THE REGULATION INDEPENDENT OF THE POTENTIAL SYMMETRICAL TO THE CENTER $[\tau, \pi]$ FOR STURM-LIOUVILLE OPERATOR WITH A CONSTANT DELAY

M. Pikula and T. Marjanović

This paper is dedicated to Professor D. S. Mitrinović

Abstract

Let $L=L(\tau, q)$ be operator defined with $-y^{\prime \prime}(x)+q(x) y(x-\tau)=$ $\lambda y(x), \lambda=z^{2} ; y(x-\tau) \equiv 0, x \leq \tau, \pi / 3 \leq \tau<\pi / 2 ; y(\pi)=0$. The aim of this work is to prove the existence and unicity of the operator L, if the range of proper values is given. Potential q is a complex function in $L_{1}[0, \pi]$, and $q(x)=q(\pi-x)$. If q is an analytic function, the problem is solved in [6] for $\tau \in(0, \pi)$. With $q \in L_{1}[0, \pi], \tau \in[\pi / 2, \pi]$ the corresponding problem is solved in [7]. For an arbitrary $\tau \in(0, \pi)$ and "small" potential q the problem is solved in [8]. In this paper, the same method of characteristic functions like in [4], [5], and [6], is used.

1. Asymptotics of Characteristic Values

Let $L=L(\tau, q)$ be operator defined with

$$
\begin{equation*}
-y^{\prime \prime}(x)+q(x) y(x-\tau)=\lambda y(x), \lambda=z^{2}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y(x-\tau) \equiv 0, \quad x \leq \tau, \quad \pi / 3 \leq \tau<\pi / 2, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y(\pi)=0 . \tag{3}
\end{equation*}
$$

Received March 24, 1997.
1991 Mathematics Subject Classification. Primary 34A55, 34B24, 34A10, 34L05.

The relations (1) and (2) are in fact the integral equation
(4) $y(x, z, \tau)=\sin z x+\frac{1}{z} \int_{\tau}^{x} q(t) \sin z(x-t) \sin z(t-\tau) d t$

$$
+\frac{1}{z^{2}} \int_{2 \tau}^{x} q\left(t_{1}\right) \sin z\left(x-t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin z\left(t_{1}-\tau-t_{2}\right) \sin z\left(t_{2}-\tau\right) d t_{2} d t_{1}
$$

From (4) we get the characteristic function $F(z)$ of the operator L in the form
(5) $\quad F(z)=\sin \pi z+\frac{1}{z} \int_{\tau}^{\pi} q(t) \sin z(\pi-t) \sin z(t-\tau) d t$

$$
+\frac{1}{z^{2}} \int_{2 \tau}^{x} q\left(t_{1}\right) \sin z\left(\pi-t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin z\left(t_{1}-\tau-t_{2}\right) \sin z\left(t_{2}-\tau\right) d t_{2} d t_{1} .
$$

Theorem 1. If $q \in L_{1}[0, \pi]$ then zeros z_{n} of the function (5) have the following asymptotics

$$
\begin{equation*}
\pm z_{n}=n+\frac{\cos n \tau}{2 \pi n} \int_{\tau}^{\pi} q(t) d t+O\left(\frac{\cos n \tau}{n}\right), n=1,2, \ldots \tag{6}
\end{equation*}
$$

Proof. Take $z_{n}=n+c_{1}(n) / n+c_{2}(n) / n^{2}+o\left(1 / n^{2}\right)$. Putting this expression into the equation $F(z)=0$ and grouping expression by degrees, we get

$$
c_{1}(n)=\frac{\cos n \tau}{2 \pi} \int_{\tau}^{\pi} q(t) d t-\frac{1}{2 \pi} \int_{\tau}^{\pi} q(t) \cos 2 n\left(t-\frac{\tau}{2}\right) d t
$$

and

$$
c_{2}(n)=\frac{1}{4 \pi} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) d t_{2} d t_{1}
$$

Because $q \in L_{1}[0, \pi]$, we have $a_{2 n}=\int_{\tau}^{\pi} q(t) \cos 2 n(t-\tau / 2) d t \rightarrow 0(n \rightarrow+\infty)$.
From that and from the fact that $F(z)$ is an odd function, the proof follows directly.

