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Abstract. The rate of approximation a.e. by Steklov means with respect to
multidimensional integrals is considered.

The classical Lebesgue theorem about differentiation of integrals states
that Steklov means Shf(x) = h−1

∫ x+h

x
f(t) dt approximate a.e. the summa-

ble function f . It is easy to estimate the rate of approximating in L1–metric
in the following way

(1) ‖Shf − f‖ = O{ω(f ;h)} .

Also, it is natural to consider the problem of estimation of the rate of a.e.
convergence of Shf(x). In fact, we can define more precisely the order of
ox(1) in the following fundamental relation, which may be considered as a.e.
analogous of the statement ‖Shf − f‖ = o(1):

(2) |I|−1

∫
I�x

|f(y)− f(x)| dy = ox(1) , diam (I) → 0 .

The complete solution of this problem was given by K.I. Oskolkov [1]. In
certainly weaker that in [1] form, it is contained in the Theorem A below.
Before the formulation of this theorem we introduce some notation.

Let In = [0, 1]n and � and � designates the inequalities ≤ and ≥, which
are true with some constants. By the Φ we denote the class of positive
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sub additive non decreasing on (0, 1] functions φ. Also, ω(f ; δ) and ωi(f, δ)
denote the modulus of continuity and j–th partial modulus of continuity of
f ∈ L1(In) respectively and Hω

1 (I
n) = {f ∈ L1(In) : ω(f ; δ) = O{ω(δ)}}.

Let f ∈ L1(In) and δ > 0. Define

Dδ(f, x) = sup |I|−1

∫
I

|f(y)− f(x)| dy

where supremum is taking over the n–dimensional intervals I = I1×· · ·×In,
I � x, I ⊂ In, diam (I) = δ.

We suppose that ω(δ)/δ → ∞, δ → 0 and introduce the auxiliary function
Ω(δ) which characterizes the rate of convergence to zero the quantities ω(δ)
and δ/ω(δ). We set

(3) δ0 = 1 ; δk+1 = min
{
δ : max

(
ω(δ)
ω(δk)

;
ω(δk)δ
ω(δ)δk

)
≥ 1

2

}
,

and Ω(δ) = 21−k; δk+1 ≤ δ < δk.

Theorem A. Let ω(δ)/δ → ∞, δ → 0, and ψ(t) is positive non increasing
function such that

(4)
∫ 1

0

dt

tψ(t)
< ∞ .

Then for every f ∈ Hω
1 (I

1)

Dδ(f, x) = Ox{ω(δ)ψ(Ω(δ))} a.e. on I1 .

If (4) false, then with the some g ∈ Hω
1 (I

1)

(5) lim sup
δ→0

Dδ(g, x)
ω(δ)ψ(Ω(δ))

= ∞ a.e. on I1 .

Now, let us point our attention to the multidimensional case. The mul-
tidimensional Steklov means Sh1,... ,hnf approximate summable function f
only by L1–metric with similar to (1) estimation. However, they approxi-
mate a.e. only functions from L(log+L)n−1(In) by the well–known Jessen–
Marcinkiewicz–Zygmund theorem. Therefore, the embedding Hω

1 (I
n) ⊂

L(log+L)n−1(In), is sufficient for the availability of (2) for all f ∈ Hω
1 (I

n).
The corresponding condition of embedding has the following form:

(6)
∫ 1

0

ω(δ)
δ

(
log

1
δ

)n−2

dδ < ∞ .
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We [2] managed to establish, that (6) is a necessary condition for (2) also.
By the other words, the condition of strong differentiation of integrals of all
functions from Hω

1 (I
n) coincide with the condition of embedding Hω

1 (I
n) ⊂

L(log+L)n−1(In).
So, we can consider the problem of estimation of the rate of strong differ-

entiation.

Theorem 1. Let n ≥ 2 and ω(δ) modulus of continuity which satisfying (6)
and function ψ ∈ Φ such that

∫ 1

0

ω(δ)
δψ(δ)

(
log

1
δ

)n−2

dδ < ∞ .

Then for every f ∈ Hω
1 (I

n)

(7) Dδ(f, x) = Ox{ψ(δ)} a.e. on In .

