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DERIVATIVES OF THE MASS MOMENT VECTORS
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Abstract. In the previous papers [2–5] the mass moments vectors for the pole
and the axis are introduced by definitions. By using these vectors we introduced
vector method for mass moment state analysis in the referential point of the
body or space. In certain papers (for example, see [6–10], we pointed out that
these vectors can be used for qualitative analysis of the kinetic parameters
properties of the rotors dynamic as well as of the bearing kinetic pressures of
the shaft. In this paper the “support” vectors of the body mass linear moment
as well as of the body mass inertia moment for the pole O and axis oriented by
unit vector �n are introduced. In this paper some knowledge about change (rate)
in time and time derivatives of the body mass linear moment vectors and body
mass inertia moment vectors for the pole and axis for the different properties
of the body are pointed out. Body is observed for following cases: a) body is
rigid and when body is rotated with angular velocity around fixed axis; b) body
is with rigid structure configuration but with changeable body mass in these
structure configuration; c) body is with changeable structure configuration as
well as with changeable body mass in these structure configuration. This paper
gives the time derivatives of the material body mass inertia moment vectors
at the point and for the axis at dimensional curvillinear coordinate system N.
By using mass moment vectors and their derivatives, the linear momentum and
angular momentum of the rotor which rotates around one or two rotation axes
are expressed simpler then the other ways, as it was shown in the paper. That
fact is the main reason which for simpler qualitative analysis kinetic properties
of rotor dynamic and their kinetic pressures on the shaft bearings.

Received November 15, 1997.
1991 Mathematics Subject Classification. Primary 70E15; Secondary 15A72.
This research was supported by Science Ministry of Serbia, grant number 0402A

through Mathematical Institute SANU Belgrade and by grant 04M03A of the Fund of
Serbia.

139



140 Katica Stevanović Hedrih

1. Introduction

This part introduces the vectors (see [2–5]): �J
(O)
�n of the material particle

mass inertia moment for the pole O and the axis oriented by the unit vector
�n, and �J

(O)
�n of the rigid body mass inertia moment for the pole O and the

axis oriented by the unit vector �n, at the dimensional curvillinear coordinate
system N.

1∗ Vector �S
(O)
�n of the particle mass static (linear) moment at the point

O for the axis oriented by the unit vector �n, in the form:

(1*) �S
(O)
�n

def=
[
�n, �ρ

]
m,

where �ρ is the vector of the mass particle position of the particle’s mass m
with respect to the common pole O.

2∗ Vector �J
(O)
�n of he particle mass inertia moment at the point O for the

axis oriented by the unit vector �n:

(2*) �J
(O)
�n

def=
[
�ρ,

[
�n, �ρ

]]
m.

3∗ Vector �S
(O)
�n of the body mass static (linear) moment at the point O

for the axis oriented by the unit vector �n in the form:

(1) �S
(O)
�n

def=
∫∫∫

V

[
�n, �ρ

]
dm, dm = σdV,

where ρ is the vector of the rigid body points position of the elementary
body mass dm with respect to the common pole O. The illustration is given
in the Figure 1.
4∗ Vector �J

(O)
�n of the body mass inertia moment at the point O for the

axis oriented by the unit vector �n:

(2) �J
(O)
�n

def=
∫∫∫

V

[
�ρ,

[
�n, �ρ

]]
dm.

It can also be considered the body mass square moment vector at the point
O for the axis, through the pole, oriented by the unit vector �n.
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2. The Dimensional Curvilinear Coordinate System N

According to the notation in the Fig. 1 the material point position vector
�ρ at the dimensional coordinate system N , can be written in the form:

(3) �ρ = xk�gk,

while unit vector �n of the axis orientation can be written in the form:

(4) �n = λk�gk.

