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ON SOME FINITE SUMS WITH FACTORIALS

Branko Dragović

Abstract. The summation formula

n−1∑
i=0

εii!(ik + uk) = vk + εn−1n!Ak−1(n)

(ε = ±1; k = 1, 2, ...; uk, vk ∈ Z; Ak−1 is a polynomial) is derived and its
various aspects are considered. In particular, divisibility with respect to n is
investigated. Infinitely many equivalents to Kurepa’s hypothesis on the left
factorial are found.

1. Introduction

The subject of the present paper is an investigation of finite sums of the
form

(1)
n−1∑
i=0

εii!Pk(i) ,

where ε = ±1, and
(2) Pk(i) = Ckik + · · ·+ C1i + C0

is a polynomial with k, i ∈ N0 = N∪{0} and coefficients C0, C1, . . . , Ck ∈ Z.
We mainly consider the following three problems of (1): a) summation

formula, b) divisibility by n! and c) connection with the Kurepa hypothesis
(KH) on the left factorial. All these problems depend on the form of the
polynomial Pk(i) and have something in common with it.

In Sec. 2 we find a few ways to determine Pk(i) which give simple and
useful summation formulae. Sec. 3 contains divisibility properties. The
results concerning KH on the left factorial are given in Sec. 4. Infinitely
many equivalents to KH are found.
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2. Summation Formulae

Lemma 1. Let ε = ±1 and

(3) Ak−1(n) = ak−1n
k−1 + · · ·+ a1n + a0 , k ∈ N , n ∈ N0 ,

is a polynomial. One can find coefficients ak−1 = 1 and ak−2, . . . , a0 ∈ Z

such that identity

(4) (n + 1)Ak−1(n + 1)− εAk−1(n) = nk + Ak−1(1)− εAk−1(0)

holds for all n ∈ N0.

Proof. Formula (4) has the form

(5) (n + 1)Ak−1(n + 1)− εAk−1(n) = nk + uk .

Replacing Ak−1(n) by (3) and demanding (5) to be an identity, the following
system of linear equations must be satisfied:

(6)

(
k

0

)
ak−1 = 1 ,

[(
k

1

)
− ε

]
ak−1 + ak−2 = 0 ,

(
k

2

)
ak−1 +

[(
k − 1
1

)
− ε

]
ak−2 + ak−3 = 0 ,

...

kak−1 + (k − 1)ak−2 + · · ·+ (2− ε)a1 + a0 = 0 ,

ak−1 + ak−2 + · · ·+ a1 + (1− ε)a0 = uk .

Starting from the first equation, which gives ak−1 = 1, one can in a successive
way obtain solution for all ai = ai(k, ε), i = 0, . . . , k − 2. The last equation
in (6) serves to determine uk. Thus we get

(7) uk =
k−1∑
i=0

ai − εa0 = Ak−1(1)− εAk−1(0) . �

Note that (4) is an identity if and only if the coefficients of the polynomial
Ak−1(n) satisfy the system of linear equations (6), where uk is given by (7).
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The first five polynomials which satisfy (4) are:

(8)

A0(n) = 1 ,

A1(n) = n + ε − 2 ,

A2(n) = n2 + (ε − 3)n + 4− 5ε ,

A3(n) = n3 + (ε − 4)n2 + 7(1− ε)n + 18ε − 13 ,

A4(n) = n4 + (ε − 5)n3 + (11− 9ε)n2 + 2(16ε − 11)n + 58− 63ε .

Theorem 1. The summation formula

(9)
n−1∑
i=0

εii!
[
ik + Ak−1(1)− εAk−1(0)

]
= −εAk−1(0) + εn−1n!Ak−1(n)

is valid if and only if the polynomials Ak−1(n), k ∈ N, satisfy the identity
(4).

Proof. Summation of (4), previously multiplied by εii!, gives

n−1∑
i=0

εii!
[
ik + Ak−1(1)− εAk−1(0)

]
(10)

=
n−1∑
i=0

εii!
[
(i + 1)Ak−1(i + 1)− εAk−1(i)

]
.

Since on the r. h. s. all but the first and the last term cancel, we get (9).
Now one can easily show that starting from (9) one obtains (4). �

Denoting uk = Ak−1(1) − εAk−1(0), vk = −εAk−1(0) we can rewrite (9)
in the form

(11)
n−1∑
i=0

εii!(ik + uk) = vk + εn−1n!Ak−1(n) , k ≥ 1 .

