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Ser. Math. Inform. 13 (1998), 95–107

FRACTAL SURFACES LEVELLING
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This paper is dedicated to Professor D. S. Mitrinović

Abstract. This paper presents some visualization techniques for data in-
terpolation by fractal surfaces. The fractal dimension plays a role of the shape
parameter. Both, regular and scattered data, are examined and the correspond-
ing algorithms for levelling these surfaces are developed and illustrated through
several examples.

1. Introduction

Euclidean geometry and elementary functions, such as polynomials, rational
polynomials, trigonometric and exponential functions are the basis of the tradi-
tional methods for approximation discrete data. Graphical systems founded on
traditional geometry are effective for making pictures of man-made objects, such
as roads, buildings, furniture, vehicles etc. But, there are many objects in nature
which can not be easily described in terms of elementary functions and Euclidean
geometry only, such as, for example, profiles of mountain ranges, clouds and hori-
zons over forests. It is desirable for graphical systems to be able to deal with this
type of problem. For modelling these objects fractal functions are extremely useful
[6], [8].

Here, in this paper, some levelling techniques for data interpolation by fractal
surfaces are developed. These algorithms help in increasing the realism of the
computer generated images of previous type. Here we restrict ourselves on fractal
surfaces from IR3 being a special case of the general theory developed by Barnsley
[6] and Massopust [8].
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Let the discrete data {(xn, yn, Fn) : n = 0, 1, . . . , N} be known. Using affine

transformations one can form an iterative function system (IFS) {IR3;wn;n =
1, . . . , N}, where the transformation wn is defined by

wn(x) =


 an bn 0
cn dn 0
en fn gn


 x+


 hn

in
jn


 ,

where x =
[
x y z

]T
. In other words, wn transforms a triangle from IR3 into

a triangle from IR3. By the analogy with 2D cases, in each transformations, there
is one free parameter, namely gn, supplying vertical scaling control. For example,
the choice gn = 0 will produce the piecewise linear interpolation function. This
parameter also determines fractal dimension.

Choosing gn for a free parameter allowed us 9 parameters more, which give us
a chance to transform three points (∈ IR3) to another three points.

2. Regular data interpolation

In the cases of regular data, two special cases of Massopust’s construction [8,
Chapter 8] will be considered: 1. data can be arranged in a triangular or 2. in a
rectangular mesh.

First, let us assume a triangular arrangement. Then, interpolation nodes are
arranged like in the Figure 1 (left).

Fig. 1. Two ways of ordering the data

So, the interpolation nodes formN2 triangles, which make up one big triangle ∆.
The idea for obtaining interpolation function is to determine one transformation,
which will transform big triangle onto the smaller one. After that, in each step,
algorithm arbitrarily chooses between different transformations.
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The nodes in the mesh are distanced for hx on x-axis, and for hy on y-axis.
The lengths of the triangle’s sides along the x and y-axis are Hx and Hy. The
small triangles can be divided in two groups: 1. Homothetic images of the triangle
ABC, or 2. Mirror images of the triangles of the group 1 w.r.t. hypotenuse.

The corresponding transformation will be different for each group, i.e.

(1) wnm(x) =


 anm 0 0

0 bnm 0
cnm dnm enm


 x+


 fnm

gnm

hnm




and

(2) w̄pq(x) =


 0 āpq 0
b̄pq 0 0
c̄pq d̄pq ēpq


 x+


 f̄pq

ḡpq

h̄pq


 .

Free parameters are enm and ēpq. Other parameters are determined so that the
transformation wnm maps A → D, B → E, C → F and the transformation w̄pq

maps A → E, B → F, C → H. The coordinates of the points A,B and C are
A(x0, y0, z0), B(x0 +Hx, y0, z1), and C(x0, y0 +Hy, z2).

By solving the corresponding linear systems, one gets

(3)

anm =
hx

Hx
, fnm = xn−1 − hx

Hx
x0,

bnm =
hy

Hy
, gnm = ym−1 − hy

Hy
y0,

cnm =
1

Hx
((zn,m−1 − zn−1,m−1)− enm(z1 − z0)),

dnm =
1

Hy
((zn−1,m − zn−1,m−1)− enm(z2 − z0)),

hnm =zn−1,m−1 − enmz0 − y0dnm − x0cnm,

for the coefficients in (1), and

(4)

āpq =− hx

Hy
, f̄pq = xp−1 + hx +

hx

Hy
y0,

b̄pq =− hy

Hx
, ḡpq = yq−1 + hy +

hy

Hx
x0,

c̄pq =
1

Hx
((zp,q−1 − zpq)− ēpq(z1 − z0)),

d̄pq =
1

Hy
((zp−1,q − zpq)− ēpq(z2 − z0)),

h̄pq =zpq − ēpqz0 − y0d̄pq − x0c̄pq,

for the coefficients in (2).