In the previous expression �gk the basic vectors of the dimensional N of the
curvilinear coordinates �gk = ∂�ρ

∂xk for these vectors it stands that:

(5) (�gk, �gl) = gkl,

their product represents the metric tensor coordinates of the defined curvi-
linear coordinates system space. The position vector �ρ magnitude squared
is: (�ρ, �ρ) = (�gk, �gl)xkxl = gklx

kxl, while for the axis orientation unit vector
�n: (�n, �n) = (�gk, �gl)λkλl= 1. By using previous expression we can write the
following derivatives:

∂gjk

∂xi
= Γji,k + Γki,j ,

∂�gi

∂xk
=

∂�gk

∂xi
= Γj

ik�gj ,(6)

Γij,k = Γji,k = [ij, k] = [ji, k] =
1
2

[∂gjk

∂xi
+

∂gki

∂xj
− ∂gij

∂xk

]
,(7)

Γij,k = Γji,k = glkΓl
ji, Γi

jk = gilΓjk,l,(8)
d�gk

dt
= Γj

ik�gj ẋ
i +

∂�gk

∂t
,(9)

dgkp

dt
=

∂gkp

∂xi
ẋi +

∂gkp

∂t
=

(
Γik,p + Γip,k

)
ẋi +

∂gkp

∂t
.(10)

3. The Material Particle Mass Inertia Moment Vector
for the Pole and the Axis

By introducing the expression (3) and (4) into expression (2*) for the
vector �J

(O)
�n definition of the material particle mass inertia moment for the

pole O and the axis oriented by the unit vector �n we obtain that:

(11) �J
(O)
�n =

[
�gk,

[
�gl, �gp

]]
xkxpλlm.
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If we have in mind that the double vector product can be written in the
transformed shape, the previous expression (11) can be write in the following
form:

(12) �J
(O)
�n =

(
gkp�gl − gkl�gp

)
xkxpλlm.

If we multiply scalarly the previous expression (12) with the unit vector �n
we obtain:

(13) J
(O)
�n =

(
�J

(O)
�n , �n

)
=

(
gkpg1i − gklgpi

)
xkxpλlλim,

which represent the material particle mass axial inertia moment at the point
O for the axis oriented by the unit vector �n. This formula is the same as the
formula (2.3) in [15] written by V. Vujičić.

If we now multiply the expression (13) twice vectorly with the unit vector
�n that is, according to the Ref. [2] or [11] , we separate the material particle
mass inertia moment vector deviational part for the pole O and the axis
oriented by the unit vector �n we obtain:

�D
(O)
�n =

[
�n,

[
�J

(O)
�n , �n

]]
(14)

=
{
gkpgij�gi − gkiglj�gp +

(
gkiglp − gkpgli

)
�gj

}
xkxpλlλiλjm.

The last expression represents the vector �D
(O)
�n of the deviation load by the

material particles mass inertia moment at the point O of the axis oriented
by the unit vector �n at the dimensional coordinate system N .

By introducing the expressions (3) and (4) into the expression (1*) for
the vector �S

(O)
�n definition of the material particle mass linear moment for

the pole O and the axis oriented by the unit vector �n we obtain that:

(15) �S
(O)
�n = [�gi, �gk]xkλim.

4. The Vector Support of the Mass Moments

Therefore we introduce the following vector �N
(O)
�n and define it by following

expression:

(16) �N
(O)
�n

def=
∂�J

(O)
�n

∂m
=

[
�ρ,

[
�n, �ρ

]]
.
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This vector �N
(O)
�n is vector “support” (carrier) of the mass inertia moment

for the axis oriented by unit vector �n through pole O, for the point N .
According to the previous expressions (3) and (4), as well as previous

notation in the Fig. 1 for the material point position vector ρ and for the
unit vector �n axis orientation at the dimensional coordinate system n, the
vector �N

(O)
�n ”support ” of the mass inertia moment for the axis oriented by

unit vector �n through pole O for the point N can be written in the form:

(17) �N
(O)
�n =

[
�gk,

[
�gl, �gp

]]
xkxpλl.

If we have in mind that the double vector product can be written in the
transformed shape, the previous expression (17) can be written in the fol-
lowing form:

(18) �N
(O)
�n =

(
gkp�gl − gkl�gp

)
xkxpλl.