The method of investigation of strong differentiation due to A. Zygmund
consists of majorization of multidimensional operators by the compositions
of partial one–dimensional operators. Then the problem of finitenesses a.e. is
reducing to the problem of summability and embedding to the some Orlicz
classes low–dimensional operators. We shall also follow this schedule and
introduce the maximal function N s

φf(x) connected with local smoothness

N s
ϕf(x) = sup

I,x∈I
(|I|ϕ(diam (I)))−1

∫
I

|f(y)− f(x)| dy .

Theorem 2. Let ω(δ) is modulus of continuity which satisfies (6) and func-
tion φ ∈ φ such that

∫ 1

0

ω(δ)
δ φ(δ)

(
log

1
δ

)n−1

dδ < ∞ .

Then N s
φf(x) ∈ L1(In) for every f ∈ Hω

1 (I
n).

Proof. With τ ≡ (τ(1), . . . , τ(n)) we denote some rearrangements of
(1, . . . , n). Define n–dimensional simplexes Er ⊂ In

Er≡{(x1, . . . , xn) : 0 ≤ xτ(1)≤1, xτ(1)≤xτ(2)≤1 , . . . , xτ(n−1)≤xτ(n)≤1} .
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For example in two–dimensional case there are two different rearrangements
τ : (1, 2) → (1, 2) and τ : (1, 2) → (2, 1). Then

E1,2 = {(x1, x2) : 0 ≤ x1 ≤ 1 , x1 ≤ x2 ≤ 1} ,
E2,1 = {(x1, x2) : 0 ≤ x2 ≤ 1 , x2 ≤ x1 ≤ 1} ,

and I2 = E1,2 ∪ E2,1.
It is obvious (by induction), that for every x ∈ In

(8) 1 ≤
∑

τ

χτ (x) ≤ n!

where sum is taken over all rearrangements τ and χτ denote the character-
istic function of Eτ .

Now, let x ∈ I = I1 × · · · × In, and integer mj such that 2−mj−1 < |Ij | ≤
2−mj . Denote by v(I) = (2−m1 , . . . , 2−mn), and taking into consideration
(8) we have for all x and y in In

|f(y)− f(x)| �
∑

τ

|f(y1, . . . , xτ(1), . . . , yn)− f(y1, . . . , yn)|χτ (v(I))

+
∑

τ

|f(y1, . . . , xτ(1), . . . , yn)− f(x1, . . . , xn)|χτ (v(I)) .

Let

A(j) = {k : 1 ≤ k ≤ n ; k �= j} , I(j) =
∏

k∈A(j)

Ik , dy(j) =
∏

k∈A(j)

dyk .

Then

|I|−1

∫
I

|f(y)−f(x)| dy ≤
∑

r

|I|−1

×
∫

I

|f(y1, . . . , yn)− f(y1, . . . , xτ(1), . . . , yn)| dy

× χτ (v(I)) + n!
n∑

j=1

|I(j)|−1

×
∫

I(j)

|f(x1, . . . , xn)−f(y1, . . . , xj , . . . , yn)| dy(j) .
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If we denote by

Rτ
ψf(x) = sup

I,x∈I,v(I)∈Eτ

(|I|ψτ(1)

(|I|τ(1)

))−1

×
∫

I

|f(y1, . . . , yn)− f(y1, . . . , xτ(1), . . . , Yn)| dy ;

N s,j
ψ f(x) = sup

I,x∈I
(|I(j)|ψ(I(j)))−1

×
∫

I(j)

|f(x1, . . . , xn)− f(y1, . . . , xj , . . . , yn)| dy(j) ,

as 1/ψ(diam (I)) ≤ 1/ψ(|Ij |) for all j = 1, . . . , n, then

N s
ψf(x) ≤

∑
τ

Rτ
ψ(f, x) + n!

n∑
j=1

N s,j
ψ f(x) .