The next theorems are special cases of theorems in [8]. They give the conditions
for existence of interpolating fractal functions of two variables.
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Theorem 1. Let N ∈ IN\{1} and let S = {IR3;wnm, w̄pq : n,m ≥ 1, n + m =
2, . . . , N +1, p, q ≥ 1, p+ q = 2, . . . , N} denote the IFS S, associated with the data
set {(xn, ym, Fnm) : n,m ≥ 0, n +m = 0, . . . , N}. Let the vertical scaling factors
obey |enm| < 1 and |ēpq| < 1. Then, there is a metric d on IR3, equivalent to the
Euclidean metric, such that the IFS is hyperbolic with respect to d. In particular,
there is a unique non-empty compact set G ⊂ IR3, such that

G =
⋃

n,m≥1
n+m=2,...,N+1

wnm(G)
⋃

p,q≥1
p+q=2,...,N

w̄pq(G).

Proof. The metric

d((x1, y1, z1), (x2, y2, z2)) = |x1 − x2|+ |y1 − y2|+ θ|z1 − z2|, θ ∈ IR+,

is equivalent to the Euclidean metric in IR3. Let the transformations wnm and
w̄pq be defined by (1) and (2). Then

d(wnm(x1, y1, z1), wnm(x2, y2, z2))

≤(|anm|+ θ1|cnm|)|x1 − x2|+ (|bnm|+ θ1|dnm|)|y1 − y2|+ θ1|enm||z1 − z2|,

and

d(w̄pq(x1, y1, z1), w̄pq(x2, y2, z2))

≤(|b̄pq|+ θ2|c̄pq|)|x1 − x2|+ (|āpq|+ θ2|d̄pq|)|y1 − y2|+ θ2|ēpq||z1 − z2|.

Here,

|anm| = |xn − xn−1|
|xN − x0| < 1, |bnm| = |ym − ym−1|

|yN − y0| < 1,

|āpq| = |yq − yq−1|
|yN − y0| < 1, |b̄pq| = |xp − xp−1|

|xN − x0| < 1,

because N ≥ 2.

If cnm = dnm = 0, for all n,m ≥ 1, n+m = 2, . . . , N +1. Then one can choose
θ1 = 1, otherwise

θ1 =
min{1− |anm|, 1− |bnm|}

2max{|cnm|, |dnm|} .

Similarly, if c̄pq = d̄pq = 0, for all p, q ≥ 0, p + q = 0, . . . , N , then θ2 = 1,
otherwise

θ2 =
min{1− |b̄pq|, 1− |āpq|}

2max{|c̄pq|, |d̄pq|} .
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Finally, θ = min{θ1, θ2}.
Further

d(wnm(x1, y1, z1), wnm(x2, y2, z2)) ≤ max{a, b, δ}d((x1, y1, z1), (x2, y2, z2))

and

d(w̄pq(x1, y1, z1), w̄pq(x2, y2, z2)) ≤ max{ā, b̄, δ̄}d((x1, y1, z1), (x2, y2, z2)),

where

a =

(
1

2
+

max{|anm|}
2

)
< 1,

b =

(
1

2
+

max{|bnm|}
2

)
< 1,

δ =max{|enm|} < 1,

ā =

(
1

2
+

max{|b̄pq|}
2

)
< 1,

b̄ =

(
1

2
+

max{|āpq|}
2

)
< 1,

δ̄ =max{|ēpq|} < 1. �

Let ∆ be a triangle ABC.

Theorem 2. Let N ∈ IN\{1} and let S = {IR3;wnm, w̄pq : n,m ≥ 1, n +
m = 2, . . . , N+1, p, q ≥ 1, p+q = 2, . . . , N} denote the IFS S, associated with
the data set {(xn, ym, znm) : n,m ≥ 0, n + m = 0, . . . , N}. Let the vertical
scaling factors obey |enm| < 1 and |ēpq| < 1, so that the IFS is hyperbolic. Let
G denote the attractor of the IFS. Then G will be the graph of a continuous
function f : ∆ → IR which interpolates the data {(xn, ym, Fnm) : n,m ≥
0, n+m = 0, 1, . . . , N} if one of the following conditions is fulfilled:
a) All interpolating nodes on the sides AB,BC and CA are collinear;
b) All interpolating nodes on the side AB and AC are collinear and all ver-

tical scaling factors are mutually equal;
c) All vertical scaling factors vanish.

