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This paper is dedicated to Professor D. S. Mitrinović

Abstract. This paper is a survey of results obtained by the authors in the
topic of degeneracy of positive linear operators. A broad discussion on the topic
includes some new results and applications of degeneracy.

1. Introduction

Definition 1. Let Qm be the polynomial space of dimension m+1 and {Ln}
be the sequence of projective operators Ln : C[0, 1] → Qm. If exists, the set
D(Ln) ⊆ C[a, b] \ Qm[a, b] such that degLn(ϕ) < n, ϕ ∈ D(Ln), it is called
the degeneracy set of the sequence {Ln} and it is said that the operator
sequence {Ln} exhibits degenerative property or deficiency property .

The Bernstein operators Bn have been firstly pointed out to have de-
generative property. These operators map C[0, 1] into Qn and are defined
by

(1) Bn(f ;x) =
n∑

k=0

f

(
k

n

)
pn,k(x) , x ∈ [0, 1] , f ∈ C[0, 1] ,

where the kernel functions

(2) pn,k(x) =
(
n

k

)
xk(1 − x)n−k ,

form a basis in Qn. It is well known [15] that limBnf = f uniformly on
[0, 1].

Actually, Freedman and Passow, [9], [18], proved the following theorem:
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Theorem 1 (Freedman, Passow). Let πn be the set of continuous piecewise
affine functions with the knots in k/n, k = 1, ..., n − 1, n ≥ 2, n ∈ N , and
let {Bn} be the sequence of Bernstein operators defined by (1). Then, for
n ≥ 2,

(3) f ∈ πn ⇒ Bnf = Bn+1f .

So, πn ⊆ D(Bn). An element of πn is the function whose graph is the
polygonal line with knots in k/n. Note that this polygonal line does not
need to change slope at all of these knots. Also, it is easy to see that for
every p ∈ N , πn ⊆ πpn, so that

(4) f ∈ πn ⇒ Bpn(f) = Bpn+1(f) ,∀p ∈ N .

In fact, this is the original form of the result of Freedman and Passow.
Goodman and Sharma [10] have got the implication (4) simplified to (3).

A slightly different formulation for essentially the same fact is given in
[22]. According to Schoenberg, Averbach pointed out the implication (3) as
the equality case in the inequality Bn+1f ≤ Bnf , for every f convex on [0, 1]
(cf. Temple [25]) (see section 4). The same result was given in [12, Th. 7.5].

Degenerative property of Bernstein polynomials is illustrated in Figure 1.
The function x �→ ϕc(x) = |x − c|, has been approximated by the sequence
of polynomials Bn(x) =Bn(ϕc) for n = 2, . . . , 17. For c = 1/2, function ϕc

belongs to the degenerative set π2, so that, in virtue of (3), i.e. (4), it must
be B2(x) = B3(x), B4(x) = B5(x), etc. (Figure 1, left). If c differs for a
small amount from 1/2, the separation of pairs (B2n, B2n+1) becomes visible
on the graphical presentation (Figure 1, right).

Fig. 1. Degeneracy of Bernstein polynomials
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Concerning degeneracy of Bernstein polynomials, Passow [18] conjectured
the inverse implication in (4):

Conjecture 1 (Passow).

Bpn(f) = Bpn+1(f),∀p ∈ N ⇒ f ∈ πn .

Goodman and Sharma [10] gave a partial answer to this conjecture by
proving that if f is convex on [0, 1] and Bnf = Bn+1f , then f ∈ πn.

Another partial answer is given by Passow [19], under the assumptions
that f ∈ C[0, 1] and f ∈ C2( i−1

p , i
p ) for i = 1, 2, . . . , p. Then, Bpn(f) =

Bpn+1(f), n = 1, 2, . . . , implies f ∈ πn.
According to the authors’ knowledge, the conjecture of Passow is still

open.
The result of Freedman and Passow (Theorem 1) was generalized in two

ways. In [6] it is shown that degeneracy is not a privilege of Bernstein
operators only. Other way of generalization [8] deals with multidimensional
Bernstein polynomials over simplices.