If we multiply scalarly the previous expression (18) with the unit vector �n,
we obtain:

(19)
(

�N
(O)
�n , �n

)
=

(
gkpgli − gklgpi

)
xkxpλlλi,

which represents the axial part of the vector �N
(O)
�n ”support ” of the mass

inertia moment for the axis oriented by unit vector �n through pole O for the
mass point N or the scalar N

(O)
�n�n “support” of the mass inertia axial moment

for the axis oriented by unit vector �n through pole O, for the point N .
If we now multiply the expression (18) twice vectorly with the unit vector

�n that is, according to [2] or [11], we separate the mass inertia moment vector
“support” deviational part for the pole O and the axis oriented by the unit
vector �n, for the point N , we obtain:

�N
(O)dev
�n =

[
�n,

[
�N

(O)
�n , �n

]]
(20)

=
{
gkpgij�gl − gkiglj�gp +

(
gkiglp − gkpgli

)
�gj

}
xkxpλlλiλj .

5. The Rigid Body Mass Inertia Moment Vector
for the Pole and the Axis

By introducing the expression (3) and (4) into expression (2) for the vector
�J

(O)
�n definition of the rigid body mass inertia moment for the pole O and the
axis oriented by the unit vector �n, we obtain that:

(21) �J
(O)
�n =

∫∫∫
V

[
�gk,

[
�gl, �gp

]]
xkxpλldm.
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If we have in mind that the double vector product can be written in the
transformed shape, the previous expression (21) can be written in the fol-
lowing form:

(22) �J
(O)
�n =

∫∫∫
V

(
gkp�gl − gkl�gp

)
xkxpλldm.

If we multiply scalarly the previous expression (22) with the unit vector �n,
we obtain:

(23) J
(O)
�n =

(
�J

(O)
�n , �n

)
=

∫∫∫
V

(
gkpgli − gklgpi

)
xkxpλlλidm,

which represent the body mass axial inertia moment at the point O for the
axis oriented by the unit vector �n.

If now we multiply the expression (22) twice vectorly with the unit vector
�n that is, according to the [2], we separate the body mass inertia moment
vector deviational part for the pole O and the axis oriented by the unit
vector �n, we obtain:

(24) �D
(O)
�n =

[
�n,

[
�J

(O)
�n , �n

]]
=

∫∫∫
V

{
gkpgij�gl − gkiglj�gp +

(
gkiglp − gkpgli

)
�gj

}
xkxpλlλiλjdm.

The last expression represents the vector �D
(O)
�n of the deviation load by the

body mass inertia moment at the point O of the axis oriented by the unit
vector �n at dimensional coordinate system N .

By introducing the expressions (3) and (4) into the expression (1) for the
vector �S

(O)
�n definition of the body mass linear moment for the pole O and

the axis oriented by the unit vector �n, we obtain that:

(25) �S
(O)
�n =

∫∫∫
V

[�gi, �gk]xkλidm.

6. Time Derivatives of the Mass Inertia Moment Vector

By using previous expressions (16), (17) and (5), (6), (7), (8), (9) and
(10) for the time derivative of the vector �N

(O)
�n ”support ” of the mass inertia
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moment for the axis oriented by unit vector �n through pole O, for the point
N , we can write the following:

(26)
d�N

(O)
�n

dt
=[[(

Γkr,p + Γpr,k

)
�gl −

(
Γkr,l + Γlr,k

)
�gp +

(
gkpΓs

lr − gklΓs
pr

)
�gs

]]
ẋrxkxpλl

+
(
gkp�gl − gkl�gp

)(
ẋkxpλl + xkẋpλl + xkxpλ̇l

)
+

(∂gkp

∂t
�gl + gkp

∂�gl

∂t
− ∂gkl

∂t
�gp − gkl

∂�gp

∂t

)
xkxpλl,

By using the vector �N
(O)
�n “support” of the mass inertia moment for the axis

oriented by unit vector �n through pole O, for the point N , the vector �J
(O)
�n

of the rigid body mass inertia moment for the pole O and the axis oriented
by the unit vector �n at the dimensional curvillinear coordinate system N we
can vrite:

(27) �J
(O)
�n =

∫∫∫
V

�N
(O)
�n dm.