Proof. Let T denote the set of continuous functions f : ∆ → IR, so that

f(x0, ym) =F0m, m = 0, . . . , N,

f(xn, y0) =Fn0, n = 0, . . . , N,

f(xn, yN−n) =Fn,N−n, n = 0, . . . , N

and let the metric d on T be defined by

d(f, g) = max
(x,y)∈T

{|f(x, y)− g(x, y)|} ∀f, g ∈ T .



100 D.M. Milošević and Lj.M. Kocić

Then (T , d) is a complete metric space.
Let unm : [x0, xN ] → [xn−1, xn], vnm : [y0, yN ] → [ym−1, ym], n,m ≥

1, n + m = 2, . . . , N + 1 and ūpq : [x0, xN ] → [xp−1, xp], v̄pq : [y0, yN ] →
[yq−1, yq], p, q ≥ 1, p+ q = 2, . . . , N are invertible transformations:

unm(x) =anmx+ fnm, vnm(y) = bnmy + gnm,

ūpq(x) =b̄pqx+ f̄pq, v̄pq(y) = āpqy + ḡpq,

where anm, bnm, fnm, gnm are ordered by (3) and āpq, b̄pq, f̄pq, ḡpq are ordered
by (4). Further, let the mappings T, T̄ : T → T , be defined by

(Tf)(x, y) = cnmu−1
nm(x) + dnmv−1

nm(y) + enmf(u−1
nm(x), v−1

nm(y)) + hnm

and

(T̄ f)(x, y) = c̄pqū
−1
pq (x) + d̄pq v̄

−1
pq (y) + ēpqf(ū−1

pq (x), v̄
−1
pq (y)) + h̄pq.

The function Tf satisfies the following boundary conditions:

(TF )(x0, ym−1) =F0,m−1, m = 1, . . . , N + 1,

(TF )(xn−1, y0) =Fn−1,0, n = 1, . . . , N + 1,

(TF )(xn, yN−n) =Fn,N−n, n = 0, . . . , N + 1.

Similar is valid for the function T̄ f .
The mappings Tf and T̄ f are continuous on each sub-triangle of ∆.

Then it remains to demonstrate that Tf and T̄ f are continuous at the edge
points of each sub-triangle. At the point (x, y) from the edge, the values of
(Tf)(x, y) and (T̄ f)(x, y) are apparently defined in two different ways: the
values on the side EF (see Figure 1) are

Fz =cnmx−1 + dnmy−1 + enmz−1 + hnm

=
1

Hx
[(zn,m−1 − zn−1,m−1)− enm(z1 − z0)](x0 +Hx − Hxt)

+
1

Hy
[(zn−1,m − zn−1,m−1)− enm(z2 − z0)](y0 +Hyt)

+ enmf + znm − enmz0 − y0dnm − x0cnm

=[−(zn,m−1 − zn−1,m−1) + enm(z1 − z0) + (zn−1,m − zn−1,m−1)

− enm(z2 − z0)]t+ (zn,m−1 − zn−1,m−1)− enm(z1 − z0)
+ zn−1,m−1 − enmz0 + enmf

=(zn−1,m − zn,m−1)t+ zn,m−1 + enm[f − (z2 − z1)t − z1]
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and

F̄z =c̄pqx
−1 + d̄pqy

−1 + ēpqz
−1 + h̄pq

=
1

Hx
[(zp,q−1 − zpq)− ēpq(z1 − z0)](x0 +Hx − Hxt)

+
1

Hy
[(zp−1,q − zpq)− ēpq(z2 − z0)](y0 +Hyt)

+ ēpqf + zpq − ēpqz0 − y0d̄pq − x0c̄pq

=[−(zp,q−1 − zpq) + ēpq(z1 − z0) + (zp−1,q − zpq)− ēpq(z2 − z0)]t

+ (zp,q−1 − zpq)− ēpq(z1 − z0) + zpq − ēpqz0 + ēpqf

=(zp−1,q − zp,q−1)t+ zp,q−1 + ēpq[f − (z2 − z1)t − z1].

Those values will be equal if one of the following conditions fulfilled:
a) Vertical scaling factors are mutually equal (enm = ēpq);
b) All interpolating nodes on the side BC are collinear (f = (z2 − z1)t+ z1).

Similarly, the values on the sides EG or FG will be mutually equal if one
of the following is fulfilled:
a) Vertical scaling factors vanish;
b) All interpolating nodes on the sides AB and AC are collinear.

