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DUAL SPACE OF A QUATERNION
HILBERT SPACE

Aleksandar Torgašev

Abstract. In this paper we prove some facts known from the real and complex
Hilbert spaces, for the left quaternion Hilbert spaces (called Wachs spaces).
Among other things we prove that every Wachs space is reflexive. Difficulties
arising in proofs are due to the noncommutativity of the ring of quaternions
Q. Several constructions have no analogy with the commutative case, and are
specific for quaternions.

Let Q = {α = a + bi + cj + dk | a, b, c, d ∈ R} be the noncommutative
division ring of real quaternions. α = a−bi−cj−dk will denote the conjugate
of α and |α| = √

a2 + b2 + c2 + d2 the absolute value of α. R = {α|b = c =
d = 0} can be identified with the real field and C = {α|c = d = 0} with the
complex field. If α = a+ bi+ cj + dk ∈ Q, then a = Re(α) is called the real
part of α. Every quaternion α satisfies the identity

α = Re(α) + iRe(−iα) + j Re(−jα) + kRe(−kα).

Next, let H be an arbitrary left quaternion Hilbert space, which is some-
times called a left Wachs space. The quaternion scalar product (x, y) �→
〈x, y〉 has all usual properties of a complex scalar product, but in view of
the noncommutativity of the ring Q, it holds 〈x, αy〉 = 〈x, y〉α for arbitrary
vectors x, y ∈ H and α ∈ Q.
So far, quaternion Hilbert and Banach spaces have been considered several

times in the literature. See, for instance [1], [4], [5], [6], [7], and the other
papers quoted in [1 ; Ch.13].
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If H is a left quaternion Hilbert space, denote by H ′ the corresponding
left dual space of H, i.e. the set of all bounded left linear functionals on H
with the usual norm

||f || = sup{|f(x)| : ||x|| = 1}.

It is known that H ′ is a real vector space. But, in order to transform H ′

into a Wachs space, it is convenient to introduce also a structure of a right
quaternion vector space in H.
Let {eν |ν ∈ Λ} be a fixed left orthonormal basis in H. If x ∈ H, and if

x =
∑
ν∈Λ

x̂νeν ,

where x̂ν = 〈x, eν〉 (ν ∈ Λ) are the Fourier coefficients of x, we shall define

(1) xλ =
∑
ν∈Λ

(x̂νλ)eν ,

for any quaternion λ.
Then H becomes also a right vector space over Q, with the right scalar

multiplication so defined. In particular, we have

rx = xr (x ∈ H, r ∈ R) ,(2)
||xλ|| = |λ| ||x|| (x ∈ H, λ ∈ Q) ,(3)

and

(4) 〈xλ, y〉 = 〈x, yλ〉 (x, y ∈ H, λ ∈ Q).

Relation (4) is obviously true since for any two vectors x, y in H we have
the Parseval’s equality

〈x, y〉 =
∑
ν∈Λ

x̂ν ŷν .

Now, for any functional f ∈ H ′ and any λ ∈ Q, we define λf and fλ as
follows:

(λf)(x) = f(xλ) , (fλ)(x) = f(x)λ (x ∈ H).
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It is easy to see that then the dual spaceH ′ becomes a two-side quaternion
Banach space, with the scalar multiplication so defined. In particular, we
have

rf = fr (f ∈ H ′, r ∈ R),

and
||λf || = ||fλ|| = |λ|||f || (f ∈ H ′, λ ∈ Q).

Next, we recall that for any functional f ∈ H ′, exactly as in the real and
the complex case, we have the Riesz representation of f in the form

(5) f(x) = 〈x, y〉 (x ∈ H),

for a vector y ∈ H, and then ||f || = ||y||. Let J :H ′ �→ H be the canonical
mapping from the space H ′ into the space H defined by relation (5), i.e. by

f(x) = 〈x, Jf〉 (x ∈ H).

The mapping J is additive, isometric, bijective, and it also satisfies next
two relations:

J(fα) = αJ(f) ,

J(αf) = (Jf)α (f ∈ H ′, α ∈ Q).

Next, we shall define a mapping K:H �→ H as follows. If x ∈ H and if
x =

∑
ν∈Λ x̂νeν , let

Kx =
∑
ν∈Λ

x̂νeν .

It is easy to see that K is an additive mapping defined on the space H,
it holds true

||Kx|| = ||x|| (x ∈ H),

and also
K(αx) = K(x)α , K(xα) = αK(x) ,

for every x ∈ H and every α ∈ Q.

Proposition 1. The left dual space H ′ of a Wachs space H, is also a two-
side Wachs space, if we introduce the inner product in H ′ by

(6) 〈f, g〉 = 〈KJf, KJg〉 (f, g ∈ H ′).
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The inner product (6) is in accordance with the norm of the space H ′.

Proof. Since K and J are isometric mappings, we have that

〈f, f〉 = 〈KJf, KJf〉 = ||KJf ||2 = ||Jf ||2 = ||f ||2 (f ∈ H ′).

Hence, expression (6) is in accordance with the norm of the space H ′.
Relation 〈f, g〉 = 〈g, f〉 is obvious, and the functional 〈f, g〉 is evidently

additive in the first argument. Further we have

〈αf, g〉 = 〈(KJ)(αf), KJg〉 = 〈K((Jf)α), KJg〉
= 〈α(KJf), KJg〉 = α〈KJf, KJg〉
= α〈f, g〉 (α ∈ Q),

so that 〈f, g〉 is linear in the first argument, and generally sesquilinear.
It remains only to prove relation (4) for an inner product.
For arbitrary functionals f, g ∈ H ′ and arbitrary quaternion α we have

〈fα, g〉 = 〈(KJ)(fα), KJg〉 = 〈K(α(Jf)), KJg〉
= 〈(KJf)α, KJg〉 = 〈KJf, (KJg)α〉
= 〈KJf, K(α(Jg))〉 = 〈KJf, (KJ)(gα)〉
= 〈f, gα〉.