Time derivative of the vector �J
(O)
�n of the rigid body mass inertia moment

for the pole O and the axis oriented by the unit vector �n we can write in the
following form:

(28)
d�J

(O)
�n

dt
=

∫∫∫
V

d�N
(O)
�n

dt
dm+

∫∫∫
V

�N
(O)
�n dm.

Derivative of the vector �J
(O)
�n of the rigid body mass inertia moment for

the pole O and the axis oriented by the unit vector �n at the dimensional
curvillinear coordinate system N we can write in the following form:

(29)
d�J

(O)
�n

dt
=∫∫∫

V

[[(
Γkr,p+Γpr,k

)
�gl−

(
Γkr,l+Γlr,k

)
�gp+

(
gkpΓs

lr−gklΓs
pr

)
�gs

]]
ẋrxkxpλldm

+
∫∫∫

V

(
gkp�gl − gkl�gp

)[(
ẋkxpλl + xkẋpλl + xkẋpλ̇l

)
dm+ xkxpλldṁ

]

+
∫∫∫

V

(∂gkp

∂t
�gl + gkp

∂�gl

∂t
− ∂gkl

∂t
�gp − gkl

∂�gp

∂t

)
xkxpλldm.



146 Katica Stevanović Hedrih

In the case for pure rotation of the rigid body we can write the following:

d�ρ

dt
= ẋk

(
�gk + xpΓj

pk�gk

)
+ xk ∂�gk

∂t
(30)

d�n

dt
= ẋi

(∂λk

∂xi
�gk + λkΓj

ik�gl

)
+ λk ∂�gk

∂t
, �ω = ω�n = ωλk�gk,(31)

d�ρ

dt
=

[
�ω, �ρ

]
= ωxpλl

[
�gl, �gp

]
,

d�ω

dt
= ω̇�n = ω̇λk�gk,

d�n

dt
= 0.(32)

and the time derivative of the vector �J
(O)
�n of the rigid body mass inertia

moment for the pole O and the axis oriented by the unit vector �n we can
write in following form:

d�N
(O)
�n

dt
=

[
�ω, �N

(O)
�n

]
= ωxkxpλlλi

{
gkp

[
�gi, �gl

] − gkl

[
�gi, �gp

]}
(33)

= ωxkxpλlλi
{
eilsgkp�g

s − eipjgkl�g
j
}√

g.

7. Concluding Remarks

We are following the classic definition, we write for the linear momentum
following expression:

(34) �K =
∫∫∫

V

�νNdm =
∫∫∫

V

(
�νA +

[
�ω, �ρ

])
dm = M�νA + ω�S

(A)
�n .

The expression (34) of the linear momentum �K of the rigid body whose points
have the translation velocity �νA of the referential point A and the relative
velocity

[
�ω, �ρ

]
due to the rotation around the axis oriented by the vector

�ω = ω�n through the point A has two parts: 1* the translatory one equal to
the product of the referential point velocity and the body mass - the linear
momentum due to the translation motion with the velocity of the referential
point A; and the rotatory one equal to the product of the magnitude ω of
the angular velocity �ω = ω�n and the vector �S

(A)
�n of the body mass linear

moment at the referential point A for the axis oriented by the unit vector �n.

If the pole A is the body mass center C then the linear momentum is equal
only in the translatory part since the vector �S

(A)
�n of the body mass linear

moment for the pole in the body mass center is equal to zero regardless of
its orientation so that the linear momentum is equal to the product of this
velocity �νC of the body mass center and the rigid body mass: �K = M�νC .
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The same stands for if the pole A is not the body mass center but if the axis
oriented with �ω = ω�n trough pole A passes trough the mass center.
The second kinetic vector connected to the referential point which plays

an important part (role) in the rigid body dynamics is the rigid body angular
momentum (motion quantity moment) for the given pole, �L0.
Following the classic definition according to the [1] according to the no-

tation given in the Fig. 2 the rigid body angular momentum is calculated
by means of the following expression:

(35) �L0 =
∫∫∫

V

[
�r, �νN

]
dm =

∫∫∫
V

[
�r + �ρ, �νA +

[
�ω, �ρ

]]
dm.

