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ASYMPTOTICALLY PERIODIC SOLUTION
OF SOME LINEAR DIFFERENCE EQUATIONS

Jerzy Popenda and Ewa Schmeidel

Abstract. For the linear difference equation

(E) ar
nxn+r + · · ·+ a1

nxn+1 + a0
nxn = dn, n ∈ N,

sufficient conditions for the existence of an asymptotically periodic solutions
are given.

In the paper by N, R, R0 we denote the set of positive integers, real
numbers, and nonnegative real numbers respectively.

Definition. The sequence v : N → R is periodic (σ-periodic) if vn+σ = vn

for all n ∈ N. The sequence v : N → R is asymptotically periodic (asymp-
totically σ-periodic) if there exist two sequences u,w : N → R such that u is
periodic (σ-periodic), lim

n→∞wn = 0, and vn = un + wn for all n ∈ N.

We study the equation (E) when one of the coefficient ai is periodic or
constant and the rest asymptotically approach zero. In the first theorem we
give negative answer to the question: does the equation (E) possess periodic
solution if all coefficients approach zero. Therefore looking for equations
with periodic solutions we should turn our attention to these equations for
which at least one coefficient ai satisfies lim

n→∞ ai
n �= 0 (or this limit does not

exist). The second theorem gives answer why considering equations (with
only one ai satisfying above mentioned conditions) our thesis can not have
the form ”all solutions are periodic”.
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Theorem 1. Let lim
n→∞ ai

n = 0 for all i ∈ {0, 1, . . . , r}, and the sequence

{dn}∞n=1 possesses bounded away from zero some infinite subsequence
{dnk

}∞k=1 then (E) has no asymptotically periodic solution.

Proof. Let {dnk
}∞k=1 be this subsequence of {dn}∞n=1 such that |dnk

| > δ
for some positive δ and all k ∈ N. Suppose that (E) possesses asymptotically
periodic solution x = {xn}∞n=1. This yields that there exists some constant
D such that |xn| < D for all n ∈ N. Furthermore from lim

n→∞ ai
n = 0 it follows

that for arbitrary ε > 0 we can find integer n(ε) such that

(1)
r∑

i=0

|ai
n| < ε for all n ≥ n(ε).

Let us take ε = δ/D and any n ≥ n(ε). Then from (E) and (1) we get

|dn| = |ar
nxn+r + · · ·+ a1

nxn+1 + a0
nxn|

< |ar
n||xn+r|+ · · ·+ |a1

n||xn+1|+ |a0
n||xn|

< D(|ar
n|+ · · ·+ |a1

n|+ |a0
n|) < Dε = δ for all n ≥ n(ε).

On the other hand there exists nk ≥ n(ε) such that |dnk
| > δ. The obtained

contradiction completes the proof.
Remark 1. Theorem 1 yields that if {dn}∞n=1 is periodic (asymptotically pe-

riodic) sequence different (asymptotically) from zero then a necessary condition
for (E) to possess periodic (asymptotically periodic) solution is: for at least one

sequence of coefficients {ai
n}∞n=1 there should be lim

n→∞ ai
n �= 0.

Example 1. The Theorem 1 (Remark 1) does not hold if we have homoge-
neous equation

(E1) ar
nxn+r + · · ·+ a1

nxn+1 + a0
nxn = 0.

Notice that if

(2)
r∑

i=0

ai
n = 0 for all n ∈ N,

then, for arbitrary constant C, homogeneous equation (E1) possesses 2-
periodic solutions {C(−1)n}∞n=1 . We can easily find the equation for which
condition (2) is fulfilled and lim

n→∞ ai
n = 0 for all i ∈ {0, 1, . . . , r}.

In the next theorem we present one necessary condition for all solutions
of the equation (E1) be σ-periodic.
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Theorem 2. Let ai : N → R, i ∈ {0, 1, . . . , r} with ar
n �= 0 for all n ∈ N.

The necessary condition for all solutions of (E1) to be σ-periodic is: the
sequences {ai

n/a
r
n}∞n=1, i ∈ {0, 1, . . . , r − 1} are σ-periodic.

Proof. Let {ui,n}∞n=1, i ∈ {1, . . . , r} be linearly independent solutions of
(E1). Every solution {un}∞n=1 of (E1) can be written in the form

(3) un = C1u1,n + C2u2,n + · · ·+ Crur,n, n ∈ N,

for some constants C1, C2, . . . , Cr. From (3) it follows that σ-periodicity
of the solutions {ui,n}∞n=1, i ∈ {1, . . . , r} yields σ-periodicity of any other
solution of (E1). Therefore necessary conditions for {ui,n}∞n=1 to be σ-
periodic are necessary conditions for all solutions to be σ-periodic. Suppose
that {ui,n}∞n=1 form r independent σ-periodic solutions of (E1) and denote
suitable Casorati matrix by

Wn =




u1,n u2,n · · · ur,n

u1,n+1 u2,n+1 ur,n+1

...
u1,n+r−1 u2,n+r−1 ur,n+r−1




and Casoratian
wn = det(Wn), n ∈ N.