Remark 1. If function q is of the bounded variation then

$$
\int_{\tau}^{\pi} q(t) \cos 2 n\left(t-\frac{\tau}{2}\right) d t=O\left(\frac{1}{n}\right)
$$

and
(7) $\quad z_{n}=n+\frac{\cos n \tau}{2 n \pi} \int_{\tau}^{\pi} q(t) d t$

$$
+\frac{1}{n^{2}}\left(\frac{1}{4 \pi} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) d t_{2} d t_{1}+O(1)\right)+o\left(\frac{1}{n^{2}}\right)
$$

Since $\lambda_{n}=z_{n}^{2}$, then from (6) we get asymptotics of the eigenvalues of the operator L in the form
(8) $\quad \lambda_{n}=n^{2}+\frac{1}{\pi} \int_{\tau}^{\pi} q(t) \cos n \tau d t+O\left(\alpha_{n}\right), \alpha_{n} \rightarrow 0(n \rightarrow+\infty)$,
and from (7) in the form

$$
\begin{equation*}
\lambda_{n}=n^{2}+\frac{1}{\pi} \int_{\tau}^{\pi} q(t) \cos n \tau d t+O\left(\frac{1}{n}\right) \tag{9}
\end{equation*}
$$

Let us prove an explicit connection between delay τ and given eigenvalues. Since

$$
\begin{aligned}
\beta_{n} & =\frac{\lambda_{n+2}-\lambda_{n-2}-(n+2)^{2}+(n-2)^{2}}{\lambda_{n+1}-\lambda_{n-1}-(n+1)^{2}-(n-1)^{2}} \\
& =2 \cos \tau+ \begin{cases}O\left(\alpha_{n}\right), & \alpha_{n} \rightarrow 0, n \rightarrow+\infty, q \in L_{1}[0, \pi] \\
O(1 / n), & n \rightarrow+\infty, \\
\text { q is a bounded variation } \\
\text { function },\end{cases}
\end{aligned}
$$

then

$$
\begin{equation*}
\cos \tau=\frac{1}{2} \lim _{n \rightarrow+\infty} \beta_{n}=\frac{1}{2} \beta \quad(-2<\beta<2) \tag{10}
\end{equation*}
$$

Notice that if $0<\beta \leq \sqrt{3}$, then $\tau \in[\pi / 3, \pi / 2)$.

2. Relation Between Potential and Characteristic Values

Let λ_{n} be eigenvalues of the operator L. Then the characteristic function (5) can be done in the form

$$
F(z)=A z \prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{\lambda_{n}}\right)
$$

where A is a undetermined constant. Equating those two forms of the same function, we get

$$
A=\pi \prod_{n=1}^{+\infty} \frac{\lambda_{n}}{n^{2}}
$$

Thus,

$$
\begin{equation*}
F(z)=\pi \prod_{n=1}^{+\infty} \frac{\lambda_{n}}{n^{2}} \cdot z \prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{\lambda_{n}}\right) \tag{11}
\end{equation*}
$$

Using asymptotics (8) and taking $z=-i \sqrt{\mu}$, we obtain

$$
\begin{equation*}
\lim _{\mu \rightarrow+\infty} \frac{F(-i \sqrt{\mu})-\sin (-\pi i \sqrt{\mu})}{\cosh (\pi-\tau) \sqrt{\mu}} \cdot 2 \sqrt{\mu}=\int_{\tau}^{\pi} q(t) d t=J_{1} \tag{12}
\end{equation*}
$$

Putting $S\left(z, t_{1}, t_{2}, \tau\right)=\sin z\left(\pi-t_{1}\right) \sin z\left(t_{1}-\tau-t_{2}\right) \sin z t_{2}$, for $z=m$, $m \in \mathbb{N}$, we can write

$$
\begin{align*}
S\left(m, t_{1}, t_{2}, \tau\right)= & (-1)^{m+1} S_{m}\left(t_{1}, t_{2}, \tau\right) \tag{13}\\
= & \frac{(-1)^{m+1}}{4}\left\{\sin 2 m\left(t_{1}-t_{2}\right)-\sin 2 m \tau\right. \\
& \left.\quad-\sin 2 m\left(t_{1}-\tau\right)+\sin 2 m t_{2}\right\}
\end{align*}
$$