Finally, the values on the all sub-triangles edges will be equal if one of
the following conditions is fulfilled:
a) All interpolating nodes on the sides AB,BC and CA are collinear;
b) All interpolating nodes on the side AB and AC are collinear and all

vertical scaling factors are mutually equal;
c) All vertical scaling factors vanish.

We conclude that, under these conditions, T and T̄ take T into T .
Now, let us show that T and T̄ are a contraction mapping on the metric

space (T , d). Let f, g ∈ T and let x ∈ [xn−1, xn]; y ∈ [ym−1, ym]; n,m ≥
1; n+m = 2, . . . , N + 1). Then,

|(Tf)(x, y)− (Tg)(x, y)| ≤ |enm|d(f, g),

so that
d(Tf, Tg) ≤ δd(f, g),

where δ = max{|enm| : n,m ≥ 1, n+m = 2, . . . , N + 1} < 1. So, T and T̄
are contractive mapping of the metric space (T , d). Therefore each of them
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have a unique fixed points in T . That is, there exists a function f ∈ T such
that

(Tf)(x, y) = f(x, y), ∀(x, y) ∈ ∆.

Let G̃ be a graph of function f . Then (Tf)(x, y) can be expressed as

(Tf)(anmx+ fnm, bnmy + gnm) = cnmx+ dnmy + enmf(x, y) + hnm,

where (x, y) ∈ ∆ and n,m ≥ 1; n+m = 2, . . . , N + 1. This implies that

(5) G̃ =
⋃

n,m≥1
n+m=2,...,N+1

wnm(G̃)
⋃

p,q≥1
p+q=2,...,N

w̄pq(G̃).

Since, by Theorem 1 there exists only one non-empty compact set G,
the attractor of the IFS S, which satisfies equation (5), it follows that
G̃ = G. �
Definition 1. The function f(x) whose graph is the attractor of an IFS
as described in Theorems 1 and 2 above, is called the fractal interpola-
tion function corresponding to the data {(xn, ym, Fnm) : nm ≥ 0, n + m =
0, 1, . . . , N}.

In the cases of rectangular arrangement, interpolation nodes are arranged,
like in Figure 1 (right).

So, the interpolating nodes form NM rectangles. The distances between
nodes are hx and hy. The distances between vertices A−D are Hx and Hy.
So, the big rectangle is transformed onto the smaller one. But, by affine
transformations one can transform only triangle to triangle (there are only 9
parameters to be determined). Therefore, each rectangle must be subdivides
onto 2 triangles. Now, an affine transformation can be performed for each
triangle separately.

Suppose that the rectangle subdivision along the main diagonal is per-
formed. Now, if the point lies in the upper big triangle, than that point
will be transformed onto the corresponding upper smaller rectangle. On
the contrary, if the point lies in the lower big triangle, than that point will
be transformed onto the corresponding lower smaller triangle. In each step
algorithm choose arbitrarily between the small rectangle, where the trans-
formation will be done. The corresponding transformations are now,

(6) wnm(x) =


 anm 0 0

0 bnm 0
cnm dnm enm


x+


 fnm

gnm

hnm
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and

(7) w̄pq(x) =


 āpq 0 0

0 b̄pq 0
c̄pq d̄pq ēpq


x+


 f̄pq

ḡpq

h̄pq


 .

The coordinates of the vertex points A−D are A(x0, y0, z0), B(x0 +Hx,
y0, z1), C(x0 + Hx, y0 + Hy, z2), and D(x0 + Hx, y0, z4). The unknown pa-
rameters are

anm =
hx

Hx
, fnm = xn−1 −

hx

Hx
x0, bnm =

hy

Hy
, gnm = ym−1 −

hy

Hy
y0,

cnm =
1

Hx
((zn,m−1 − zn−1,m−1)− enm(z1 − z0)),

dnm =
1

Hy
((znm − zn,m−1)− enm(z2 − z1)),

hnm =zn−1,m−1 − enmz0 − y0dnm − x0cnm,

in relation (6) and

āpq =
hx

Hx
, f̄pq = xp−1 −

hx

Hx
x0, b̄pq =

hy

Hy
, ḡpq = yq−1 −

hy

Hy
y0,

c̄pq =
1

Hx
((zpq − zp−1,q)− ēpq(z2 − z3)),

d̄pq =
1

Hy
((zp−1,q − zp−1,q−1)− ēpq(z3 − z0)),

h̄pq =zp−1,q−1 − ēpqz0 − y0d̄pq − x0c̄pq,

for relation (7). The free parameters are enm and ēpq.
If one choose the rectangle subdivision by another diagonal, then the