Notice (see e.g. [4]) that wn �= 0 for all n ∈ N. Furthermore σ-periodicity
of ui yields σ-periodicity of the sequence {wn}∞n=1. Because w is never
vanishing, σ-periodic solution of the equation

(4) wn+1 = (−1)r a
0
n

ar
n

wn, n ∈ N,

therefore (see [1])
{
a0

n/a
r
n

}∞
n=1

is σ-periodic.

Because wn �= 0 for all n ∈ N then for each n ∈ N there exist minors
w(i,j(n)),n of order i (i = 1, . . . , r − 1),

w(i,j(n)),n = det




uj1(n),n uj2(n),n · · · uji(n),n

uj1(n),n+1 uj2(n),n+1 uji(n),n+1

...
uj1(n),n+i−1 uj2(n),n+i−1 uji(n),n+i−1



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of the Casorati matrix such that w(i,j(n)),n �= 0. Here

j(n) =
(
j1(n), j2(n), . . . , ji(n)

)
, 1 ≤ j1(n) < j2(n) < · · · < ji(n) ≤ r ,

and jk can possibly depend both on i and on n. Of course each of
(
r
i

)
possible

minors w(i,j(n)),n can be different from zero or some of them, but at least
one such a minor exists.

Let us observe that w(i,j(n)),m+σ = w(i,j(n)),m for all m ∈ N. Furthermore
if we take j(n+ σ) = j(n), then w(i,j(n+σ)),m+σ = w(i,j(n)),m.

Choose j = j(2) = (j1, j2, . . . , jr−1) such that minor w(r−1,j),2 �= 0. Then
using

(5) ui,n+r = −ar−1
n

ar
n

ui,n+r−1 − · · · − a1
n

ar
n

ui,n+1 − a0
n

ar
n

ui,n

for i = j1, . . . , jr−1, we get the equation

(6) w(r−1,j),n+1 = (−1)r−1 a
1
n−1

ar
n−1

w(r−1,j),n + φ(r − 1, j, n), n > 1,

where {φ(r−1, j, n} is σ-periodic (by σ-periodicity of
{
a0

n/a
r
n

}∞
n=1

) sequence
defined by

φ(r − 1, j, n)

= det




uj1(n),n+1 uj2(n),n+1 · · · ujr−1(n),n+1

...
uj1(n),n+r−2 uj2(n),n+r−2 ujr−1(n),n+r−2

−a0
n−1

ar
n−1

uj1(n),n−1 −a0
n−1

ar
n−1

uj2(n),n−1 −a0
n−1

ar
n−1

ujr−1(n),n−1


 .

Since
w(r−1,j),n+kσ+1 = w(r−1,j),n+1,

w(r−1,j),2+kσ = w(r−1,j),2 �= 0,

w(r−1,j),3+kσ = w(r−1,j),3

for all n, k ∈ N, then we get from (6)

a1
1+kσ

ar
1+kσ

= (−1)r−1
(
w(r−1,j),kσ+3 − φ(r − 1, j, 2 + kσ)

)/(
w(r−1,j),kσ+2

)

= (−1)r−1
(
w(r−1,j),3 − φ(r − 1, j, 2)

)/(
w(r−1,j),2

)
=

a1
1

ar
1

,
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for all k ∈ N. Similary choose j = j(α) = (j1, j2, . . . , jr−1) for any fixed
α ∈ {2, 3, . . . , σ+1} such that minor w(r−1,j),α �= 0. Proceeding in the same
way we get

a1
α−1+kσ

ar
α−1+kσ

= (−1)r−1
(
w(r−1,j),kσ+α+1 − φ(r − 1, j, α+ kσ)

)/(
w(r−1,j),kσ+α

)
= (−1)r−1

(
w(r−1,j),α+1 − φ(r − 1, j, α)

)/(
w(r−1,j),α

)
=

a1
α−1

ar
α−1

.

This yields that the sequence
{
a1

n/a
r
n

}∞
n=1

is σ-periodic.

We have proved that
{
a0

n/a
r
n

}∞
n=1

and
{
a1

n/a
r
n

}∞
n=1

are σ-periodic se-
quences.

Suppose that all

(7)
{
ak

n/a
r
n

}∞
n=1

, k = 0, 1, . . . , r − i− 1 are σ-periodic.