In order to find a relation between the potential q and eigenvalues λ_{n} of the operator L, we start from

$$
\begin{align*}
& \pi \prod_{n=1}^{+\infty} \frac{\lambda_{n}}{n^{2}} \prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{\lambda_{n}}\right) \tag{14}\\
\equiv & \sin \pi z-\frac{J_{1}}{2 z} \cos z(\pi-\tau)+\frac{1}{2 z} \int_{\tau}^{\pi} q(t) \cos z(\pi-2 t+\tau) d t \\
+ & \frac{1}{z^{2}} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) S\left(z, t_{1}, t_{2}, \tau\right) d t_{2} d t_{1}
\end{align*}
$$

for $z \in \mathbb{C}$. The identity (14) gives

$$
\begin{align*}
& F(m)+\frac{(-1)^{m} J_{1}}{2 m} \cos m \tau \tag{15}\\
= & \frac{(-1)^{m}}{2 m} \int_{\tau}^{\pi} q(t) \cos 2 m\left(t-\frac{\tau}{2}\right) d t \\
+ & \frac{(-1)^{m+1}}{4 m^{2}}\left\{\int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m\left(t_{1}-t_{2}\right) d t_{2} d t_{1}\right. \\
- & \sin 2 m \tau \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) d t_{1} d t_{2} \\
- & \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m\left(t_{1}-\tau\right) d t_{2} d t_{1} \\
+ & \left.\int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m t_{2} d t_{2} d t_{1}\right\}, m=1,2, \ldots .
\end{align*}
$$

Now, we introduce

$$
\begin{align*}
& A_{2 m}=(-1)^{m} \frac{4 m}{\pi}\left[\pi \prod_{n=1}^{+\infty} \frac{\lambda_{n}}{n^{2}} \prod_{n=1}^{+\infty}\left(1-\frac{m^{2}}{\lambda_{n}}\right)+\frac{(-1)^{m} J_{1}}{2 m} \cos m \tau\right] \tag{16}\\
& a_{2 m}=\frac{2}{\pi} \int_{\tau / 2}^{\pi-\tau / 2} q\left(t+\frac{\tau}{2}\right) \cos 2 m t d t \\
& \sigma_{1, m}(q)=\frac{1}{\pi m} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m\left(t_{1}-t_{2}\right) d t_{2} d t_{1} \\
& \sigma_{2, m}(q)=-\frac{\sin 2 m \tau}{\pi m} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) d t_{2} d t_{1} \\
& \sigma_{3, m}(q)=-\frac{1}{\pi m} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m\left(t_{1}-\tau\right) d t_{2} d t_{1} \\
& \sigma_{4, m}(q)=\frac{1}{\pi m} \int_{2 \tau}^{\pi} q\left(t_{1}\right) \int_{\tau}^{t_{1}-\tau} q\left(t_{2}\right) \sin 2 m t_{2} d t_{2} d t_{1}
\end{align*}
$$

Then (15) becomes

$$
\begin{equation*}
a_{2 m}=A_{2 m}+\sum_{k=1}^{4} \sigma_{k, m}(q)=A_{2 m}+X_{2 m}(q) \tag{19}
\end{equation*}
$$

Using an integration by parts, exchanging the order of the integration, and putting

$$
Q\left(t_{1}, t_{2}, \tau\right)=\frac{\pi-\tau-t_{1}}{t_{1}-\tau} q\left(\tau+t_{1}+\frac{\pi-\tau-t_{1}}{t_{1}-\tau}\left(t_{2}-\tau\right)\right)
$$