The second sum, in essence, contains (n− 1)–dimensional Nϕ–functions,
therefore, it is sufficient to establish summability Rτ

ψf(x).
Let

E∗
τ = {m = (m1, . . . ,mn) :

(
2−m1 , . . . , 2−mn

) ∈ Eτ} .
Then

Rτ
ψ(f, x) �

∑
m∈E∗

τ

2m1

∫ 2−m1

−2−mn

dt1 · · · 2mn

∫ 2−mn

−2−mn

|f(x1 + t1, . . . , xn + tn)

− f(x1 + t1, . . . , xτ(1), . . . , xn + tn)| dtn
[
ψτ(1)(2−mτ(1))

]−1

�
∑

m∈E∗
τ

∑
|ε1|=1,... ,|εn|=1

2m1

∫ 2−m1

0

dt1 · · · 2mn

×
∫ 2−mn

0

|f(x1 + ε1 · t1, . . . , xn + εn · tn)

− f(x1 + ε1 ·t1, . . . , xτ(1), . . . , xn + εn ·tn)| dtn
[
ψτ(1)(2−mτ(1))

]−1
.

Now

‖Rτ
ψf‖1 �

∑
m∈E∗

τ

∑
|ε1|=1,... ,|εn|=1

2mτ(1)
[
ψτ(1)(2−mτ(1))

]−1

×
∫ 2

−mτ(1)

0

‖∆τ(1)
ετ(1)t

f‖1 dt .
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Let us estimate the arbitrary addendum. Without loss of generality we
may assume that ε1 = · · · = εn = 1; τ(1) = 1, . . . , τ(n) = n. Then

∑
m∈E∗

τ

2m1
[
ψ

(
2−m1

)]−1
∫ 2−m1

0

‖∆1
tf‖1 dt

�
∞∑

m1=0

{
m1∑

m2=1

· · ·
mn−1∑
mn=1

1

}
2m1

[
ψ

(
2−m1

)]−1
∫ 2−m1

0

‖∆1
t f‖1 dt .

Obviously,
m1∑

m2=1

· · ·
mn−1∑
mn=1

1 � (m1)n−2 .

Taking into consideration monotonicity of ψ(t), we get

‖Rτ
ψ f‖1 �

∞∑
m=0

mn−22m
[
ψ(2−m)

]−1
∫ 2−m

0

‖∆1
t f‖1 dt

�
∞∑

m=0

2m

∫ 2−m

0

‖∆1
t f‖1

ψ(t)

(
log

1
t

)n−2

dt .

Thus, applying the Abel’s transform, we get

‖Rτ
ψ f‖1 �

∫ 1

0

ω1(t)
tψ1(t)

(
log

1
t

)n−2

dt < ∞ .

The proof of theorem 2 is complete. �
Now, Theorem 1 follows from theorem 2 by the following simple observa-

tion

|I|−1

∫
I�x

|f(y)− f(x)| dy ≤ |I|−1

∫
I

|f(y1, . . . , yn)− f(y1, x2, . . . , xn)| dy

+ |I|−1

∫
I1

|f(x1, . . . , xn)− f(y1, x2, . . . , xn)| dy1

≤ M1
(
N s,1

φ f
)
(x)φ(diam (I)) +N 1

φf(x)φ(|I1|)

where M1 denotes partial Hardy–Littlewood maximal function at x1–coor-
dinate, which is finite a.e. if N s,1

φ f ∈ L1.



On the Rate of Approximation Almost Everywhere by Steklov Means ... 17

Let us discuss the sharpness of (7). It is not difficult to prove, that well
known Bari–Zygmund condition on ω(δ) is equivalent with the following
condition: δk/δk+1 = O(1), where sequence δk was generated by (2). So, in
this case Ω(δ) has the power grow near zero. On the other hand, ψ(t) has
the logarithmic behavior, hence the order of (ψ(Ω(δ)) and ψ(δ) is identical
(this unformal consideration may be rewritten as formal statement). Thus
for these modulus, like ω(δ) = δα(log(1/δ))β , 0 < α < 1, the sharpness of
(7) follows from (5).

However, for the logarithmic–type modulus like ω(δ)=(log(1/δ))α, α<−1
with some condition of regularity the estimation (7) is also sharp. This
condition is decreasing of ψ(t)/ω(t) and ω(t)t−1/2. The latter implies that
ω(δk) = 2−k.