Take the minor

(8) w(i,j),n = det




uj1,n uj2,n · · · uji,n

uj1,n+1 uj2,n+1 uji,n+1

...
uj1,n+i−1 uj2,n+i−1 uji,n+i−1




such that w(i,j),α �= 0 for some fixed α ∈ {r − i+ 1, . . . , r − i+ σ}. Because
of (5) we obtain

(9)

ujk,n+i =− ar−1
n+i−r

ar
n+i−r

ujk,n+i−1 − · · ·−

− ar−i+1
n+i−r

ar
n+i−r

ujk,n+1 −
ar−i

n+i−r

ar
n+i−r

ujk,n − ar−i−1
n+i−r

ar
n+i−r

ujk,n−1 − · · ·−

− a1
n+i−r

ar
n+i−r

ujk,n+i−r+1 −
a0

n+i−r

ar
n+i−r

ujk,n+i−r, k = 1, . . . , i.

Let us substitute the terms of the last row of w(i,j),n+1 (in (8)) by formulae
obtained from (9), we get

(10) w(i,j),n+1 = (−1)i a
r−i
n+i−r

ar
n+i−r

w(i,j),n + φ(i, j, n),
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where
{
φ(i, j, n)

}
is, by (7), σ-periodic sequence defined as follows

φ(i, j, n) = det




w(r−1,j),11 w(r−1,j),21 · · · w(r−1,j),i1
...

w(r−1,j),1i− 1 w(r−1,j),2i− 1 w(r−1,j),ii− 1

φ(i, j, n)i,1 φ(i, j, n)i,2 φ(i, j, n)i,i




with

φ(i, j, n)i,k = −
r−i−1∑

s=0

as
n+i−r

ar
n+i−r

ujk,n+i−r+s , k = 1, . . . , i.

Hence from (10) applying σ-periodicity of w(i,j),n+1, w(i,j),n, φ(i, j, n) we
get for n = α+ kσ and k = 1, 2, . . .

ar−i
α+kσ+i−r

ar
α+kσ+i−r

= (−1)i(w(i,j),α+kσ+1 − φ(i, j, α+ kσ)
)/(

w(i,j),α+kσ

)

= (−1)i(w(i,j),α+1 − φ(i, j, α)
)/(

w(i,j),α

)
=

ar−i
α+i−r

ar
α+i−r

.

However for α ∈ {r− i+ 1, . . . , r− i+ σ} this yields
ar−i

s+kσ

ar
s+kσ

= ar−i
s

ar
s

for all

s ∈ {1, . . . , σ}, k ∈ N.
That is

{
ar−i

n /ar
n

}∞
n=1

is σ-periodic sequence. Following this way we get
step by step σ-periodicity of all

{
ar−i

n /ar
n

}∞
n=1

for i = r, r − 1, . . . , 2. For
i = 1 the conditions imposed on the minors w(i,j),n reduce to the fact that for
each n ∈ N there exists a solution uj1 , j1 ∈ {1, . . . , r}, such that uj1,n �= 0.
Suitable equations (6), (10) reduce to

uj1,n+r = −ar−1
n

ar
n

uj1,n+r−1 + φ(1, j1, n),

where φ(1, j1, n) = −ar−2
n

ar
n

uj1,n+r−2 − · · · − a0
n

ar
n
uj1,n is σ-periodic sequence

becuse of previous obtained results and σ-periodicity of uj1 . This yields in
a similar manner σ-periodicity of {ar−1

n /ar
n}∞n=1.
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Example 2. Periodicity of the sequences
{
ai

n/a
r
n

}∞
n=1

are necessary but
not sufficient conditions for all solutions of (E1) to be periodic. Consider
the equation

xn+2 + (1− (−1)n)xn+1 + xn = 0, n ∈ N.

It is evident that sequences of the coefficients are 2-periodic. However the
general solution of this equation can be presented as follows{

x2n+1 = (−1)nC1 + (−1)n2nC2, n ∈ N,

x2n = (−1)n−1C2, n ∈ N.

Of course in generally this solution is not periodic.

Remark 2. Looking for other conditions let us observe that from (4), to get

σ-periodicity of {wn}, we should have furthermore ∏σ
j=1

a0
j

ar
j
= 1, however it is not

sufficient as it is satisfied for the equation considered in Example 2. Notice that if
all solutions of nonhomogeneous equation (E) are σ-periodic then all solutions of
suitable homogeneous equations are σ-periodic also. Therefore necessary condition
given in the Theorem 2 for the equation (E1) is also necessary condition for the
equation (E).

Theorem 3. Let ai : N → R, i ∈ {1, . . . , r} with lim
n→∞ ai

n = 0, d : N → R

be σ-periodic. Then there exists asymptotically σ-periodic solution of the
equation

(E2) ar
nxn+r + · · ·+ a1

nxn+1 + xn = dn, n ∈ N.