Formula (9), as well as (11), is determined by polynomial Ak−1(n) in (3),
whose coefficients are solution of (6). However, for large k, (6) becomes
inconvenient. Therefore, it is of interest to have another approach which is
more effective to get (11).
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Theorem 2. If δ0k is the Kronecker symbol and

(12) Sε
k(n) =

n−1∑
i=0

εii!ik , ε = ±1 , k ∈ N0 ,

then

(13) Sε
k(n) = δ0k + ε

k+1∑
l=0

(
k + 1

l

)
Sε

l (n)− εnn!nk , k ∈ N0 ,

is a recurrent relation.

Proof. We have

Sε
k(n) = δ0k +

n−2∑
i=0

εi+1(i + 1)!(i + 1)k

= δ0k + ε

n−1∑
i=0

εii!(i + 1)k+1 − εnn!nk

= δ0k + ε
k+1∑
l=0

(
k + 1

l

)
Sε

l (n)− εnn!nk . �

Relation (13) gives a simpler way to find (11) in the explicit form for a
particular index k ≥ 0.

From (13) one can obtain recurrent relations for uk, vk and Ak−1(n). In
particular, when ε = 1, we have

uk+1 = −kuk −
k−1∑
l=1

(
k + 1

l

)
ul + 1 , u1 = 0 , k ≥ 1 ,(13.a)

vk+1 = −kvk −
k−1∑
l=1

(
k + 1

l

)
vl − δ0k , k ≥ 0 .(13.b)

Some first values of uk and vk (ε = 1) are:

k 1 2 3 4 5 6 7 8 9 10 11
uk 0 1 −1 −2 9 − 9 − 50 267 −413 −2 180 17 731
vk −1 1 1 −5 5 21 −105 141 777 −5 513 13 209
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As an illustration of the above summation formulae, the first four exam-
ples (ε = 1) are:

n−1∑
i=0

i!i = −1 + n! ,(14.a)

n−1∑
i=0

i!(i2 + 1) = 1 + n!(n − 1) ,(14.b)

n−1∑
i=0

i!(i3 − 1) = 1 + n!(n2 − 2n − 1) ,(14.c)

n−1∑
i=0

i!(i4 − 2) = −5 + n!(n3 − 3n2 + 5) .(14.d)

Note that ik + uk in (11) is a polynomial Pk(i) in (2) in a reduced form
and suitable for generalization. Namely, (11) can be generalized to

(15)
n−1∑
i=0

εii!Pk(i) = Vk + εn−1n!Bk−1(n) , k ≥ 1 ,

where Pk(i) =
k∑

r=0
Cri

r with

C0 =
k∑

r=1

Crur , Vk =
k∑

r=1

Crvr , Bk−1(n) =
k∑

r=1

CrAr−1(n)

and C1, . . . , Ck ∈ Z. Polynomials Pk(i) which do not have the above form
do not yield (15).

3. Divisibility

The above results enable us to investigate some divisibility properties of
n−1∑
i=0

εii!Pk(i) with respect to all factors contained in n!. According to (15) we

have that
n−1∑
i=0

εii!Pk(i) and Vk are equally divisible with respect to factors

of n!, as well as those of Bk−1(n).
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Proposition 1. If the polynomial Ak−1(n) satisfies the identity (4) then we
have the following congruence

(16)
n−1∑
i=0

εii!
[
ik + Ak−1(1)− εAk−1(0)

] ≡ −εAk−1(0) (mod n!) .

Proof. Congruence (16) is a direct consequence of (9). �
From (16) it follows

n−1∑
i=0

εii!ik ≡ −[Ak−1(1)− εAk−1(0)]
n−1∑
i=0

εii!− εAk−1(0) (mod n)

and this property can be used to simplify numerical investigation of divisi-

bility of
n−1∑
i=0

εii!ik by n.

There is a simple example of (16), e.g.

(17)
n−1∑
i=0

i!i ≡ −1 (mod n!) ,

what follows from (14.a).

Proposition 2. The following statements are valid:

(18)

n−1∑
i=0

i!i 
≡ 0 (mod n) , n > 1 ,

p−1∑
i=0

i!i 
≡ 0 (mod p) , p ∈ P ,

( n−1∑
i=0

i!i, n!
)
= 1 , n > 1 ,

where (a, b) denotes the greatest common divisor of a, b ∈ Z, and P is the
set of prime numbers.