the functional $X_{2 m}(q)$ can be transformed in the form

$$
\begin{aligned}
X_{2 m}(q) & =\frac{2}{\pi} \int_{\tau}^{\pi-\tau}\left\{\int _ { \tau } ^ { t _ { 1 } } \left\{Q\left(t_{1}, t_{2}, \tau\right) \int_{\tau}^{\tau+\left(\pi-\tau-t_{1}\right)\left(t_{2}-\tau\right) /\left(t_{1}-\tau\right)} q\left(t_{3}\right) d t_{3}\right.\right. \\
& \left.\left.+q\left(t_{2}+\tau\right) \int_{\tau}^{t_{2}} q\left(t_{3}\right) d t_{3}-q\left(t_{2}\right) \int_{\tau+t_{2}}^{\pi} q\left(t_{3}\right) d t_{3}\right\} d t_{2}\right\} \cos 2 m t_{1} d t_{1}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
X_{2 m}(q)=\frac{2}{\pi} \int_{\tau}^{\pi-\tau}\left[\int_{\tau}^{t_{1}} K\left(t_{1}, t_{2}, q\left(t_{1}, t_{2}\right), \tau\right) d t_{2}\right] \cos 2 m t_{1} d t_{1} \tag{20}
\end{equation*}
$$

Therefore (19) becomes

$$
\begin{equation*}
a_{2 m}=A_{2 m}+\frac{2}{\pi} \int_{\tau}^{\pi-\tau}\left[\int_{\tau}^{t_{1}} K\left(t_{1}, t_{2}, q\left(t_{1}, t_{2}\right), \tau\right) d t_{2}\right] \cos 2 m t_{1} d t_{1} \tag{21}
\end{equation*}
$$

Now, we put

$$
q_{1}(t)= \begin{cases}q(t+\tau / 2), & t \in(\tau / 2, \pi-\tau / 2) \\ 0, & t \in(0, \tau / 2) \cup(\pi-\tau / 2, \pi)\end{cases}
$$

and

$$
H\left(t_{1}\right)= \begin{cases}\int_{\tau}^{t_{1}} K\left(t_{1}, t_{2}, q\left(t_{1}, t_{2}\right), \tau\right) d t_{2}, & t_{1} \in(\tau, \pi-\tau) \\ 0, & t_{1} \in(0, \tau) \cup(\pi-\tau, \pi)\end{cases}
$$

If $q(x)=q(\pi-x), x \in(0, \pi)$, then $q_{1}(x)=q_{1}(\pi-x)$. Then $a_{2 m}$ are Fourier coefficients of the function $q_{1}(x), x \in(0, \pi)$.

It is easy to show that $A_{2 m} \rightarrow 0$, if $m \rightarrow+\infty$. It means that $A_{2 m}$ present Fourier cosinus coefficients of a certain function $f \in L_{1}[0, \pi]$. Besides the functionals $X_{2 m}(q)$ represent Fourier coefficients of the function $H\left(t_{1}\right)$.

If we multiply (21) with $\cos 2 m x$ and summing in m, we get

$$
q\left(x+\frac{\tau}{2}\right)=f(x)+\int_{\tau}^{x} K(x, t, q(t)) d t, x \in(\tau, \pi-\tau)
$$

and

$$
q\left(x+\frac{\tau}{2}\right)=f(x), x \in\left(\frac{\tau}{2}, \tau\right) \cup\left(\pi-\tau, \pi-\frac{\tau}{2}\right)
$$

i.e.,

$$
\begin{equation*}
q(x)=f\left(x-\frac{\tau}{2}\right), x \in\left(\tau, \frac{3}{2}, \tau\right) \cup\left(\pi-\frac{\tau}{2}, \pi\right), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
q(x)=f\left(x-\frac{\tau}{2}\right)+\int_{\tau}^{x-\pi / 2} K\left(x-\frac{\pi}{2}, t, q(t)\right) d t, x \in\left(\frac{3}{2} \tau, \pi-\frac{\tau}{2}\right) . \tag{23}
\end{equation*}
$$

Remark 2. The interval A_{n} in (23) for $\tau=\pi / 2$ disappears, and for $\tau=\pi / 3$ it becomes ($\pi / 2,5 \pi / 6$).

Since (23) is a nonlinear integral equation of Volterra type, and because the kernel $K(x-\tau / 2, t, q(t))$ satisfies the Lipschitz condition by a q, then it has only one solution which can be obtained by the method of successive approximations.

Thus, one sequence of eigenvalues of the operator L defines that operator.

