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Abstract. Let A be a complex unital Banach algebra. If Ω is an subset

of A, then the Ω-spectrum of a ∈ A is SpΩ(a) = {λ ∈ C : a − λ �∈ Ω}.
A natural question is what should be chosen for Ω if we want to make these
investigations worthwhile? Of course many applications suggest the choice of
Ω. In this paper, among other things, we wont to show that Apostol’s paper
[3] implicitly suggested several examples of Ω, and we survey some results and
problems connected with Apostol’s results.

1. Introduction

From the beginning of Banach algebra theory (cf. [40]) the spectrum has
played a basic role in the general theory and in its applications. Recall that
if A is a complex unital Banach algebra, a ∈ A, then the spectrum,σ(a) , of a
is the set of complex number λ for which a−λ is not invertible in A. It is well
known that σ(a) is a compact nonempty subset of the set of complex numbers
C. Let r(a) = sup{|λ| : λ ∈ σ(a)} be the spectral radius of a. The spectrum
is an important concept in the standard examples of Banach algebras that
occur in applications. For operators on a Banach space the spectrum is the
usual operator spectrum, and the Fredholm spectrum (essential spectrum)
is the spectrum in the Calkin algebra.
If Ω is an subset of A, then the Ω-spectrum of a ∈ A is ([114])

SpΩ(a) = {λ ∈ C : a− λ �∈ Ω}.
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Of course, it may be that SpΩ(a) is empty for some a. If A−1, A−1
l and

A−1
r are the sets of all invertible, the left invertible and the right invertible

elements in A, then SpA−1
(a), SpA

−1
l (a) and SpA

−1
r (a) are the spectrum, left

spectrum and right spectrum of a, respectively. It should be clear that if Ω
has some properties close to the set of all invertible A−1 (e.g. Ω is an open
subset in A, or an open semigroup in A), then the set SpΩ(a) is expected to
have some properties of the ordinary spectrum. A natural question is what
should be chosen for Ω if we want to make these investigations worthwhile?
Of course many applications suggest the choice of Ω. In this paper, among
other things, we wont to show that Apostol’s paper [3] implicitly suggested
several examples of Ω. Although Apostol’s results were published in 1985.,
they are very actual nowadays, and here we survey some recent results and
problems connected with them.
In Section 2 we gather some results and notations from Fredholm, semi-

Fredholm, Browder, and semi-Browder theory connected with Section 4 and
Section 5. We primary wont to mention some less known results.
In Section 3 we present some Apostol’s result from [3] (see also [1], [2]).

These results have been proved for bounded linear operators on Hilbert
space, and some of them mutátis mutándis are true for bounded (even closed
densely defined) linear operators on Banach space.
In Section 4 we consider bounded linear operators on Banach space, con-

nected with Apostol’s results, but we don’t suppose that any operator has
complemented null space or range space.
Finally, Section 5 is a continuation of Section 4, we consider bounded

linear operators on Banach space, and we suppose that some operators have
complemented null space or range space.

2. Fredholm Operators and Generalizations

Let X be an infinite-dimensional complex Banach space and denote the
set of bounded (compact) linear operators on X by B(X) (K(X)). For T
in B(X) throughout this paper N(T ) and R(T ) will denote, respectively,
the null space and the range space of T . Let N∞(T ) = ∪nN(Tn) and
R∞(T ) = ∩nR(Tn) be, respectively, the hyperkernel and the hyperrange of
T [55]. Set α(T ) = dimN(T ) and β(T ) = dimX/R(T ). Recall that an
operator T ∈ B(X) is semi-Fredholm if R(T ) is closed and at least one of
α(T ) and β(T ) is finite. For such an operator we define an index i(T ) by
i(T ) = α(T ) − β(T ). It is well known that index is continuous function
on the set of semi-Fredholm operators. Let Φ+(X) (Φ−(X)) denote the
set of upper (lower) semi-Fredholm operators, i.e., the set of semi-Fredholm



Apostol Spectrum and Generalizations: a Brief Survey 81

operators with α(T ) < ∞ (β(T ) < ∞). An operator T is Fredholm if it is
both upper semi-Fredholm and lower semi-Fredholm. Let Φ(X) denote the
set of Fredholm operators. Set Φ0(X) = {T ∈ Φ(X) : i(T ) = 0}. Recall that
a(T ) ( d(T ) ), the ascent (descent) of T ∈ B(X), is the smallest non-negative
integer n such that N(Tn) = N(Tn+1) (R(Tn) = R(Tn+1)). If no such n
exists, than a(T ) = ∞ ( d(T ) = ∞ ). An operator T is called upper semi-
Browder if T ∈ Φ+(X) and a(T ) < ∞; T is called lower semi-Browder if T ∈
Φ−(X) and d(T ) < ∞ [55, Definition 7.9.1]. Let B+(X) (B−(X)) denote
the set of upper (lower) semi-Browder operators. An operator T is Browder if
it is both upper semi-Browder and lower semi-Browder [55, Definition 7.7.1].
Let B(X) denote the set of Browder operators, i.e., B(X) = B+(X)∩B−(X).
It is well known that Φ(X), Φ0(X), Φ+(X) and Φ−(X) are open semigroups
in B(X), and it is less known that B+(X) and B−(X) are open subsets in
B(X) [71, Satz 4], and that (see [55, Theorem 7.9.2]) S, T ∈ B±(X) and
ST = TS, implies ST ∈ B±(X).
The sets of upper semi-Fredholm, lower semi-Fredholm and Fredholm op-

erators are stable under compact perturbation, and for the semi-Browder
operators, recall the following Grabiner’s result ([50, Theorem 2], [55, The-
orem 7.9.2]).

Theorem 2.1. Suppose that T ∈ B(X), K ∈ K(X) and TK = KT . Then

T ∈ B±(X) =⇒ T +K ∈ B±(X).

