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Abstract. Let L = L(τ, q) be operator defined with −y′′(x) + q(x)y(x − τ) =

λy(x), λ = z2; y(x − τ) ≡ 0, x ≤ τ , π/3 ≤ τ < π/2; y(π) = 0. The aim of
this work is to prove the existence and unicity of the operator L, if the range
of proper values is given. Potential q is a complex function in L1[0, π], and
q(x) = q(π − x). If q is an analytic function, the problem is solved in [6] for
τ ∈ (0, π). With q ∈ L1[0, π], τ ∈ [π/2, π] the corresponding problem is solved
in [7]. For an arbitrary τ ∈ (0, π) and “small” potential q the problem is solved
in [8]. In this paper, the same method of characteristic functions like in [4], [5],
and [6], is used.

1. Asymptotics of Characteristic Values

Let L = L(τ, q) be operator defined with

(1) −y′′(x) + q(x)y(x− τ) = λy(x), λ = z2,

(2) y(x− τ) ≡ 0, x ≤ τ, π/3 ≤ τ < π/2,

(3) y(π) = 0.
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The relations (1) and (2) are in fact the integral equation

y(x, z, τ) = sin zx+
1
z

∫ x

τ

q(t) sin z(x− t) sin z(t− τ)dt(4)

+
1
z2

∫ x

2τ

q(t1) sin z(x− t1)
∫ t1−τ

τ

q(t2) sin z(t1 − τ − t2) sin z(t2 − τ)dt2dt1.

From (4) we get the characteristic function F (z) of the operator L in the
form

F (z) = sinπz +
1
z

∫ π

τ

q(t) sin z(π − t) sin z(t− τ)dt(5)

+
1
z2

∫ x

2τ

q(t1) sin z(π − t1)
∫ t1−τ

τ

q(t2) sin z(t1 − τ − t2) sin z(t2 − τ)dt2dt1.

Theorem 1. If q ∈ L1[0, π] then zeros zn of the function (5) have the
following asymptotics

(6) ±zn = n+ cosnτ
2πn

∫ π

τ

q(t)dt+O
(cosnτ

n

)
, n = 1, 2, . . . .

Proof. Take zn = n+c1(n)/n+c2(n)/n2+o(1/n2). Putting this expression
into the equation F (z) = 0 and grouping expression by degrees, we get

c1(n) =
cosnτ
2π

∫ π

τ

q(t)dt− 1
2π

∫ π

τ

q(t) cos 2n
(
t− τ

2

)
dt

and

c2(n) =
1
4π

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2)dt2dt1.

Because q ∈ L1[0, π], we have a2n =
∫ π

τ
q(t) cos 2n(t−τ/2)dt→ 0 (n→ +∞).

From that and from the fact that F (z) is an odd function, the proof
follows directly. �

Remark 1. If function q is of the bounded variation then

∫ π

τ

q(t) cos 2n
(
t− τ

2
)
dt = O

( 1
n

)
,
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and

zn = n+
cosnτ
2nπ

∫ π

τ

q(t)dt(7)

+
1
n2

(
1
4π

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2)dt2dt1 +O(1)
)
+ o

( 1
n2

)
.

Since λn = z2n, then from (6) we get asymptotics of the eigenvalues of the
operator L in the form

(8) λn = n2 +
1
π

∫ π

τ

q(t) cosnτdt+O(αn), αn → 0 (n→ +∞),

and from (7) in the form

(9) λn = n2 +
1
π

∫ π

τ

q(t) cosnτ dt+O
( 1
n

)
.

Let us prove an explicit connection between delay τ and given eigenvalues.
Since

βn =
λn+2 − λn−2 − (n+ 2)2 + (n− 2)2

λn+1 − λn−1 − (n+ 1)2 − (n− 1)2

= 2 cos τ +



O(αn), αn → 0, n→ +∞, q ∈ L1[0, π],

O(1/n), n→ +∞, q is a bounded variation
function,

then

(10) cos τ =
1
2

lim
n→+∞βn =

1
2
β (−2 < β < 2).