Following the idea of this paper that at the basis of the rigid body motion
interpretation there are rigid body dynamic parameters which express the
mass inertia moment properties and the kinematic parameters, translation
velocity �νA of the rigid body referential point and the angular velocity �ω of
the relative momentary rotation around the axis oriented with �ω and through
the referential point A then the angular momentum for the point A, �LA is
connected not only to the pole but to the axis oriented by the momentary
angular velocity vector to which we connect the vectors �S

(A)
�n and �J

(A)
�n of the

rigid body mass linear and inertia moments by connecting the body mass to
the translation velocity of the referential point A. Therefore we write that
it is:

(36) �LA =
[
�S

(A)
�n , �νA

]
+ ω�J

(A)
�n .

Fig. 1 Fig. 2
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For the case of the rigid body rotation around the fixed axis the linear
momentum and angular momentum are:

�K =
[
�ω, �ρC

]
M = ω�S

(A)
�n ,(37)

�LA = �ω
(
�n,�J

(A)
�n

)
+ ω

[
�n
[
�J

(A)
�n , �n

]]
= �ω

(
�n,�J

(A)
�n

)
+ ω�D

(A)
�n .(38)

Since the velocity �ν and the acceleration �a of the body elementary mass at
the point N are:

(39) �ν =
[
�ω, �ρ

]
, �a =

[
�̇ω, �ρ

]
+

[
�ω,

[
�ω, �ρ

]]
,

then for the main vector �Frj the inertia force of the overall rigid body ro-
tating around the axis with the angular velocity �ω we obtain:

(40) �Frj = −
∫∫∫

V

�adm = −ω̇ �S
(A)
�n − ω

d�S
(A)
�n

dt
= −ω̇ �S

(A)
�n − ω

[
�ω, �S

(A)
�n

]
.

For the main moment of the inertia forces of the overall rigid body rotating
around the axis and for the point A we calculate the following:

(41) �MAj =
∫∫∫

V

[
�ρ, d �Frj

]
= −ω̇�J

(A)
�n − ω̇

d�J
(A)
�n

dt
= −ω̇�J

(A)
�n − ω

[
�ω,�J

(A)
�n

]
.

The dynamic equations of the body rotation around fixed axis can be ob-
tained by differentiating in time the expression (38) for the linear momentum
and expression (38) for angular momentum on the basis of which we obtain:

(42) 1 ∗ d�K

dt
= ω̇ �S

(A)
�n + ω

[
�ω, �S

(A)
�n

]
= −�Frj = �Fr.

The equation (42) for the linear momentum change which is equal to
the main vector (resultant) of the active and reactive forces shows that the
motion linear momentum changes the vector normal to the rotation axis and
has two components: one due to the angular velocity change which is normal
to the rotation axis and the plane which contains the body mass center and
the rotation axis, and the other component which depends on the angular
velocity square which is normal to the rotation axis and lie in the plane
formed by rotation axis and the rigid body mass center doing rotation.

(43) 2 ∗ d�LA

dt
= ω̇�J

(A)
�n + ω

[
�ω,�J

(A)
�n

]
= − �MAj = �MA.
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We see that by using mass moment vectors and their derivatives, the linear
momentum and angular momentum of the rotor which rotates around one or
two rotation axes are expressed simpler then the other ways, as it was shown
in the paper. That fact is the main reason which for simpler qualitative
analysis kinetic properties of rotor dynamic and their kinetic pressures on
the shaft bearings.
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10. K. Stevanović Hedrih: Interpretation of the rigid bodies kinetics by vec-
tors of the bodies mass moments. Book of Abstracts, The International
Conference: Stability, Control and Rigid Bodies Dynamics – ICSCD 96, In-
stitute of Applied Mathematics and Mechanics of NAS of Ukraine, Donetsk
- Mariupol, 1996, pp. 35–36.
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