It is known that the commutativity condition in Theorem 2.1 is essential
(see e.g. [136, p. 599]).
The fact thatK(X) is a closed two-sided ideal in B(X) enables us to de-

fine the Calkin algebra overX as the quotient algebra C(X) = B(X)/K(X).
C(X) is itself a Banach algebra in the quotient algebra norm ‖T +K(X)‖ =
infK∈K(X) ‖T + K‖. We shall use π to denote the natural homomorphism
of B(X) onto C(X); π(T ) = T +K(X), T ∈ B(X). Let re(T ) = r(π(T ) be
the essential spectral radius of T . An operator T ∈ B(X) is Riesz operator
if re(T ) = 0. Let R(X) denote the set of Riesz operators in B(X). The
semi-Fredholm radii of the operator T are

r±(T ) = sup{ε ≥ 0 : T − λI ∈ Φ±(X) for |λ| < ε},
and if both r+(T ) and r−(T ) are positive, then they are equal. The following
results ([110], [111]) are generalization of Theorem 2.1.

Theorem 2.2. Suppose that T, K ∈ B(X) and TK = KT . Then

T ∈ B±(X) and re(K) < r±(T ) =⇒ T +K ∈ B±(X).
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Corollary 2.3. Suppose that T ∈ B(X), K ∈ R(X) and TK = KT . Then

T ∈ B±(X) =⇒ T +K ∈ B±(X).

Let σa(A) and σd(A) denote, respectively, the approximate point spectrum
and approximate defect spectrum of an element A of B(X). Set

σek(A) = {λ ∈ C : A− λI �∈ Φ+(X) ∪ Φ−(X)},
σew(A) = {λ ∈ C : A− λI �∈ Φ(X)},
σem(A) = {λ ∈ C : A− λI �∈ Φ0(X)},
σeβ(A) = {λ ∈ C : A− λI �∈ Φ−(X)},
σeα(A) = {λ ∈ C : A− λI �∈ Φ+(X)},
σeb(A) = {λ ∈ C : A− λI �∈ Φ0(X)} ∪ {limit points of σ(A)}.

Let us recall that σek(A), σew(A), σem(A) and σeb(A) are (the classical es-
sential spectra) respectively called the essential spectrum of A according to
Kato [63], Wolf [135], Schechter (Weyl) [117, 118, 119, 120] and Browder
[11].σeβ(A) and σeα(A) are essential spectrum of A according to Gustafson
and Weidmann [53] (for more details see, e.g., [35], [97] or [105], and refer-
ences therein). The set of upper (lower) semi-Browder operators and Brow-
der operators define, respectively, the corresponding spectra

σab(A) = {λ ∈ C : A− λI �∈ B+(X)},
σdb(A) = {λ ∈ C : A− λI �∈ B−(X)}.

It is clear that σeb(A) = σab(A) ∪ σdb(A); σab(A) and σdb(A) are respec-
tively called the Browder´s essential approximate point spectrum of A and
Browder´s essential defect spectrum of A ([106], [110], [139], [141]).
Set

Φ−
+(X) = {A ∈ Φ+(X) : i(A) ≤ 0},
Φ+

−(X) = {A ∈ Φ−(X) : i(A) ≥ 0},
σea(A) = {λ ∈ C : A− λI �∈ Φ−

+(X)},
σed(A) = {λ ∈ C : A− λI �∈ Φ+

−(X)}.
Φ−

+(X) and Φ
+
−(X) are open semigroups in B(X) ([103], [104], [105], [128]),

and

σea(A) =
⋂

K∈K(X)

σa(A+K) and σed(A) =
⋂

K∈K(X)

σd(A+K).
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The essential approximate point spectrum σea(A) of A has been studied
in ([29], [30], [31], [32], [103], [104], [105], [106], [107], [128], [139], [141]).
Clearly, the essential defect spectrum of A ∈ B(X), σed(A) is a dual version
of σea(A).
The polynomial hull Ê of a compact subset E of the complex plane C is

the complement of the unbounded component of C \ E. Here and in what
follows ∂E denotes the boundary of the set E.
Now we present some results ([106]) which characterize σab(A), and the

corresponding dual results are true for σdb(A).

Theorem 2.4. Suppose that T ∈ B(X). Then:

(1)
σab(T ) =

⋂

TK=KT
K∈K(X)

σa(T +K).

(2) λ ∈ σa(T ) \ σab(T ) if and only if λ is an isolated point of σa(T ),
an eigenvalue of T of finite multiplicity, a(T −λ) < ∞ and R(T −λ)
is closed.

(3) Let λ ∈ σa(T ) be an isolated point of σa(T ) and let a(T − λ) =∞.
Then λ ∈ σea(T ).

(4) σab(T ) = σea(T ) ∪ { limit points of σa(T )}.
(5) σea(T ) ⊂ σab(T ) ⊂ σeb(T ).

(6) ∂σeb(T ) ⊂ ∂σab(T ) ⊂ ∂σea(T ).

(7) σ̂ea(T ) = σ̂ab(T ) = σ̂eb(T ).

Recall that if (Gn) is a sequence of compact subset of C, then the limit
inferior , lim inf Gn, is the set of all λ in C such that every neighbourhood
of λ has a non-empty intersection with all but finitely many Gn. The limit
superior, lim supGn, is the set of all λ in C such that every neighbourhood
of λ intersects infinitely many Gn. If lim inf Gn = lim supGn, then limGn
is said to exist and is equal to this common limit.
A mapping s defined on B(X) whose values are compact subset of C

is said to be upper (lower) semi-continuous at A when if An → A then
lim sup s(An) ⊂ s(A)(s(A) ⊂ lim inf s(An)). If s is both upper and lower
semi-continuous at A, then it is said to be continuous at A and in this case
lim s(An) = s(A).
There are extremely numerous papers on the continuity of the spectrum,

its parts and the spectral radius (see e.g. [15], [16], [18], [19], [25], [26], [27],
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[28], [30], [31], [32], [59], [93], [95], [96], [101], [102], [106], [109]). Recall that
the mappings A → σem(A) and A → σeb(A) are upper semi-continuous at A
([95, Theorem 1], [96, Theorem 2]), and ([106, Theorem 3.2]) the mappings
T �→ σab(T ) and T �→ σad(T ) are upper semi-continuous at T . S. Djordjević
has obtained for operators on separable Hilbert space necessary and sufficient
conditions for the continuity of the mappings A → σea(A) [31] and A →
σab(A) [30].
The usual spectral mapping theorem for linear operators may be gener-

alized to the theorems of the form

(2.1) σi(f(A)) = f{σi(A)},

where σi(A) is a certain subset of the σ(A), and f is an analytic func-
tion defined on a neighbourhood of σ(A). It is well-known that if i ∈
{ek, ew, eb, eα, eβ, ab, ad}, then (2.1) is valid ([52], [94], [96], [14], [33], [104],
[106], [128]), and that