2. Other operators

The first remark of the authors in [6] was that Theorem 1 was a simple
consequence of the difference formula

(5) ∆Bn(f ;x) = −x(1 − x)
n(n + 1)

n−1∑
k=0

pn−1,k(x)
[
k

n
,
k + 1
n + 1

,
k + 1
n

; f
]

,

which seems to be firstly published by Aramă [1]. Here,

δn
k f =

[
k

n
,
k + 1
n + 1

,
k + 1
n

; f
]

, k = 0, . . . , n− 1 ,

stands for the second divided difference of the function f with respect to the
points k/n, (k + 1)/(n + 1) and (k + 1)/n. Now, one has

Proof of Theorem 1. If f ∈ πn ⊆ C[0, 1], then δn
k f = 0, k = 0, . . . , n− 1,

so from (5) it follows that ∆Bn(f ;x) = 0, i.e. (3) is valid. �
Similar proof, given by Passow in [19] is based on Averbach formula ([12])

−∆Bn(f ;x)

(1− x)n+1
=

n∑
k=1

{(n

k

)
f

(
k

n

)
+

( n

k − 1

)
f

(
k − 1

n

)
−

(n + 1

k

)
f

(
k

n + 1

)}
zk ,
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where z = x/(1 − x).
It is shown in [6] that difference formula similar to (5) is valid for more

general classes of positive linear operators (PLO), and thus, the degeneracy
property as well.

Let the sequence of PLO’s {Lα
n}+∞

n=1 be given by

(6) Lα
n(f ;x) =

∞∑
k=0

�α
n,k(x)f(

k

n
) , x ∈ [0,+∞) ,

where �α
n,k be a kernel and α be a parameter. The operators Lα

n cover several
important, well known cases. Thus, for �α

n,k(x) =
(
n
k

)
xk(1 − x)n−k, Lα

n are

Bernstein operators while for �α
n,k(x) = e−nx (nx)k

k! , operators (4) reduce to
Favard-Szász-Mirakyan operators [25]. If one specifies

�α
n,k(x) =

(
n
k

)
x(k,−α)(1 − x)(n−k,−α)

1(n,−α)
,

where

x(k,α) =
{

1, k = 0
x(x− α)...(x− (k − 1)α), k ≥ 1,

the Stancu operators ([23]) are obtained. By the choice

�α
n,k(x) = (1 + nα)−

x
α (α +

1
n

)−k x
(k,−α)

k!
,

(7) gives generalized Favard-Szász-Mirakyan operators [24], [16], [20].

Theorem 2 ([6]). For the sequence of operators (6) the implication

(7) f ∈ πn ⇒ Lα
nf = Lα

n+1f ,

is valid.

Proof. The proof is based on the difference formula which holds for all
x ≥ 0 and α ≥ 0

∆Lα
n(f ;x) =

x2 − Lα
n(e2;x)

(n + 1)(1 + nα)

+∞∑
k=0

sα
k (x)�α

n−1,k(x)δn
k f ,
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where e2(t) = t2, and the sequence sα
k (x) satisfies

+∞∑
k=0

sα
k (x)�α

n−1,k(x) = 1 .

For the details of the proof, see [6]. �
In [8], the authors determined all PLO’s of interpolation type

(8) Ln(f ;x) =
n∑

k=0

f(xn
k )bn

k (x), x ∈ [0, 1], n ∈ N ,

where the kernel functions {bn
k (x)} form a basis in Qn and 0 = xn

0 < . . . <
xn

n = 1. Note that Ln : C[0, 1] → Qn. It is clear that Qn ⊆ Qn+1, which
means that bn

k (x) ∈span{bk+1
j (x)}, i.e. the degree elevation formula

bn
k (x) =

n+1∑
j=0

mj,kb
n+1
j (x) ,

takes place. The matrix of coefficients [mj,k], in many known cases has a
three-diagonal form, so that the degree elevation formula has the form

(9) bn
k (x) = mk,kb

n+1
k (x) + mk+1,kb

n+1
k+1(x) ,

where the coefficients mi,j satisfy the following conditions

(10) mi,j ≥ 0,

(11)
n∑

j=0

mi,j = 1, i = 0, ..., n + 1,

(12)
n∑

j=0

mi,jx
n
i = xn+1

i , i = 0, ..., n + 1.

Besides, it is natural that the structure of the matrix of mesh knots [xn
k ]

affects the convergence of the sequence {Lnf}. For the majority of inter-
polation type PLO’s, this matrix has dyadic structure, which means that it
always exists the continuous monotone function g such that g(xn

k ) = k/n for
k = 0, . . . , n and n ∈ N . It is easy to show, that for each dyadic matrix of
nodes, xpn

pk = xn
k for p ∈ N .

Let Πn be the set of continuous piecewise affine functions with the knots
in {xn

k}n−1
k=1 , n ∈ N , then the following theorem generalizes Theorem 1.
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Theorem 3 ([8]). Let the sequence of PLO (8) be defined by the dyadic
node matrix [xn

k ]. Let for every n ∈ N
a) Lnϕ = ϕ, ϕ(x) = αx + β, α, β ∈ R ;
b) Ln(f ; 0) = f(0), Ln(f ; 1) = f(1) ;
c) the kernel functions bn

k (x) satisfy three-term recurrence relation (9).
Then the sequence {Ln} exhibits degeneracy property, i.e.

f ∈ Πn ⇒ Ln+1f = Lnf .