Therefore, H ′ is a two-side Wachs space with inner product (6). �

Proposition 2. The left dual space H ′ of a Wachs space H is congruent to
the space H.

Proof. Consider the mapping U :H ′ �→ H defined by U = KJ . It is easily
seen that U is two-linear, that is we have

U(αf) = αU(f), U(fα) = U(f)α (f ∈ H ′, α ∈ Q).

Besides, U is a bijective mapping, and relation (6) gives

〈Uf, Ug〉 = 〈f, g〉 (f, g ∈ H ′).

Hence, U is an isomorphism of the Wachs spaces H ′ and H. �
In the sequel, we want to show that any Wachs space is reflexive.
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If X is an arbitrary two-side quaternion normed space, denote by X ′ the
space of all bounded left linear functionals on X, and let X ′′ = (X ′)′. In
[6], it is shown that both X ′ and X ′′ are two-side quaternion normed spaces,
and X can be isometrically imbedded into X ′′ by the mapping

(7) x �→ Fx,

where Fx ∈ X ′′ is for any g ∈ X ′ defined by

(8) Fx(g) = Re(g(x))− iRe(g(xi))− j Re(g(xj))− kRe(g(xk)).

Note that Fx(g) �= g(x), so that we have not a direct analogy with the
commutative cases.
The canonical mapping (7) is isometric and two-linear ([6]), so that X

becomes a two-side subspace of the space X ′′ under this mapping. The
space X is called reflexive if X = X ′′ by the mapping (7).
Next, we need a technical result on the mapping K.

Lemma 1. If H is a Wachs space, then for any two vectors x, y ∈ H, the
next identity holds:

(9) 〈Kx, Ky〉 = Re(〈x, y〉) + iRe(〈xi, y〉) + j Re(〈xj, y〉) + kRe(〈xk, y〉).

Proof. We obviously have that

〈Kx, Ky〉 = Re(〈Kx, Ky〉) + iRe(−i〈Kx, Ky〉)
+ j Re(−j〈Kx, Ky〉) + kRe(−k〈Kx, Ky〉)
= Re(〈Kx, Ky〉) + iRe(〈−iKx, Ky〉)
+ j Re(〈−jKx, Ky〉) + kRe(〈−kKx, Ky〉)
= Re(〈Kx, Ky〉) + iRe(〈K(xi), Ky〉)
+ j Re(〈K(xj), Ky〉) + kRe(〈K(xk), Ky〉).

Now, observe that for any two vectors u, v ∈ H we have

(10) Re(〈Ku, Kv〉) = Re(〈u, v〉).

Really, if
u =

∑
ν∈Λ

ûνeν , v =
∑
ν∈Λ

v̂νeν ,



76 A. Torgašev

then
〈u, v〉 =

∑
ν∈Λ

ûν v̂ν ,

and
Ku =

∑
ν∈Λ

ûνeν , Kv =
∑
ν∈Λ

v̂νeν ,

whence
〈Ku, Kv〉 =

∑
ν∈Λ

ûν v̂ν , 〈Ku, Kv〉 =
∑
ν∈Λ

v̂ν ûν .

But, as is known, one has Re(αβ) = Re(βα) for arbitrary quaternions α and
β. Hence

Re(〈Ku, Kv〉) = Re(〈Ku, Kv〉) = Re(〈u, v〉).
From relation (10) we obviously have that

Re(〈Kx, Ky〉) = Re(〈x, y〉) , Re(〈K(xi), Ky〉) = Re(〈xi, y〉) ,
Re(〈K(xj), Ky〉) = Re(〈xj, y〉) , Re(〈K(xk), Ky〉) = Re(〈xk, y〉) ,

whence we find relation (9).
Note also that relation (9) can be written in the equivalent form

(11) 〈Ky, Kx〉 = Re(〈x, y〉)− iRe(〈xi, y〉)− j Re(〈xj, y〉)− kRe(〈xk, y〉)

for arbitrary x, y ∈ H. �
Proposition 3. Every Wachs space H is reflexive.

Proof. Take any functional F ∈ H ′′. We have to prove that there is a
vector x0 ∈ X such that F = Fx0 , that is

F (g) = Fx0(g) (g ∈ H ′),

or equivalently

F (g) = Re(g(x0))− iRe(g(x0i))− j Re(g(x0j))− kRe(g(x0k))

for any g ∈ H ′.
Since H ′ is also a Wachs space, by the Riesz representation theorem ap-

plied to the functional F ∈ H ′′, we conclude that there is a functional
h0 ∈ H ′ such that

F (g) = 〈g, h0〉
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for all g ∈ H ′. In other words we have

F (g) = 〈KJg, KJh0〉 = 〈KJg, Kx0〉,

for all g ∈ H ′, where we put x0 = Jh0 ∈ H.
Now, denoting Jg = y ∈ H, and applying formula (11), we find

F (g) = 〈Ky, Kx0〉
= Re(〈x0, y〉)− iRe(〈x0i, y〉)− j Re(〈x0j, y〉)− kRe(〈x0k, y〉)
= Re(〈x0, Jg〉)− iRe(〈x0i, Jg〉)− j Re(〈x0j, Jg〉)− kRe(〈x0k, Jg〉).

Since 〈x, Jg〉 = g(x) for any x ∈ H, we obviously get

F (g) = Re(g(x0))− iRe(g(x0i))− j Re(g(x0j))− kRe(g(x0k))

= Fx0(g),

for any g ∈ H ′.
This completes the proof. �
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