σek(f(A)) ⊃ f{σek(A)},
σem(f(A)) ⊂ f{σem(A)},
σea(f(T )) ⊂ f{σea(T )},
σed(f(T )) ⊂ f{σed(T )},

and the inclusions may be proper. C. Schmoeger [128] has described the set
of all A ∈ B(X) such that σea(f(A)) = f(σea(A)), for all analytic function
f defined on a neighbourhood of σ(A), and the set of all A ∈ B(X) such
that σed(f(A)) = f(σed(A)), for all analytic function f defined on a neigh-
bourhood of σ(A). Then he considers necessary and sufficient conditions on
A which ensure that σem(f(A)) = f(σem(A)), for all analytic function f
defined on a neighbourhood of σ(A).

3. Apostol Spectrum

Let X be an infinite-dimensional complex Banach space. For an element
T inB(X) the reduced minimum modulus of T , γ(T ), is defined by γ(T ) =
inf{‖Tx‖/dist (x,N(T )) : dist (x,N(T )) > 0}; if T = 0 then we set γ(T ) =
∞. Recall that R(T ) is closed if and only if γ(T ) > 0 [63, p. 231]. If
N(T ) = {0}, then γ(T ) = µ(T ), where µ(T ) is the minimum modulus of
T , defined by µ(T ) = inf{‖Tx‖ : ‖x‖ = 1}. While the minimum modulus is
continuos function, the reduced minimummodulus is not continuous function
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in general. Even the function λ �→ γ(T − λ) defined for complex λ is not
continuous in general (see [62, pp. 282, Remark 3]).
In this section we shall present some Apostol’s results [3]. These results

are connected with the point of continuity of the function λ �→ γ(T − λ),
λ ∈ C.
Let H be a Hilbert space and T ∈ B(H). If M is a closed subspaces

of H, then PM will denote the orthogonal projection of H onto M . Recall
that µ ∈ C is a T– regular point if the function λ �→ PN(T−λ), λ ∈ C, is
norm-continuous at µ. If µ ∈ C is not T–regular, then it is T–singular. Set

σc.r(T ) = {λ ∈ σ(T ) : R(T − λ) is closed},
σrc.r(T ) = {λ ∈ σc.r(T ) : λ is T–regular},
σsc.r(T ) = {λ ∈ σc.r(T ) : λ is T–singular}.

Theorem 3.1. Let H be a Hilbert space and T ∈ B(H). For every µ ∈ C,
limλ→µ γ(T − λ) exists and the following implications hold true:

µ is T–regular =⇒ γ(T − λ) is continuous at µ;(1)

lim
λ→µ

γ(T − λ) > 0 =⇒ µ is T–regular.(2)

Definition 3.2. Let H be a Hilbert space and T ∈ B(H). Set

σγ(T ) = {λ ∈ C : lim
λ→µ

γ(T − λ) = 0}, ργ(T ) = C \ σγ(T ).

Let us call σγ(T ) the Apostol spectrum of T (see [67], [68], [100]).

Theorem 3.3. The set σγ(T ) is closed and

∂σ(T ) ⊂ σγ(T ) ⊂ σ(T ),(1)

σγ(T ) = σsc.r(T ) ∪ {µ ∈ C : γ(T − µ) = 0},(2)

ργ(T ) = σrc.r(T ) ∪ ρ(T ).(3)

Theorem 3.4. There exists an analytic function F : ργ(T ) �→ B(H) such
that

(T − λ)F (λ)(T − λ) = T − λ, F (λ)(T − λ)F (λ) = F (λ), λ ∈ ργ(T ).
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Theorem 3.5. Let G be an open subset of C and let F : G �→ B(H) be an
analytic function such that (T − λ)F (λ)(T − λ) = T − λ, λ ∈ G. Then
G ⊂ ργ(T ) and we have

(T − λ)n+1 d
nF (λ)
dλn

(T − λ)n+1 = n!(T − λ)n+1, λ ∈ G, n ≥ 0.

γ((T − λ)n+1) ≥ n!
∥∥d
nF (λ)
dλn

∥∥−1
, λ ∈ G, n ≥ 0.

Theorem 3.6. Let T ∈ B(H) and f be an analytic function defined on a
neighbourhood of the spectrum of T . Then

σγ(f(T )) = f{σγ(T )}.
Theorem 3.7. Suppose 0 ∈ ργ(T ) and let r denote the radius of the largest
open disk centered at 0 and included in ργ(T ). Then limn→∞ γ(Tn)1/n exists
and we have limn→∞ γ(Tn)1/n = r

Corollary 3.8. Suppose 0 ∈ σγ(T ) and the connected component of σγ(T )
containing 0 is singleton. Then limn→∞ γ(Tn)1/n exists and, if strictly pos-
itive, coincides with the radius of the largest open disk centered at 0 and
included in ργ(T ) ∪ {0}.

Remark 3.9. For further generalizations, and results of the independent in-
terest, but connected with above results, see e.g., ([72], [73], [74], [81], [82], [83],
[84], [85], [90]) and references therein.

4. V0(X),V(X) and Corresponding Spectra

IfM and N are two closed subspaces of the Banach space X, set δ(M,N)
= sup{dist (u,N) : u ∈ M, ‖u‖ = 1}; (if M = {0} then δ(M,N) = 0) and
δ̂(M,N) = max [δ(M,N), δ(N,M)]. δ̂ is called the gap (or opening) between
the M and N ([63, p. 197], [98]).
For the convenience of the reader, recall the following well known result

of A. S. Markus [80, Theorem 2 and Remark 1].

