluation
of the above integral it is possible to use a Gauss type quadrature rules [7].
Comparing the above tables with some of those showed in [7, Example 2], we
can note that the Gauss type quadrature rule proposed in [7] converges faster
than the interpolatory product rule proposed in this paper. More precisely,
by the Gauss type quadrature rule proposed in [7], the results written in the
last line of each table showed in the above example are obtained by using only
12 points. Because of this observation, when the zeros and the Christoffel
numbers of the orthogonal polynomials associated with the weights functions
wy and ws are available, it is convenient to use the algorithm proposed in [7].

Example 3. Let
1

2 +y2+4’
wi(x) = (1—2)7342z+0.999] 74 and wy(y) = (1—y)"V?|y+0.999|71/2.

Let us evaluate the following integral

flz,y) =

1 1 ¢4 . \—3/4 —1/47q _ N—1/2 —1/2
(I)(f;s’t):/l/l(l 2) 7342 4+ 0.999] 74 (1 — )12 )y + 0.999) dudy.

(22 +y2 +4)(z —s)(y — 1)

Numerical values ®,, ,, for selected values of s and ¢ are given in Tables 5.5
and 5.6.

Table 5.5: Approximations ®m,n in Example 3

m|n s=0.1,t=0.1 s =0.99,t=0.99
4| 41-0.06 —8.
8| 8| —0.0642 —8.07
16 [ 16 | —0.0642501079 —8.07115948
32132 | —0.06425010794615205128 —8.071159486314938872
48148 | —0.064250107946152051282873062 | —8.071159486314938872422636422

Table 5.6: Approximations ®y, , in Example 3

m|n s=0.5,t=-0.99 s=—-0.99,t=0.1
41 4(-3.2 —0.11
8| 8|—3.249 —0.1178
16 [ 16 | —3.249577755 —0.117887698
32132 | —3.249577755461490754 —0.1178876987017843238
48 1 48 | —3.24957775546149075486842338 | —0.117887698701784323856691732
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Finally, we show an example of approximating the integral ®(f;s,t) in
which the function f is less regular than those previously considered.

Example 4. Let

y) = Vay? — a?

Let us evaluate the following integral

\/332 2oy +1 1/2),.11/2
t) dxd
®(f;s,1) / / x_s)(y n | = |yl dady.

Note that if we take vy (z) = /|z[v1 — 22 and va(y) = /|y|/1 — 32, the

above integral is the product of Qp(vy;s) and Qo(vg, t) of which the exact
values are known [6].

g2+ L wie) =2V wa(y) =yl

In the following tables, we give the absolute error E,, ,, where m and n
are the total number of knots used by the rule (2.4), for different value of s
and t.

Table 5.7: The errors Epm n of approximations ®m,,, in Example 4
for some selected pairs (s, t)

m

n

(0.1,0.1)

(0.99,0.99)

(0.5, —0.99)

(—0.99,0.1)

40
80
160

40
80
160

3.097E -5
4.876E -6
1.860E — 7

1.450E — 2
3.302E -3
2.896 E — 4

1.293E -3
2.120E -4
2482E -5

1.645E — 3
3.474E — 4
3.189E -5

The corresponding exact values are

®(f;0.1,0.1) = 0.2602884101349369515278081455101 . .. ,
®(£;0.99,0.99) = 5.5153344260999470786046295364990. . . ,
®(f;0.5,—0.99) = —0.8009418851755681593843793828090. . . ,
®(f;—0.99,0.1) = 1.1981559285552277983555435232066 . . . .

In agree with the theoretical expectation, when the smoothness of the
function f decreases the approximation error E,, ,, increases.

All the computations were done in Q-arithmetic on the VAX 6510 com-
puter (with machine precision ~ 1.93 x 10734).
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6. Appendix
Proof of Lemma 4.1. We first prove (4.2). We define

e

¢j(z) = |z —t;"Vw(z) (1=0,1,2),  ¢3(z)=log™ " ——w(x).
|z — 3]

If —1 < A< —1—¢, we can consider the following decomposition:

1 2)\+1 t2—2€ t2+2€
o e [T [T L
—1 —1 2A+1 to—2¢
t3—2€ t3+26 1
wf e [T [
t2+2€ t3—26 t3+26

=Lh+1+ I3+ 14+ I5 + Ig.

w(z) —w(A)
T — A

Now, we have

(I+z)70 — (14 A)0

22+1
(6.2) I = /_1 do(z) r—A o
P go(e) — o))
~+O+AW‘/1 ‘—_ETI__Px
2241 0
<C/ +@x_§+kV dz + C(1 + )| (€)-