Proof. It is based on the difference formula

(13) Ln(f ;x) − Ln+1(f ;x) =
n−1∑
k=0

an,kb
n+1
k+1(x)[xn

k , x
n+1
k+1 , x

n
k+1; f ],

where an,k = (xn
k+1 − xn+1

k+1)(xn+1
k+1 − xn

k ). Note that the divided difference
in (13) is well defined on the dyadic node matrix. Further, from f ∈ Πn it
is obvious that [xn

k , x
n+1
k+1 , x

n
k+1; f ] = 0, i.e. Ln+1(f) = Ln(f). For details of

this proof, see [8]. �
The Theorem 3 contains following important special cases:
1) By choosing bn

k (x) = pn,k(x) (given by (2)) and xn
k = k/n, the degree

raising formula is

(14) bn
k (x) =

n− k + 1
n + 1

bn+1
k (x) +

k + 1
n + 1

bn+1
k+1(x), k = 0, ..., n .

Thus, by Theorem 3, D(Bn) ⊇ πn.
2) For

bn
k (x) =

(
n
k

)
x(k,−α)(1 − x)(n−k,−α)

1(n,−α)
,

(α ≥ 0 is fixed), and xn
k = k/n, the Stancu operators are obtained. The de-

gree raising formula is just the same as (14), and the degeneracy set includes
πn, as above.

3) Let µ = (µ0, ..., µn−1), ν = (ν0, ..., νn−1) are two sequences of nonneg-
ative parameters. The choice bn

k (x) = dn
k (x), where for k = 0, ..., n

dn
k (x) = λn,k(x + µ0)...(x + µk−1)(1 − x + ν0)...(1 − x + νn−k−1) ,

and the constants λn,k, k = 0, ..., n, are given recursively by

λ0,k = δk,0 ,
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λn,k =
λn−1,k−1

1 + µk−1 + νn−k
+

λn−1,k

1 + µk + νn−k−1
,

together with selecting nodes xn
0 , . . . , x

n
n, so that

∑n
k=0 x

n
kd

n
k (x) = x is sat-

isfied. Then,

Dµ,ν
n (f ;x) =

n∑
k=0

f(xn
k )dn

k (x), x ∈ [0, 1] ,

defines the sequence of PLO. These operators have been studied by Barry
and Goldman [3]. They used the generalized Pólya urn model to generate
Dµ,ν

n . The degree raising formula is

dn
k (x) =

λn,k

1 + µk + νn−k

(
dn+1

k (x)
λn+1,k

+
dn+1

k+1(x)
λn+1,k+1

)
,

and, by Theorem 3, D(Dµ,ν
n ) ⊇ Πn, with xn

k as nodes.
4) Let ν ∈ N,m ∈ N0 and n = ν +m and τn = (t−ν , ..., tn+1) be the knot

sequence 0 = t−ν = ... = t0 < t1 ≤ t2 ≤ ... ≤ tm < tm+1 = ... = tn+1 = 1,
such that ti−ν < ti+1(i = 0, ..., n). The sequence of nodes xn, induced by τn

is given by

(15) xn
k =

1
ν

(tk−ν+1 + ... + tk), k = 0, ..., n.

In [22] Schoenberg introduced the operator Tn by

Tn(f ;x) =
n∑

k=0

f(xn
k )Nν,k(x), x ∈ [0, 1] ,

where Nn,k(x) = N(x/tk−ν , ..., tk+1), k = 0, ..., n, are the B-splines of degree
ν, with respect to the knots ti−n, ..., ti+1. The operator Tn, now known as
Schoenberg’s variation diminishing spline operator, maps C[0,1] into Sn the
space of splines of degree ν with the knots τn. It is known that {Nν,k}, k =
0, ..., n, is a basis for Sn. To obey our previous notation, we shall write
bn
k (x) = Nν,k(x)(n = m + ν). Thus, the operator Tn degenerates over the

set Πn with nodes at the points xn
k , given by (15).