Theorem 4.1. Suppose that A,An ∈ B(X), R(A) and R(An) are closed,
n = 1, 2, . . . , and let An → A. Then the following conditions are equivalent:

inf
n
γ(An) > 0,(1)

lim
n→∞ γ(An) = γ(A),(2)

lim
n→∞ δ̂(N(An), N(A)) = 0,(3)

lim
n→∞ δ̂(R(An), R(A)) = 0.(4)



Apostol Spectrum and Generalizations: a Brief Survey 87

Theorem 4.1 gives a nice connection between the gap function and the
reduced minimum modulus, when the continuity of the reduced minimum
modulus is considered. For the recent applications of Theorem 4.1 see J.
Koliha and V. Rakočević [66], and V. Rakočević [112]. We applied Markus
theorem to study the continuity of the generalized Drazin inverse (see [64],
[65]) and the continuity of the Drazin inverse for elements of Banach algebras
and bounded linear operators on Banach spaces.

Following Grabiner [51], for each n ≥ 0, T ∈ B(X) induces a linear
transformations from R(Tn)/R(Tn+1) �→ R(Tn+1)/R(Tn+2). Denote by
kn(T ) the dimension of its null space and let

k(T ) =
∞∑

n=0

kn(T ).

Lemma 4.2. ([51], Lemma 3.7) Let T ∈ B(X) and n ≥ 0. Then:

k(T ) = sup
n
dim

N(T )
N(T ) ∩R(Tn+1)

,(1)

k(T ) = dim
N(T )

N(T ) ∩R∞(T )
,(2)

k(T ) = sup
n
dim

R(T ) +N(Tn)
R(T )

,(3)

k(T ) = dim
R(T ) +N∞(T )

R(T )
.(4)

Let us remark that k(T ) = n < ∞ precisely when T has Kaashoek’s
property P (I, n) [60, pp. 452-453], or when T has almost uniform descent
([51, Definition 1.3]). In particular k(T ) = 0 if and only if N(T ) ⊂ R∞(T ),
or when T is hyperexact ([56], [57], [58]).
The following theorem gives several equivalent conditions for the conti-

nuity of the function λ �→ γ(T − λ) (e.g. see [5], [79], [88], [92], [129], [130]).

Theorem 4.3. Let T ∈ B(X) be an operator with closed range. Then the
following conditions are equivalent:
(1) the function λ �→ γ(T − λ) is continuous at λ = 0,
(2) there exists ε > 0 such that inf{γ(T − λ) : |λ| < ε} > 0,

(3) limλ→0 δ̂(R(T ), R(T − λ)) = 0,

(4) limλ→0 δ̂(N(T ), N(T − λ)) = 0,
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(5) N(T ) ⊂ R∞(T ),

(6) N∞(T ) ⊂ R(T ),

(7) N∞(T ) ⊂ R∞(T ).

Now, set

V0(X) = {A ∈ B(X) : R(A) is closed and k(A) = 0},
V(X) = {A ∈ B(X) : R(A) is closed and k(A) < ∞}.

It is well known that Φ+(X)∪Φ−(X) ⊂ V(X); V0(X) and V(X) are neither
semigroups nor open or closed subset of B(X) (see e.g., [42], [56], [57]). From
the papers of M. A. Goldman [42] and C. Schmoeger [125] we get

int(V(X)) = Φ+(X) ∪ Φ−(X),(4.1)

int(V0(X)) = {A ∈ Φ±(X) : α(A) = 0 orβ(A) = 0}.(4.2)

An operator T ∈ V0(X) (V(X)) is called semi-regular, s-regular, Kato
regular, Kato non-singular, . . . (essential semi regular, essential s-regular,
. . . ). The semi-Fredholm and semi-Browder operators are closely related
with semi-regular and essentially semi-regular operators which (under vari-
ous names) were intensively studied, (see e. g. [9], [23], [43], [44], [45], [46],
[51], [55], [56], [57], [58], [62], [67], [68], [69], [70], [72], [73], [76], [82], [83],
[84], [85], [86], [87], [88], [89], [92], [100], [109], [115], [116], [122], [124], [125],
[126], [127]). From a number of equivalent properties, for the beginning we
point out the following Kato–type decomposition theorem ([92], [109]) for
operators in V(X) which is related to Kato’s theorem for semi-Fredholm
operators ([62, Theorem 4], [134, Proposition 2.5]).
Let T|M denotes the restriction of T to the subspace M of X.

Theorem 4.4. (Kato decomposition) T ∈ V(X) if and only if R(T ) is
closed and there exist closed subspaces X1, X2 ⊂ X invariant with respect
to T such that X = X1 ⊕ X2, dimX1 < ∞, T |X1 is nilpotent and T |X2 ∈
V0(X2).

Let us remark that if T ∈ B(X) is a lower semi-Browder operator then
the space X2 in the Kato decomposition is determined uniquely and X2 =
R∞(T ). Thus T |X2 is onto.
If M ⊂ X, then M denotes the closure of M in X.
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Theorem 4.5. ([51, Theorem 4.10], [46, Theorem 3]) Suppose that T ∈
V(X), S ∈ B(X) and TS = ST . If T − S is sufficiently small, then:
(1) S ∈ V(X).
(2) R(Sn)/R(Sn+1) and R(Tm)/R(Tm+1) have the same dimension for

all sufficiently large m and n.
(3) N(Sn+1)/N(Sn) and N(Tm+1)/N(Tm) have the same dimension

for all sufficiently large m and n.
(4) R∞(T ) is a subspace of R∞(S) with codimension less than or equal

to k∞(T ).

(5) N∞(T ) is a subspace of N∞(S) with codimension less than or equal
to k∞(T ).

(6) k∞(S) ≤ k∞(T ).
(7) ‖S − T‖ < γ(T ) =⇒ k(S) ≤ k(T ).