corresponding transformations will be

(8) tnm(x) =


 anm 0 0

0 bnm 0
cnm dnm enm


x+


 fnm

gnm

hnm




and

(9) t̄pq(x) =


 āpq 0 0

0 b̄pq 0
c̄pq d̄pq ēpq


x+


 f̄pq

ḡpq

h̄pq


 ,
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where

anm =
hx

Hx
, fnm = xn−1 −

hx

Hx
x0, bnm =

hy

Hy
, gnm = ym−1 −

hy

Hy
y0,

cnm =
1

Hx
((zn,m−1 − zn−1,m−1)− enm(z1 − z0)),

dnm =
1

Hy
((zn−1,m − zn−1,m−1)− enm(z3 − z0)),

hnm =zn−1,m−1 − enmz0 − y0dnm − x0cnm,

and

āpq =
hx

Hx
, f̄pq = xp−1 −

hx

Hx
x0, b̄pq =

hy

Hy
, ḡpq = yq−1 −

hy

Hy
y0,

c̄pq =
1

Hx
((zpq − zp−1,q)− ēpq(z2 − z3)),

d̄pq =
1

Hy
((zpq − zp,q−1)− ēpq(z2 − z1)),

h̄pq =(zp−1,q − zpq + zp,q−1)− ēpq(z1 − z2 + z3)− y0d̄pq − x0c̄pq,

The numbers enm and ēpq are the free parameters.
Of course, combinations are possible. In different subrectangles one can

choose arbitrarily between wnm, w̄pq and tnm, t̄pq. This gives 2NM different
interpolants.

Like in the case of triangular meshes, the theorems similar to Theorems
1 and 2 can be proved and the definition which corresponds to Definition 1
can be made.

3. Scattered data interpolation

Suppose that {(xi, yi) : i = 1, . . . , N} are scattered interpolating nodes in
∆ and {f(xi, yi) : i = 1, . . . , N} are corresponding data set. In the cases of
scattered data two different schemes are examined.
Recursive scheme. The (x1, y1) node forms 3 subtriangle with the vertices
A−C. Next, (x2, y2) lies in one of them forming another 3 sub-sub-triangles.
This procedure continues as soon as all interpolation nodes are examined.
Now, interpolant can be obtained in few steps. First, by corresponding affine
transformation, the initial point (∈ ∆) maps into some of three subtriangles
being derived in the first subdivision. Secondly, if this subtriangle contains
sub-sub-triangles the procedure continues until the final point is obtained.
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Triangulation scheme. By this approach all points are examined at the
same time. Using the method of Akima [1], [2], [3], [4] for bivariate inter-
polation, triangulation of the domain is performed. This method is based
on max-min angle triangulation of the points {(xi, yi)} suggested by Lawson
[7]. As it is shown by G. Nielson [9], [10] max-min triangulation of Lawson,
is equivalent to min-max criteria of Little and Barnhill [5]. Characterization
of these two triangulations is similar: each triangulation is associated with
a vector, having ni entries representing either the largest or the smallest an-
gle of each triangle. These entries are ordered by the using a lexicographic
rule. In the case of min-max criteria, the smallest of these vectors based on
their lexicographic coordinate gives the optimal triangulation, while in the
case of max-min criteria, the largest vector is associated with the optimal
triangulation. After the optimal triangulation is obtained one can transform
a big triangle onto the arbitrarily small one by a suitable transformation.

Which between these two methods are better? The preference is surely
at the second one due to optimal triangulation. By this method every new
point is obtained using only one step, while the first method gains the same
result in a few steps. However, if the data structure is not constant, i.e.
if the interpolation problem must be solved repeatedly with the addition
of new interpolation nodes than, by the using of the second algorithm, one
must redo the triangulation process from the beginning each time the new
interpolation node adds, while the first method starts from the structure
already existed.

4. Examples

We consider two examples.

Fig. 2
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Fig. 3

Example 1. In the case of the rectangular arrangement, the interpolation
nodes are arranged like in Figure 2 (left). The vertical scaling factors are
zero in all subrectangles. The corresponding level lines map is shown in
Figure 2 (right). The continuous interpolant is obtained.

Example 2. In the case of the rectangular arrangement, the interpolation
nodes are arranged like in Figure 3 (left). The vertical scaling factors are
now enm = 0.3 in all subrectangles. The corresponding level lines map is
shown in Figure 3 (right). In this example, the conditions for obtaining the
continuous interpolant are not satisfied (neither all vertical scaling factors
are vanished, nor all interpolating nodes on the sides AB, BC, CD and DA
are collinear) and the obtained interpolant is not continuous.
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