Further, for the simplicity of notations, we consider two–dimensional case.
Then

∫ 1

0

ω(δ)
δψ(δ)

dδ ≤
∞∑

k=1

∫ δk−1

δk

ω(δ)
δψ(δ)

dδ ≤
∞∑

k=1

ω(δk−1)
ψ(δk−1)

log
δk−1

δk
.

Hence ∞∑
k=1

ω(δk−1)
ψ(δk−1)

log
δk−1

δk
= ∞ .

If
∑

ω(δk−1)/ψ(δk−1) is divergence, then necessary estimation follows
from one–dimensional case. So, let us assume, that

∞∑
k=1

ω(δk)
ψ(δk)

< ∞ .

Denote

Qk[0, δk]2 ; Ek = {(x1, x2) : δk ≤ x1 ≤ δk−1 ; 0 ≤ x2 · x1 ≤ δkδk−1} ,

λk = ψ(δk−1)
δk−1

δk
, mk =

[
ω(δk−1)

ψ(δk−1)δk−1δk

]
+ 1 .

Then |Ek| = δkδk−1 log(δk−1/δk) and mk|Ek| ≥ (ω(δk−1)/ψ(δk−1))×
× log(δk−1/δk), so

∞∑
k=1

mk|Ek| = ∞ .
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Now by the well known Calderon lemma we can define translations τk
i ,

i = 1, . . . ,mk; k ≥ 0 such that | lim sup τk
i (Ek)| = 1.

Let χk
i denote the characteristic function of τk

i (Ek) and define

f i
k = λkχ

k
i ; f =

∞∑
k=1

mk∑
i=1

f i
k .

Then λkmkδ
2
k ≤ 2ω(δk−1) = 4ω(δk) and for δj−1 < h ≤ δj and i = 1, 2 we

have

ωi(f, h) � h

j∑
k=1

λkmkδ
2
k

δk
+

∞∑
k=j+1

λkmkδ
2
k � h

j∑
k=1

ω(δk)
δk

+
∞∑

k=j+1

ω(δk) .

The latter sum is less than Cω(h) (see [1]), so f ∈ Hω
1 (I

2).
Further

∞∑
k=1

mk|Qk| �
∞∑

k=1

ω(δk−1)
ψ(δk−1)

δk

δk−1
�

∞∑
k=1

ω(δk)
ψ(δk)

< ∞ .

Hence | lim sup τk
i (Qk)| = 0.

If F = λkχQk
then for x ∈ Ek \Qk there exists rectangle I � x (see Fig. 1)

such that (F (x) = 0)

(9) |I|−1

∫
I

|F (y)− F (x)| dy =
λkδ

2
k

δkδk−1
= ψ(δk−1) � ψ(diam (I)) .

Let Qk
i = τk

i (Qk) and x belong to finite numbers of Qk
i . Let x ∈ I and

diam (I) is so small, that either I ⊂ Qk
i or I ∩ Qk

i = ∅ for k ≤ n, and for
k = n there is relation like (9). Then

|I|−1

∫
I

|f(y)− f(x)| dy ≥
∣∣∣∣∣
n−1∑
k=1

mk∑
i=1

|I|−1

∫
I

[
f i

k(y)− f i
k(x)

]
dy

+
mn∑
i=1

|I|−1

∫
I

[
f i

n(y)− f i
n(x)

]
dy

+
∞∑

k=n+1

mk∑
i=1

|I|−1

∫
I

[
f i

k(y)− f i
k(x)

]
dy

∣∣∣∣∣
= |Σ1 +Σ2 +Σ3| .



On the Rate of Approximation Almost Everywhere by Steklov Means ... 19

Fig. 1

By the assumption about mutual disposition of I and supp (f i
k) for small

k, Σ1 = 0. By (9) Σ2 ≥ ψ(diam (I)), and as Σ3 ≥ 0, then Σ1 + Σ2 + Σ3 ≥
ψ (diam (I)).

Therefore almost everywhere on I2 lim sup
δ→0

Dδ(f, x)
ψ(δ)

> 0.

R E F E R E N C E S

1. K. I. Oskolkov: Approximation properties of integrable functions on sets of
full measure. Mat. Sb. (N.S.) 103 (145) (1977), 563–589 (Russian).

2. A.M. Stokolos: On the strong differentiation of integrals of functions in
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