(8) N∞(S) ∩R∞(S) = N∞(T ) ∩R∞(T ).

Theorem 4.6. ([51, Theorem 5.9, Theorem 5.8]) If T ∈ V(X), S ∈ B(X),
TS = ST and T − S ∈ K(X), then
(1) S ∈ V(X).
(2) dim(R(Sn)/R(Sn+1)) = dim(R(Tm)/R(Tm+1)) for all sufficiently

large m and n.
(3) dim(N(Sn+1)/N(Sn)) = dim(N(Tm+1)/N(Tm)) for all sufficiently

large m and n.
(4) dim[R∞(T ) +R∞(S)]/[R∞(T ) ∩R∞(S)] < ∞.

(5) dim[N∞(T ) +N∞(S)]/[N∞(T ) ∩N∞(S)] .

Now, set

σg(A) = {λ ∈ C : A− λI �∈ V0(X)},
σgb(A) = {λ ∈ C : A− λI �∈ V(X)}.

The set σg(T ) and its essential version the set σgb(T ) were studied (under
various names and notations) by many authors, see e.g., [56], [67], [68], [69],
[70], [75], [88], [92], [100], [109], [122] and [124]. Clearly, if H is a Hilbert
space, then σg(A) = σγ(A), A ∈ B(H). For example, in [109] σg(T ) and
σgb(T ) were called the generalized spectrum of T and the Browder’s gener-
alized spectrum of T . These notations and terminology were used because
the relation between σg(T ) and σgb(T ) that was exhibited in [109] resembled
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the relation between σa(T ) and the σab(T ), or relation between σ(T ) and
the σeb(T ). (In [92] σg(A) and σgb(A) were denoted by σγ(A) and σγe(A),
respectively). Now we recall some results for σg(T ) and σgb(T ).

Theorem 4.7. ([124]) Let T ∈ B(X).
(1) Then the functions

λ �→ R∞(T − λ) and λ �→ N∞(T − λ)

are constant on connected component of C \ σg(T );
(2) σg(T ) = σg(T ∗);
(3) σg(T ) is closed;
(4) σg(T ) = σ(T ), ∂σ(T ) ⊂ σg(T ) and σg(T ) �= ∅.

Theorem 4.8. ([124], [92], [109]) Let T ∈ B(X) and f be an analytic func-
tion defined on a neighbourhood of the spectrum of T . Then

σg(f(T )) = f{σg(T )} and σgb(f(T )) = f{σgb(T )}.

Theorem 4.9. ([109]) Suppose that T ∈ B(X). Then

σgb(T ) =
⋂

TK=KT
K∈K(X)

σg(T +K) =
⋂

TK=KT
K∈F (X)

σg(T +K).

Corollary 4.10. ([109]) Suppose that T ∈ B(X). Then:
(1) λ ∈ σg(T ) \ σgb(T ) if and only if λ is an isolated point of σg(T ),

0 < k(T − λ) < ∞ and R(T − λ) is closed,
(2) σgb(T ) ⊂ σek(T ),
(3) ∂σek(T ) ⊂ ∂σgb(T ) and σgb(T ) is nonempty,
(4) σgb(T ) = σgb(T ∗).

Corollary 4.11. ([109]) Let T ∈ V(X). Then the following statements are
equivalent:
(1) T = V + F , where α(V ) = 0, F is finite rank and V F = FV .
(2) There exists a finite rank projection P, PT = TP and α(T|N(P )) = 0.
(3) There exists ε > 0 such that α(T + λ) = 0 for 0 < |λ| < ε.
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(4) a(T ) < ∞.
Let us mention that the mappings A → σg(A) and A → σgb(A) are

not upper semi-continuous at A in general [109, Remark 4.4]. Prof. Laura
Burlando (1991) has kindly informed me that:

σgb upper semi-continuous at T impliesσgb(T ) = σek(T );(4.3)

σg upper semi-continuous at T implies σek(T ) ⊂ σg(T ).(4.4)

Theorem 4.12. ([109]) Let T, Tn ∈ B(X) and TTn = TnT for each positive
integer n. Then

lim supσg(Tn) ⊂ σg(T ) and lim supσgb(Tn) ⊂ σgb(T ).

Remark 4.13. If T ∈ B(X), then C\σgb(T ) is an open set in C. Further, let U
be an connected component of C\σgb(T ) and G = {λ ∈ C\σgb(T ) : k(T −λ) �= 0}.
A complex number λ ∈ G∩U is called a jumping point in U . If λ ∈ U is a jumping
point, then by Theorem 4.4, there is an T–invariant finite dimensional subspace
Nλ in X such that T − λ is nilpotent on it. Consistent with the matrix case we
define the (algebraic) multiplicity of the jumping point λ to be dimNλ.

Theorem 4.14. ([109]) Let T ∈ B(X) and let U and G be as above. Then
the functions

λ �→ N∞(T − λ) +R∞(T − λ) and λ �→ N∞(T − λ) ∩R∞(T − λ)

are constant on U , while the functions

λ �→ R∞(T − λ) and λ �→ N∞(T − λ)

are constant on U \G.
Now, suppose that the connected component U contains zero. Than the

points in G ∩ U can be ordered in such a way that

|λ1(T )| ≤ |λ2(T )| ≤ . . . < v(T ),

where each jump appears consecutively according to its multiplicity. If there
are only p (= 0, 1, 2, . . . ) such jumps, we put |λp+1(T )| = |λp+2(T )| = v(T ).
Let S denote the closed unit ball of X. Let q(T ) = sup{ε ≥ 0 : TS ⊃ εS}

be the surjection modulus of T . For each r = 1, 2, . . . set

qr(T ) = sup{q(T + F ) : rankF < r}.
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Theorem 4.15. ([109]) Let T ∈ B(X), 0 ∈ U , and let U,G, and W ≡
N∞(T − λ) +R∞(T − λ), λ ∈ U be as above. Then for each jumping point
λr(T ), r = 1, 2, . . . we have

|λr(T )| = lim
k

qr((T|W )k)1/k.