Let 14+ 2 =y(1 4+ A). Then we obtain

22+1 (14 2)° — (14 X)w 21y —1
6.3 dr < (14 X)7° d
(63) /1 T —A x_(+)/o y—l‘y
1 Yo _ 9;—70
X,
o )i 1=yl
1 2
{/ + }70 (1—vy —1- 70 dy
0 1
<C(1+ M)

Combining (6.2) with (6.3) we get

(6.4) I < C(1+ \)Tg(N).
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For I and I, we have the following estimates

(6.5) L <Clw'(§)|<C
and
(6.6) I,<C.

Moreover, since x — A > C, we have

to+2e
(6.7) g:l 6a(2)

’:B — tQ‘WQ — ’)\ — tQPQ

dz + C|A — 12| |5 (€)]

2—2¢ r—A
t2+25
<C |z — to|?dx + C|\ — to|?
t2—2€
< CIA —t2|?Ta(N)
and similarly
(6.8) Iy < Clog™ — 5 w,()),
A —t3]
(6.9) Is < C(1 = X)Wy (N).

Combining (6.4), (6.5), (6.6), (6.7), (6.8) and (6.9) with (6.1) we obtain
(4.2). Analogously, we doif 1 —e < A < 1.

If to — e < A < t3, we can consider the following decomposition:

1 to—2¢e 2A—to to
(6.10) / @:/ m+/ m+/ N
—1 —1 t2—2€ 2A—t2
to+2e ts—2e ts+2e
+/ m+/ m+/ ..
tz t2+2€ t3—25
1
o
t3+2€

=L+L++1,+ I+ I+ I

w(zx) —w(A)
T —A
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Here, we have

‘SL’ — t2|’y2 — |)\ — t2|72

(6.11) gzéz 6 (2)

A—t2 T=A
to —
+|>\t2|72/ M‘dﬂ?
A—ts z—A
to — 15|72 — )\—t 72
“c |x — ta] ‘ 2| dx + C|\ — 2295 (€)].
2A—to r=A

Let  — to = y(A — t2). Then, we obtain

to
(6.12) /
2 —to

N R CIN [ W o7 2
2 = o[ = A =t dxﬁ]A—QWa/
Tz —A 0

1 Y2 Y2
<!A—t2|”2{/ /} R Y
]
<A ta {/ +/ }yW(l—y)—l—wy
0 1

< CA — to] 2.

y’72_1
=

Combining (6.11) with (6.12) we get
(6.13) I < CIN — 122 Wa(N).

The rest of the proof runs as in the previous case. Analogously, we do if
o <A <ty+e.
If t3 — e < A < t3, we can consider the following decomposition:

1 to—2¢ to+2e t3—2¢
— )\ 2 2 3
(6.14) / Mm'“ﬂm:/ m+/ m+/ .
-1 T —A -1 ta—2e ta+2e
2)\—t3 t3 t3+26
L A R A
t3—2¢e 2A—t3 ts
1
o
t3+2£

=L+ + I+ 1)+ I + I§ +I7.
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Then, we have

t3

(6.15) It = / b ()

A—ts3

_ 1Og’Y3

Y3 e
log [A—ts]

e
|I—t3|

T — A

t3

dx

¢3(z) — P3(N)
T — A

+log”? ——— dx

IN—1t3] Jon_t,

e
‘:E—t3|

T — A

e

t3
[A—ts]

—log”®

log”? e

dx + Clog™
8 |\ —t3]

|65(8)]-

<cC

2\—t3

Let x — t3 = y(A — t3). We obtain

t3
(6.16) /
2A—t3

e
|z—t3]

T — A

e
[A—ts]

log’Ys _ log'Y3

2
<)
0

1/2 1 d 2
S/ log73——y+/

0 yl—y 1/2

1/2 1 2
g/ logpy?’—dy—i—/ —dy <C.
0 Y 1/2Y

dzx

Y3 e 3 e
log™ iy —log” iy

y—1

dy

v8 1 _
logBy 0

y—1 W

Combining (6.15) with (6.16) we get

e
|\ —t3]

(6.17) I <Clog™ U3 (N).

The rest of the proof runs as in the previous case. Analogously, we do if

t3 < A<t3+e.

Now, we are ready to prove (4.1). Since

| [ 2 g < [ |t )

T —A
applying (4.2), we prove (4.1). O

Lode
1[13—)\ ’

dx + w(N) '/
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