Notice that if 0 < β ≤ √
3, then τ ∈ [π/3, π/2).

2. Relation Between Potential and Characteristic Values

Let λn be eigenvalues of the operator L. Then the characteristic function
(5) can be done in the form

F (z) = Az
+∞∏
n=1

(
1− z2

λn

)
,



24 M. Pikula and T. Marjanović

where A is a undetermined constant. Equating those two forms of the same
function, we get

A = π
+∞∏
n=1

λn

n2
.

Thus,

(11) F (z) = π
+∞∏
n=1

λn

n2
· z

+∞∏
n=1

(
1− z2

λn

)
.

Using asymptotics (8) and taking z = −i√µ, we obtain

(12) lim
µ→+∞

F (−i√µ)− sin(−πi√µ)
cosh(π − τ)√µ · 2√µ =

∫ π

τ

q(t)dt = J1.

Putting S(z, t1, t2, τ) = sin z(π − t1) sin z(t1 − τ − t2) sin zt2, for z = m,
m ∈ N, we can write

S(m, t1, t2, τ) = (−1)m+1Sm(t1, t2, τ)(13)

=
(−1)m+1

4
{
sin 2m(t1 − t2)− sin 2mτ

− sin 2m(t1 − τ) + sin 2mt2
}
.

In order to find a relation between the potential q and eigenvalues λn of the
operator L, we start from

π
+∞∏
n=1

λn

n2

+∞∏
n=1

(
1− z2

λn

)
(14)

≡ sinπz − J1

2z
cos z(π − τ) + 1

2z

∫ π

τ

q(t) cos z(π − 2t+ τ)dt

+
1
z2

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2)S(z, t1, t2, τ)dt2dt1,
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for z ∈ C. The identity (14) gives

F (m) +
(−1)mJ1

2m
cosmτ(15)

=
(−1)m
2m

∫ π

τ

q(t) cos 2m
(
t− τ

2

)
dt

+
(−1)m+1

4m2

{∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2m(t1 − t2) dt2 dt1

− sin 2mτ
∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) dt1 dt2

−
∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2m(t1 − τ) dt2 dt1

+
∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2mt2 dt2 dt1

}
, m = 1, 2, . . . .

Now, we introduce

(16) A2m = (−1)m 4m
π

[
π

+∞∏
n=1

λn

n2

+∞∏
n=1

(
1− m

2

λn

)
+
(−1)mJ1

2m
cosmτ

]
,

(17) a2m =
2
π

∫ π−τ/2

τ/2

q
(
t+

τ

2

)
cos 2mtdt,

(18)

σ1,m(q) =
1
πm

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2m(t1 − t2)dt2dt1,

σ2,m(q) = − sin 2mτ
πm

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2)dt2dt1,

σ3,m(q) = − 1
πm

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2m(t1 − τ)dt2dt1,

σ4,m(q) =
1
πm

∫ π

2τ

q(t1)
∫ t1−τ

τ

q(t2) sin 2mt2dt2dt1.

Then (15) becomes

(19) a2m = A2m +
4∑

k=1

σk,m(q) = A2m +X2m(q).
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Using an integration by parts, exchanging the order of the integration,
and putting

Q(t1, t2, τ) =
π − τ − t1
t1 − τ q

(
τ + t1 +

π − τ − t1
t1 − τ (t2 − τ)

)
,

the functional X2m(q) can be transformed in the form

X2m(q) =
2
π

∫ π−τ

τ

{∫ t1

τ

{
Q(t1, t2, τ)

∫ τ+(π−τ−t1)(t2−τ)/(t1−τ)

τ

q(t3) dt3

+ q(t2 + τ)
∫ t2

τ

q(t3) dt3 − q(t2)
∫ π

τ+t2

q(t3)dt3
}
dt2

}
cos 2mt1 dt1,

i.e.,

(20) X2m(q) =
2
π

∫ π−τ

τ

[∫ t1

τ

K(t1, t2, q(t1, t2), τ) dt2

]
cos 2mt1 dt1.