Corollary 4.16. ([109]) If T ∈ V(X), then

v0(T ) = lim
k

γ((T|W )k)1/k.

It was natural for me to finish paper [109] (October 1990) with the follow-
ing questions (I admit I did not know the answers to these questions until I
saw the papers of V. Müller and V. Kordula [68], [92]) :

Questions 4.1. If T ∈ V(X), must

lim
k

γ(T k)1/k = v0(T )?

Question 4.2. If A,B ∈ B(X), and AB = BA ∈ V(X), must A,B ∈
V(X)?
Question 4.3. If A,B ∈ B(X), AB = BA and B is a quasinilpotent oper-
ator, must

σgb(A+B) = σgb(A)?

Question 4.4. If A,B ∈ V(X), (or V0(X)) and AB = BA, must AB ∈
V(X) (or V0(X)), and possibly k(A+B) ≤ k(A) + k(B)?

V. Kordula and V. Müller [68], among other things, have proved that the
answer to Question 4.1 is positive [68, Theorem 4], and also the answer to
Question 4.3 is positive [68, Theorem 6 (2)]; V. Müller [92], among other
things, has proved that the answer to Question 4.2 is positive [92, Theorem
3.5], and the answer to both parts of Question 4.4 is negative [92, Example
2.2]. V. Müller set the following question ([92, Problem 3.11])

Question 4.5. If T ∈ V0(X) and A is a finite-dimensional operator, is then
T +A ∈ V(X)?
V. Kordula [67] and P. W. Poon [100], among other things, have proved

that the answer to Question 4.5 is positive.
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Theorem 4.17. ([68]) Let T ∈ V0(X). Then

dist {0, σg(T )} = lim
n→∞ γ(Tn)1/n.

Theorem 4.18. ([68]) Let T ∈ V(X). Then the limit limn→∞ γ(Tn)1/n

exists and

lim
n→∞ γ(Tn)1/n = max{r : T − λ ∈ V0(X) for 0 < |λ| < r}

= dist {0, σg(T ) \ {0}}.

Theorem 4.19. ([70]) Let T be an operator on a Banach space X. Then
the following conditions are equivalent:
(1) T ∈ V(X),
(2) there exists a closed subspace M of X such that TM ⊂ M , T |M

is lower semi-Fredholm and the induced operator T̃ : X/M �→ X/M
is upper semi-Fredholm,

(3) there exists a closed subspace M of X such that TM ⊂ M , T |M
is lower semi-Browder and the induced operator T̃ : X/M �→ X/M
is upper semi-Browder,

(4) there exists a closed subspace M of X such that TM ⊂ M , T |M
is surjective and the induced operator T̃ : X/M �→ X/M is upper
semi-Browder,

(5) there exists a closed subspace M of X such that TM ⊂ M , T |M
is lower semi-Browder and the induced operator T̃ : X/M �→ X/M
is bounded below.

It is well-known that if T ∈ V(X) andK is a compact operator commuting
with T then T +K ∈ V(X). Recently, we get a sharper result [70].
Theorem 4.20. ([70]) Let T, S ∈ B(X), TS = ST and let T ∈ V(X). Let
T̂ = T |R∞(T ) and let T̃ : X/R∞(T ) �→ X/R∞(T ) be the induced operator by
T . Then

re(S) < min(r−(T̂ ), r+(T̃ )) implies T + S ∈ V(X).

Corollary 4.21. ([70]) Let T ∈ V(X), S ∈ B(X), TS = ST and S is a
Riesz operator (i.e., re(S) = 0). Then T + S ∈ V(X).



94 V. Rakočević

Corollary 4.22. ([70]) Let T ∈ B(X). Then

σgb(T ) =
⋂

σg(T + S)

where the intersection is taken over all Riesz operators in X commuting with
T .

Remark 4.23. In Section 3 and above in this section (see also Section 5) we
see that the reduced minimum modulus of T ∈ B(X), γ(T ), plays important
role in perturbation theory of linear operators. Also the behavior of the sequence

{γ(Tn)1/n}, is extremely important, and we find convenient to include here some
Zemanek’s results.

If T ∈ B(X) is semi-Fredholm operator then there is an ε > 0 such that
both dimN(T −λ) and codimR(T −λ) are constant on 0 < |λ| < ε. We can
define

δ+(T ) = sup{ε ≥ 0 : T − λI ∈ Φ+(X)

and α(T − λ) = constant for 0 < |λ| < ε},
δ−(T ) = sup{ε ≥ 0 : T − λI ∈ Φ−(X)

andβ(T − λ) = constant for 0 < |λ| < ε}.
Let us remark that r+(T ) ≥ δ+(T ) and r−(T ) ≥ δ−(T ).

Theorem 4.24. ([140, Theorem 1]) Suppose that T ∈ Φ±(X). Then the
limit lim γ(Tn)1/n exists and

lim
n→∞ γ(Tn)1/n = δ±(T ).

Recall that an operator T ∈ B(X) is bounded below if and only if R(T ) is
closed and N(T ) = {0}, i.e., if and only if µ(T ) > 0; an operator T ∈ B(X)
is surjective if and only if R(T ) = X, i.e., if and only if q(T ) > 0.
For T ∈ B(X) set

µr(T ) = sup{µ(T + F ) : rank F < r},
and gr(T ) = max{µr(T ), qr(T )}. If T is semi-Fredholm either α(T + λ) or
β(T + λ) (the nullity or the defect) is constant (= n) for λ in the semi-
Fredholm domain of T except at a discrete set of jump points which may be
ordered by their moduli

|λ1(T )| ≤ |λ2(T )| ≤ . . .max{δ+(T ), δ−(T )},
where each jump appears consecutively according to its multiplicity.
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Theorem 4.25. ([113, Theorem 1.1]) Let T be a semi-Fredholm operator.
Then for each jumping point λr(T ), r = 1, 2, . . . we have

|λr(T )| = lim
k→∞

gkn+r(T k)1/k,

where gr(T ) = max(µr(T ), qr(T )).