Proof. Every of equation in (18) follows from (14.a). One can also show
that these statements are equivalent. �

Due to (16) divisibility of
n−1∑
i=0

εii!ik, k ≥ 1, by factors of n! is in some

relation to divisibility of
n−1∑
i=0

εii! except for the case Ak−1(1) = εAk−1(0).
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4. On Kurepa’s Hypothesis

Kurepa in [1] introduced a hypothesis

(19) (!n, n!) = 2 , 2 ≤ n ∈ N ,

where

(20) !n =
n−1∑
i=0

i!

has been called the left factorial. In spite of many papers (for a review see [2]
and references therein) on KH it is still an open problem in number theory
([3]). Many equivalent statements to KH have been obtained (for some of
them see [4]). Among very simple assertions equivalent to (19) are ([1]):

(21)
!n 
≡ 0 (mod n) , n > 2 ,

!p 
≡ 0 (mod p) , p > 2 .

KH is verified by computer calculations (see [2]) for n < 223 ([5]).
The above obtained summation formulae give us possibility to introduce

infinitely many new statements equivalent to KH. The first three of them,
which follow from (14), are:

(22)

p−1∑
i=0

i!i2 
≡ 1 (mod p) , p > 2 ,

p−1∑
i=0

i!i3 
≡ 1 (mod p) , p > 2 ,

p−1∑
i=0

i!i4 
≡ −5 (mod p) , p > 2 .

Theorem 3. If uk and vk satisfy (13.a) and (13.b) then

(23)
p−1∑
i=0

i!ik 
≡ vk (mod p) , p > 2 ,
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is equivalent to KH for such k ∈ N for which uk is not divisible by p.

Proof. Consider (11) for ε = 1 and n = p. According to KH one has

uk

p−1∑
i=0

i! 
≡ 0 (mod p) for p > 2 and p which does not divide uk 
= 0. For

such primes p it holds (23). �
Starting from the Fermat little theorem, i.e. ip−1 = 1 in the Galois field

GF(p) if i = 1, 2, . . . , p − 1, one can easily show that assertion

(24)
p−1∑
i=0

i!ir(p−1) 
≡ −1 (mod p) , p > 2 , r ∈ N

is equivalent to KH. This can be regarded as a special case of the Theorem 3.
Since r may be any positive integer it means that there are infinitely many
equivalents to KH.

Note that on the basis of Fermat’s theorem one can also obtain

(25)
p−1∑
i=0

i!ik+r(p−1) =
p−1∑
i=0

i!ik − δ0k , k ∈ N0 , r ∈ N .

Combining (11) and (25) we find in GF(p):

(26) uk+r(p−1) = uk , vk+r(p−1) = vk , k, r = 0, 1, 2, . . . .

Proposition 3. If uk and vk satisfy (13.a) and (13.b), respectively, the
following relations in GF(p) are valid:

(up−1 + 1)
p−1∑
i=0

i! = vp−1 + 1 ,(27.a)

up

p−1∑
i=0

i! = vp + 1 ,(27.b)

(up+1 − 1)
p−1∑
i=0

i! = vp+1 − 1 ,(27.c)

(up+2 + 1)
p−1∑
i=0

i! = vp+2 − 1 .(27.d)

Proof. One can start from (11), then use (25) and (14). �
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From equations (13.a), (13.b) and (26) one obtains in GF(p):

(up+2, vp+2) = (−up − 1,−vp) ,

(up+1, vp+1) = (1, 1) ,

(up, vp) = (up−1 + 1, vp−1) = (0,−1) .

Thus (27.a)–(27.d) are equivalent identities which are always satisfied owing
to the values of uk and vk and they do not depend on validity of KH.

5. Concluding Remarks

It is worth noting that for every k ∈ N there is a unique pair (uk, vk) of

integers uk and vk which connect
n−1∑
i=0

εii!ik and
n−1∑
i=0

εii! into simple summa-

tion formula (11). All other results of the present paper are mainly various
consequences of this fact.

Formula (11) is also suitable to consider its limit when n → ∞ in p–adic
analysis. Namely, since |n!|p → 0 as n → ∞, one obtains

∞∑
i=0

εii!(ik + uk) = vk ,

valid in Qp for every p. Some p–adic aspects of the series
∞∑

i=0

εii!Pk(i) and

their possible role in theoretical physics are considered in [6].
Having infinitely many new equivalents, Kurepa’s hypothesis becomes

more challenging. Moreover, KH itself seems to be the simplest among all
its equivalents. In p–adic case KH can be also formulated as follows:

∞∑
i=0

i! = a0 + a1p + a2p
2 + · · · , p ∈ P ,

where ai are definite digits with a0 
= 0 for all p 
= 2.
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