Therefore (19) becomes

(21) a2m = A2m +
2
π

∫ π−τ

τ

[∫ t1

τ

K(t1, t2, q(t1, t2), τ)dt2

]
cos 2mt1dt1.

Now, we put

q1(t) =
{
q(t+ τ/2), t ∈ (τ/2, π − τ/2),
0, t ∈ (0, τ/2) ∪ (π − τ/2, π),

and

H(t1) =

{ ∫ t1
τ
K

(
t1, t2, q(t1, t2), τ

)
dt2, t1 ∈ (τ, π − τ),

0, t1 ∈ (0, τ) ∪ (π − τ, π).

If q(x) = q(π − x), x ∈ (0, π), then q1(x) = q1(π − x). Then a2m are
Fourier coefficients of the function q1(x), x ∈ (0, π).
It is easy to show that A2m → 0, if m→ +∞. It means that A2m present

Fourier cosinus coefficients of a certain function f ∈ L1[0, π]. Besides the
functionals X2m(q) represent Fourier coefficients of the function H(t1).
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If we multiply (21) with cos 2mx and summing in m, we get

q
(
x+

τ

2

)
= f(x) +

∫ x

τ

K
(
x, t, q(t)

)
dt, x ∈ (τ, π − τ),

and
q
(
x+

τ

2

)
= f(x), x ∈

(τ
2
, τ

)
∪

(
π − τ, π − τ

2

)
,

i.e.,

(22) q(x) = f
(
x− τ

2

)
, x ∈

(
τ,
3
2
, τ

)
∪

(
π − τ

2
, π

)
,

and

(23) q(x) = f
(
x− τ

2

)
+

∫ x−π/2

τ

K
(
x− π

2
, t, q(t)

)
dt, x ∈

(3
2
τ, π − τ

2

)
.

Remark 2. The interval An in (23) for τ = π/2 disappears, and for τ = π/3
it becomes (π/2, 5π/6).

Since (23) is a nonlinear integral equation of Volterra type, and because
the kernel K

(
x − τ/2, t, q(t)) satisfies the Lipschitz condition by a q, then

it has only one solution which can be obtained by the method of successive
approximations.

Thus, one sequence of eigenvalues of the operator L defines that operator.

3. The Solution of the Inverse Problem

Theorem 2. In order that a sequence of numbers λn, n ∈ N, |λn| < |λn+1|
be a sequence of eigenvalues of the operator L type (1), (2), (3) it is necessary
and sufficient that:

1◦ The sequence λn has asimptotics

λn = n2 + a0 cosnτ +O(αn), αn → 0, n→ +∞;

2◦

β = lim
n→+∞

λn+2 − λn−2 − (n+ 2)2 + (n− 2)2

λn+1 − λn−1 − (n+ 1)2 + (n− 1)2
= 2 cos τ, β ∈ (0,

√
3).
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Proof. The necessity of conditions 1◦ and 2◦ is evident from the direct
problem. Let us prove that 1◦ and 2◦ are sufficient conditions. We construct
the function

Φ(z) = π
+∞∏
n=1

λn

n2

+∞∏
n=1

(
1− z2

λn

)

and consider identity (14). Take τ̃ = arccosβ/2 and

∫ π

τ

q(t)dt = lim
µ→+∞

Φ(−i√µ)− sin(−πi√µ)
cosh(π − τ)√µ · 2√µ.

The presented identity is transformed into the system of equations (22)
and (23), where K is defined by (20). Let q̃(x) be the unique solution of the
system (22), (23), x ∈ [τ, π]. According to the symmetry q(x) = g(π − x),
the function q̃ ∈ L1[0, π] is defined. With such defined τ̃ and q̃ we construct
the operator L̃ = L(τ̃ , q̃). Let us make the characteristic function F̃ (z) of
the operator L̃ and let us find its zeros ±z̃n. Let λ̃n be eigenvalues of the
operator L̃.

From the way of defining the function q̃ and number τ̃ it is evident that
Φ(z) ≡ F̃ (z), which means that λn = λ̃n. �
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