For more details, connected with semi-Fredholm radius and related topics,
the reader is referred to [36], [47], [48], [68], [91], [108], [113], [121], [131],
[132], [138], [140], [142] and [144].

5. S(X),Se(X) and Corresponding Spectra

Let X be an infinite-dimensional complex Banach space. An operator
S ∈ B(X) is a generalized inverse (pseudo inverse) of T if TST = T. We
then say that T is relatively regular. It is easy to see that if TST = T , then
the operator S1 = STS satisfies the equations TS1T = T and S1TS1 = S1.
It is well known that T is relatively regular if and only if N(T ) and R(T ) are
closed, complemented subspaces of X. In this case TS is a projection onto
R(T ) and I−ST is a projection onto N(T ); T ∈ B(X) is called an operator
of Saphar type (Saphar operator), ([23], [126], [127]) or hyper-regular ([56],
[57]) or regular ([92]), if T is relatively regular and N(T ) ⊂ R∞(T ). This
class of operators has been studied by P. Saphar ([115], [116]). If π is the
natural homomorphism of B(X) onto the Calkin algebra C(X), set

S(X) = {A ∈ B(X) : A is Saphar operator},
Se(X) = {A ∈ B(X) : A is relatively regular and k(A) < ∞},
Φl(X) = π−1(C(X)−1

l ),

Φr(X) = π−1(C(X)−1
r ).

It is well-known that Φl(X) and Φr(X) are open semigroups in B(X) ([24],
[55]). Further, T ∈ Φl(X) if and only if T ∈ Φ+(X) and there exists
a bounded projection of X onto R(T ); T ∈ Φr(X)) if and only if T ∈
Φ−(X) and there exists a bounded projection of X onto N(T ). Hence,
Φr(X)∪Φl(X) ⊂ Se(X); S(X) and Se(X) are neither semigroups nor open
or closed subset of B(X). From the papers of M. A. Goldman [42] and C.
Schmoeger [125] we get

int(Se(X)) = Φr(X) ∪ Φl(X),
int(S(X)) = {A ∈ B(X) : A is left or right invertible inB(X)}.
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Theorem 5.1. ([10], [23], [56], [57], [79], [92], [124], [126]) T ∈ S(X) if
and only if there is a neighbourhood U ⊂ C of 0 and a holomorphic function
F : U �→ B(X) such that

(T−λ)F (λ)(T−λ) = T−λ, and F (λ)(T−λ)F (λ) = F (λ), for all λ ∈ U.

Let us remark that for F it is possible to take

F (λ) =
∞∑

i=0

Si+1λi, λ ∈ U,

where S ∈ B(X) is a generalized inverse of T , i.e., TST = T and TST = T ,
and U ≡ {λ ∈ C : |λ| < ‖S‖−1}. Further

F (λ)− F (µ) = (λ− µ)F (λ)F (µ), for all λ, µ ∈ U,

i.e., F (λ) satisfies the resolvent identity on U .

Theorem 5.2. ([92], [124], [126]) Let T ∈ B(X). Denote by G = {λ ∈ C :
T −λ ∈ S(X)}. Then G is an open set and there exists an analytic function
F : G �→ B(X) such that

(T−λ)F (λ)(T−λ) = T−λ and F (λ)(T−λ)F (λ) = F (λ), for all λ ∈ G.

Set

σs(A) = {λ ∈ C : A− λI �∈ S(X)},
σse(A) = {λ ∈ C : A− λI �∈ Se(X)};

σs(T ) and its essential version the set σse(T ) were studied (under various
names and notations) by many authors, see e.g., [69], [92], [124], [126].
Clearly, if H is a Hilbert space, then σs(A) = σg(A) = σγ(A) and σse(A) =
σgb(A),A ∈ B(H).

Theorem 5.3. ([124, Proposition 1]) Let T ∈ B(X) Then:
(1) σs(T ) is closed,
(2) σg(T ) ⊂ σs(T ) ⊂ σ(T ) and σs(T ) �= ∅,
(3) σs(T ∗) ⊂ σs(T ), and in general σs(T ∗) �= σs(T ).

To the best of my knowledge the next problem is still open
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Question 5.1. ([92, Remark 4.2], [127, Question 3]) Let T ∈ B(X). Does
there exist a holomorphic function F : C \ σs(T ) �→ B(X) such that

(T − λ)F (λ)(T − λ) = T − λ, for all λ ∈ C \ σs(T ),

and

F (λ)− F (µ) = (λ− µ)F (λ)F (µ), for all λ, µ ∈ C \ σs(T )?

Theorem 5.4. ([69, Corollary 2.14], [124, Theorem 3]) Let T ∈ B(X) and
f be an analytic function defined on a neighbourhood of the spectrum of T .
Then

σs(f(T )) = f{σs(T )} and σse(f(T )) = f{σse(T )}.

Theorem 5.5. ([69, Theorem 2.13]) Let T, Tn ∈ B(X) and TTn = TnT for
each positive integer n. Then

lim supσs(Tn) ⊂ σs(T ) and lim supσse(Tn) ⊂ σse(T ).

Let T ∈ S(X). Then Tn ∈ S(X) for each n ∈ N, and set ([127])

dist {0, σs(T )} = d(T ),

δn(T ) = sup{r(A)−1 : A ∈ B(X), TnATn = Tn}, δ(T ) = sup
n≥1

δn(T )1/n.

Theorem 5.6. ([127, Proposition 6]) Suppose that T ∈ S(X) and put G =
{λ ∈ C : |λ| < d(T )}. Then G ⊂ C \ σs(T ) and there is a holomorphic
function F : G �→ B(X) such that

(T − λ)F (λ)(T − λ) = T − λ for all λ ∈ G.

The function F has the following properties:
(1) (T − λ)n+1F (n)(λ)(T − λ)n+1 = n!(T − λ)n+1 for all λ ∈ G and

all n ∈ N.