3. The Solution of the Inverse Problem

Theorem 2. In order that a sequence of numbers $\lambda_{n}, n \in \mathbb{N},\left|\lambda_{n}\right|<\left|\lambda_{n+1}\right|$ be a sequence of eigenvalues of the operator L type (1), (2), (3) it is necessary and sufficient that:
1° The sequence λ_{n} has asimptotics

$$
\lambda_{n}=n^{2}+a_{0} \cos n \tau+O\left(\alpha_{n}\right), \alpha_{n} \rightarrow 0, n \rightarrow+\infty ;
$$

2°

$$
\beta=\lim _{n \rightarrow+\infty} \frac{\lambda_{n+2}-\lambda_{n-2}-(n+2)^{2}+(n-2)^{2}}{\lambda_{n+1}-\lambda_{n-1}-(n+1)^{2}+(n-1)^{2}}=2 \cos \tau, \beta \in(0, \sqrt{3}) .
$$

Proof. The necessity of conditions 1° and 2° is evident from the direct problem. Let us prove that 1° and 2° are sufficient conditions. We construct the function

$$
\Phi(z)=\pi \prod_{n=1}^{+\infty} \frac{\lambda_{n}}{n^{2}} \prod_{n=1}^{+\infty}\left(1-\frac{z^{2}}{\lambda_{n}}\right)
$$

and consider identity (14). Take $\tilde{\tau}=\arccos \beta / 2$ and

$$
\int_{\tau}^{\pi} q(t) d t=\lim _{\mu \rightarrow+\infty} \frac{\Phi(-i \sqrt{\mu})-\sin (-\pi i \sqrt{\mu})}{\cosh (\pi-\tau) \sqrt{\mu}} \cdot 2 \sqrt{\mu}
$$

The presented identity is transformed into the system of equations (22) and (23), where K is defined by (20). Let $\tilde{q}(x)$ be the unique solution of the system (22), (23), $x \in[\tau, \pi]$. According to the symmetry $q(x)=g(\pi-x)$, the function $\tilde{q} \in L_{1}[0, \pi]$ is defined. With such defined $\tilde{\tau}$ and \tilde{q} we construct the operator $\tilde{L}=L(\tilde{\tau}, \tilde{q})$. Let us make the characteristic function $\tilde{F}(z)$ of the operator \tilde{L} and let us find its zeros $\pm \tilde{z}_{n}$. Let $\tilde{\lambda}_{n}$ be eigenvalues of the operator \tilde{L}.

From the way of defining the function \tilde{q} and number $\tilde{\tau}$ it is evident that $\Phi(z) \equiv \tilde{F}(z)$, which means that $\lambda_{n}=\tilde{\lambda}_{n}$.

REFERENCES

1. D. S. Mitrinović and J. D. Kečkić: Mathematics II. Građevinska knjiga, Belgrade, 1989 (Serbian).
2. M. Pikula and T. Marjanović: The construction of the small potential for an equation of Sturm-Liouville type with constant delay. Proc. II Math. Conf. Priština (Priština, 1996), (Ed. Lj. D. Kočinac), Univ. Priština, Priština, 1997, 135-141.
3. S. B. Norkin: Differential equations of the second order with retarded argument. Nauka, Moscow, 1965 (Russian).
4. L. E. El'sgol'ts and S. B. Norkin: Introduction to the Theory of Differential Equations with Deviating Argument. Nauka, Moscow, 1971 (Russian).
5. V. A. SadovnichiĬ: Operator Theory. Moskov. Gos. Univ., Moscow, 1979 (Russian).
6. M. Pikula: Regularized traces of higher-order differential operators with retarded argument. Diff. Equations 21 (1985), 664-668 [Translation from Diff. Uravn. 21 (1985), 986-991 (Russian)].
7. M. Pikula: Determination of a Sturm-Liouville-type differential operator with retarded argument from two spectra. Mat. Vesnik 43 (1991), 159-171 (Russian).
8. M. Pikula: A solution of the inverse problem for equations with constant delay. Congress of Yugoslav Mathematicians (May 22-27, 1996), Petrovac, Yugoslavia.

The Teacher Training Faculty 31000 Užice
Yugoslavia
Higher Technical School
32000 Čačak
Yugoslavia