3. Multidimensional case

Let a0, a1, . . . , as (s ≥ 1) be the set of affinely independent points from Rs.
Then, the s-dimensional simplex is defined by σs = span{a0, . . . , as} . By
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Caratheodory’s theorem, for each t ∈ σs, there exist real numbers t0, . . . , ts,
ti ≥ 0 and

∑s
i=0 ti = 1 such that, for each t ∈ Rs, t =

∑s
i=0 tiai. The

numbers ti are called barycentric coordinates of t with respect to the simplex
σs. Let i = (i0, . . . , is) be the set of multiindices and |i| =

∑
j ij . For any

function f : σs → R, the Bernstein operator over σs is defined by

(16) Bσ
n(f ; t) =

∑
|i|=n

f

(
i
n

)
bn
i (t) ,

where for t = (t0, . . . , ts) ∈ σs, the basis polynomials are

bn
i (t) =

n!
i0! · · · is!

ti00 · · · tis
s ,

and f(i/n) is the value of f in the point xn
i = (i0/n, . . . , is/n) ∈ σs.

Let xn+1
i = i/(n + 1), xn

i−ek
= (i − ek)/n, k = 0, . . . , s, where ek =

(δj,k)s
j=0, be the points from Rs. The functional Dn

i : f �→ R, defined by

(17) Dn
i f = f(xn+1

i ) −
s∑

k=0

ik
n + 1

f
(
xn
i−ek

)
, |i| = n + 1 ,

will be called Jensen functional .
In [7], the following results are proved.

Theorem 4. If Dn
i is the Jensen functional given by (17), then

∆Bσ
n(f ; t) =

∑
|i|=n+1

bn+1
i (t)Dn

i f .

Theorem 5. Let πn(σs) be the set of continuous piecewise affine functions
with the knots { i

n}, |i| = n, i �= nek, k = 0, . . . , s. Then

f ∈ πn(σs) ⇒ Bσ
nf = Bσ

n+1f .

Proof. Note that every point xn+1
i = i/(n+1) is surrounded by s+1 points

xi−ek
, k = 0, . . . , s, which form a subsimplex σi

s =span{xi−ek
, k = 0, . . . , s}.

On the other hand, the function f ∈ πn(σs) is affine in σi
s for every i. Thus,

by (16), Dn
i f = 0 and by Theorem 4, it follows that ∆Bσ

nf = 0. �
In [5], Chui, Hong and S. Wu obtained the result stated in Theorem 5.
Taking into account that πn(σs) ⊆ πpn(σs) for every p ∈ N , one has the

following
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Corollary 1. If f ∈ πn(σs), then Bσ
pnf = Bσ

pn+1f .

Theorem 5 generalizes the result by Chang and Davis [4] about degeneracy
of Bernstein polynomial operators defined on triangles, i.e. when s = 2.
Note, also that Theorem 1 is a special case of Theorem 5 for s = 1. Indeed,
σ1 is a segment of the real axis, say [a, b], while σ2 is a triangle in the plane.
An example of degeneracy of Bernstein operators, defined over triangle σ2,
by

Bσ
n(f ; t) =

∑
i+j+k=n

f
( i

n
,
j

n
,
k

n

) n!
i!j!k!

uivjwk , t = (u, v, w) ∈ σ2 ,

is shown in Figure 2. The function f belongs to the set π3(σ2). By Corollary
1, Bσ

3 f = Bσ
4 f , Bσ

6 f = Bσ
7 f and so on. The triangular patches, being graphs

of the polynomials Bσ
nf , n = 2, 3, 4, 6, 7, are shown in Figure 2.

Fig. 2. Degeneracy of Bernstein polynomials on triangle

The following conjecture is the direct analogue of Passow’s Conjecture 1
(see [7]):

Conjecture 2.

Bσ
nf = Bσ

n+1f ,∀p ∈ N ⇒ f ∈ πn(σs) .

Concerning deficiency on the triangular domain σ2, H.-Y. Wu [27] proved
that if f ∈ C1(σ2) is a piecewise quadratic function defined on the second
subdivision of σ2, then

(n + 1)Bσ
2n+2(f ; t) − (2n + 1)Bσ

2n+1(f ; t) + nBσ
2n(f ; t) = 0 .
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4. Some applications

It is well known fact that (univariate) Bernstein polynomials preserve
convexity (of any order) of generating function ([21]), and even some classes
of generalized convexity [13]. Also, if f is convex then ∆Bnf ≤ 0, which is
the result of Temple [26]. These facts are illustrated in Figure 1, where f is
the special convex function ϕc(x) = |x− c|. Distribution of the members of
the sequence {Bn(ϕc;x)}+∞

n=2 for various c is fairly complicated. Displaying
the locus of minima for the polynomials Bn(ϕc) for 2 ≤ n ≤ 14 and 0 ≤
c ≤ 0.5, on [0, 1/2] (Figure 3, left) can help us to see this complexity. It
turns out to be paradoxal, but the approximation of the minima of ϕc, by
polynomials Bpn(ϕc) and Bpn+1(ϕc), near the point c = 1/n is equally good,
as it is shown on the separated trajectories for the vicinity of c = 1/3, Figure
3 (right). This is the consequence of the degeneracy property of Bernstein
operator.