(2) If F (λ) =
∞∑
n=0

λnAn for |λ| < d(T ), then d(T ) = (lim sup ‖An‖1/n)−1

and

Tn+1AnT
n+1 = Tn+1 for each n = 0, 1, 2, . . .
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Theorem 5.7. ([127, Theorem 3]) Suppose that T ∈ S(X). Then
(1) δ(T ) = lim

n→∞ δn(T )1/n = d(T ).

(2) If F (λ) =
∞∑
n=0

λnAn is a holomorphic pseudo-inverse of T − λ for

|λ| < d(T ), then d(T ) = ( lim
n→∞ ‖An‖1/n)−1 = lim

n→∞(r(An)
1/n)−1.

Question 5.2. ([127, Question 1]) If T ∈ S(X), must lim
k

γ(T k)1/k = d(T )?

According to the Question 5.1 we can prove the following theorem.

Theorem 5.8. Suppose that T ∈ S(X), dist {0, σs(T )} = d(T ) and G =
{λ ∈ C : |λ| < d(T )}. Then for any compact subset K of G there exists an
analytic function F : U �→ B(X), were U ⊂ G, is a neighbourhood of K,
such that
(1) (T − λ)F (λ)(T − λ) = T − λ for all λ ∈ K,
(2) F (λ)(T − λ)F (λ) = F (λ) for all λ ∈ K, and
(3) F (λ)− F (µ) = (λ− µ)F (λ)F (µ) for all λ, µ ∈ K, if and only if

d(T ) = sup{r(A)−1 : A ∈ B(X), TAT = T}.

Question 5.3. If T ∈ S(X), must R∞(T ) be a complemented subspace of
X?

Set

Sl(X) = {A ∈ B(X) : R(A) = R(A), N(A) is complemented

subspaces of X and k(A) = 0},
Sr(X) = {A ∈ B(X) : R(A) is closed complemented

subspaces of X and k(A) = 0}.
Now we include some results of Goldman and Kračkovskii ([43], [44]).

These results were proved for closed linear operators, but to simplify nota-
tions we shall consider bounded operators.

Theorem 5.9. ([43, Theorem 1]) Suppose that A ∈ Sl(X), B ∈ B(X) and
AB = BA. Let PA ∈ B(X) be a projection onto N(A). Then there is an
ε > 0 such that if ‖B‖ < ε, then:
(1) PA is a homeomorphism from N(A+B) onto N(A);
(2) A+B ∈ Sl(X);
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(3) there is a projection PA+B ∈ B(X) onto N(A+B)
such that R(I − PA) = R(I − PA+B) (hence N(A) and N(A+B)
have a joint complement);

(4) there is a homeomorphism from N(A+B) onto N(A);

(5) the gap between R(A) and R(A+B) is a small value of the same
order, as ε;

(6) R∞(A) = R∞(A+B);

(7) N∞(A) = N∞(A+B).

Theorem 5.10. ([44, Theorem 2]) Suppose that A ∈ Sr(X), B ∈ B(X) and
AB = BA. Let QA ∈ B(X) be a projection onto R(A). Then for sufficiently
small B :

(1) R(A+B) is closed subspace of X, and QA is a homeomorphism from
R(A+B) onto R(A);

(2) A+B ∈ Sr(X);
(3) there is a projection QA+B ∈ B(X) onto R(A+B) such that

R(I −QA) = R(I −QA+B) (hence R(A) and R(A+B) have a joint
complement);

(4) there is a homeomorphism from N(A+B) onto N(A);

(5) the gap between R(A) and R(A+B) is arbitrary small value;

(6) R∞(A) = R∞(A+B);

(7) N∞(A) = N∞(A+B).

The following sets σsl(A) = {λ ∈ C : A − λI �∈ Sl(X)} and σsr(A) =
{λ ∈ C : A− λI �∈ Sr(X)} have not been investigated for the Banach space
operators, as we know, and in our opinion, deserve further attention.

Remark 5.11. Some of above results are connected with the global existence
of finite-meromorphic relative inverses [10]. Meromorphic generalized resolvents
were studied by several authors (see, e.g., [6], [7], [8], [9], [10], [23], [37], [38], [130],
and references therein).

Remark 5.12. Let us point out that recently, V. Kordula and V. Müller [69]
have studied an axiomatic theory for spectra which do not fit into the axiomatic
theory of Żelazko [143].

Definition 5.13. ([69]) Let A be a Banach algebra. A non-empty subset
R of A is called a regularity if:

(1) if a ∈ A and n ∈ N then a ∈ R ⇔ an ∈ R,
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(2) if a, b, c, d are mutually commuting elements of A and ac+ bd = 1A,
then ab ∈ R ⇔ a ∈ R and b ∈ R.

A regularity R ⊂ A defines a mapping σ̃R from A into subsets of C by

σ̃R(a) = {λ ∈ C : a− λ �∈ R} (a ∈ A).

This mapping is the spectrum corresponding to the regularity R.
V. Kordula and V. Müller [69] have investigated in details the spectrum

corresponding to the regularity R; in particular they have studied several
examples of regularities of B(X) and corresponding spectra (e.g. Φ(X),
Φ+(X), Φ−(X), B(X), V0(X), V(X), S(X), Se(X), . . . ). Let us remark
that B+(X) and B+(X) are regularities of B(X) (not mentioned in [69], but
included in [87]) whith property (P1) from [69], as it follows.

(P1) ab ∈ R ⇔ a ∈ R and b ∈ R for all commuting elements a, b ∈ A.
Hence, the the spectrum of T ∈ B(X) corresponding to the regularity

B+(X) is σab(T ) the Browder´s essential approximate point spectrum of T ,
while the spectrum of T ∈ B(X) corresponding to the regularity B−(X) is
σab(T ) the Browder´s essential defect spectrum of T .
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104. V. Rakočević: On the essential approximate point spectrum II.Mat. Vesnik
36 (1984), 89–97.
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107. V. Rakočević: Operators obeying a-Weyl’s theorem. Rev. Roumaine Math.
Pures Appl. 34 (1989), 915–919.
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139. J. Zemánek: Compressions and the Weyl-Browder spectra. Proc. Roy. Ir.
Acad. 86A (1986), 57–62.
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