Proof. Take any ε > 0. Let us denote

C = max
1≤i≤σ

|di|,
C1 = C + ε,

αn = C1r sup
m≥n

( max
1≤i≤r

|ai
m|), n ∈ N,

I =
[ − C1, C1

]
,

In =
[
dn − αn, dn + αn

]
.

Let us observe that the sequence {αn}∞n=1 is non-increasing and

(11) lim
n→∞αn = 0,
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therefore

(12) diam In = 2αn → 0 with n → +∞.

By �∞ we denote the Banach space of bounded sequences x = {xn}∞n=1

with the norm ||x|| = supn≥1 |xn|.
From (11) it follows that there exists n1 such that αn < ε for all n ≥ n1.

Consequently In ⊂ I for all n ≥ n1.
Let T ⊂ �∞ be such a set that x = {xn}∞n=1 ∈ T if

{
xn = dn for n = 1, 2, . . . , n1 − 1

xn ∈ In for n ≥ n1.

It is easy to check that T is a closed, convex, and compact subset of �∞. By
(12), for arbitrary ε1 > 0 we can set up a finite ε1-net for the set T. Hence
by Hausdorff’s theorem T is compact.

Define now an operator A. Let y = {yn}∞n=1 ∈ T and A y = η = {ηn}∞n=1

if

ηn =
{

dn for n = 1, 2, . . . , n1 − 1,
dn − ar

nyn+r − · · · − a1
nyn+1 for n ≥ n1.

Let us observe that

|ηn − dn| = |ar
nyn+r + · · ·+ a1

nyn+1| ≤ ( max
1≤i≤r

|ai
n|)(|yn+r|+ · · ·+ |yn+1|)

≤ C1r( max
1≤i≤r

|ai
n|) ≤ αn for n ≥ n1.

Hence A(T) ⊂ T. Furthermore for any x = {xn}∞n=1, y = {yn}∞n=1 two
elements of the set T we have

||Ax−Ay|| = sup
n∈N

|(Ax)n − (Ay)n|

= sup
n≥n1

|(dn − ar
nxn+r − · · · − a1

nxn+1)

− (dn − ar
nyn+r − · · · − a1

nyn+1)|

≤ sup
n≥n1

{
( max
1≤i≤r

|ai
n|)(|xn+r − yn+r|+ · · ·+ |xn − yn|)

}

≤ αn1

C1r
sup

n≥n1

(|xn+r − yn+r|+ · · ·+ |xn − yn|) ≤ αn1

C1r
r||x− y||.
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From this we get continuity of the operator A. Hence by Schauder’s fixed
point theorem there exists in T a solution of the operator equation x = Ax.
Let z = {zn}∞n=1 be this fixed point of A. Then

z = {d1, . . . , dn1−1, zn1 , . . . , zn, . . . }

and by definition of A we have

(13) zn = dn − ar
nzn+r − · · · − a1

nzn+1 for n ≥ n1.

That is z = {zn}∞n=1 is the solution of (E2) for n ≥ n1. Furthermore this
solution, by (12), possesses asymptotic property:

(14) zn = dn + o(1).

Hence σ-periodicity of the sequence d yields asymptotic σ-periodicity of the
sequence z. The obtained sequence does not satisfy (E2) for all n ∈ N,
however using (13) we can build solution of (E2) back, step by step up
to z1.

Remark 3. The same result we present in Theorem 3 can be obtained in one
of the following cases.

i) a0
n ≡ a �= 0 (constant) in (E). In this case it suffices to divide the equation
(E) by a, and check that conditions of Theorem 3 are satisfied.

ii) {dn}∞n=1 is asymptotically σ-periodic sequence.

iii)
{

a0
n

}∞
n=1

is σ-periodic with a0
n �= 0 for all n ∈ N. As in the case (i) dividing

(E1) by a0
n we come back to the case considered in the Theorem 1, because

then
{

dn/a0
n

}∞
n=1

is σ-periodic and lim
n→∞(a

i
n/a0

n) = 0.

iv) a0
n �= 0 for all n ∈ N, lim

n→∞ a0
n = 0 and there exists k ∈ {1, . . . , r} such that

ak
n ≡ a �= 0, and for other i ∈ {1, . . . , r}, i �= k, lim

n→∞ ai
n = 0.

In the paper [7] we have considered equation (E1) in relation to the prob-
lem of existence of asymptotically periodic solutions when

{
a0

n

}
is asymp-

totically periodic, and
{
a1

n

}
asymptotically approaches 1. In [5] the method

similar to this presented in proof of Theorem 3 has been applied to obtain
existence of asymptotically periodic perturbation for second order nonlin-
ear difference equations with asymptotically periodic solutions. Also similar
method has been used in [6] to obtain particular case of periodic sequences
i.e. constant approaching solutions. For other treatment of the problem of
periodicity see e.g. [2,3].
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