Fig. 3. Minima of Bnϕc on [0,1/2] for 2 ≤ n ≤ 14 and for c ∈ [0, 1/2]

In connection with approximation of convex functions by Bernstein poly-
nomials, Aramă and Ripianu [2] proved that if f ∈ C∞[0, 1] and if for
ν ≥ 2, f (ν)(x) ≥ 0, x ∈ [0, 1], then ∆2Bnf ≥ 0, n ∈ N , where ∆2Bn =
Bn+2 − 2Bn+1 + Bn. In [11] Horová weakened conditions of Aramă and
Ripianu in the following theorem:

Theorem 6. (Horová) Let [x1, x2, . . . , xk+2; f ] ≥ 0 for k = 1, 2, 3 and 4,
where xi are arbitrary points from [0, 1]. Then ∆2Bnf ≥ 0.

The condition [x1, x2, . . . , xk+2; f ] ≥ 0, xi ∈ [0, 1] means that f is convex
of order k. So, convexity of orders 1, 2, 3 and 4 of a generating function is the
necessary condition for convexity of the sequence of Bernstein polynomials.
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Sufficiency of these conditions has never been proved. Accordingly, one may
think to weaken conditions of Theorem 6. It may seem that only the first
order convexity of f will cause convexity of the sequence {Bnf}. But, the
degeneracy of Bernstein operator can be used to disprove this conjecture.
Namely, one has

Theorem 7. Let f(x) = |x− 0.5|. Then the sequence {Bnf} is not convex.

Proof. It is obvious that f ∈ π2, and f is convex (of the first order). By
Theorem 1 (i.e. by (4)), B2mf = B2m+1, for m ∈ N . Then, for any m ∈ N ,

∆2B2mf = B2m+2f − 2B2m+1f + B2mf = B2m+2f −B2m+1f .

Now, it can be proved that the difference

(18) B2m+2f −B2m+1f �= 0 .

Contrary, suppose that B2m+2f − B2m+1f = 0. Following (5), it must be∑2m
k=0 p2m,k(x)δ2m+1

k = 0, where

δ2m+1
k f =

[
k

2m + 1
,
k + 1

2m + 2
,
k + 1

2m + 1
; f

]
.

Using the fact that polynomials {p2m,k, k = 0, . . . , 2m} form a basis in Q2m,
it must be δ2m+1

k f = 0 for all k = 0, . . . , 2m. But, the direct calculation
shows that δ2m+1

k f = 2(2m + 1) which is different from zero for all m ∈ N .
This contradiction shows that (18) is true. On the other hand, Bnf ≤ Bn+1

due to convexity of f , which, together with (18) gives ∆2B2mf < 0, i.e. the
sequence {Bnf} can not be convex. �

Another application of degeneracy is to derive so called degree elevation
formula which is useful for CAGD in the theory of Bézier curves and surfaces,
and similar free-form curve (surface) models generated by other positive
linear operators.

Lemma 1. For every f ∈ πn,

(19) f

(
k + 1
n + 1

)
=

n− k

n + 1
f

(
k + 1
n

)
+

k + 1
n + 1

f

(
k

n

)
,

is valid.
Proof. By the Theorem 1, f ∈ πn implies ∆Bnf = 0. It follows by (5)

and the basis property of polynomials pn
k that δn

k f = 0. Now, from

0 = δn
k f =

[
k

n
,
k + 1

n + 1
,
k + 1

n
; f

]
= n2(n + 1)

[
1

k + 1
f

(
k + 1

n

)
− n + 1

(k + 1)(n − k)
f

(
k + 1

n + 1

)
+

1

n − k
f

(
k

n

)]
,
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(19) easily follows. �
Note that the Bernstein polynomial Bnf , for fixed n does not need the

function f to be defined over the whole interval [0, 1]. It is enough to know
just the sequence P = {Pk = f(k/n)}n

k=0. So, one may write Bn(P ;x)
rather than Bn(f ;x).

The following statement is given in [6]:

Theorem 8. Let Bn(P ;x) and Bn+1(Q;x) be two Bernstein polynomi-
als generated by the sequences {Pk}n

k=0 and {Qk}n+1
k=0 . Then Bn(P ;x) =

Bn+1(Q;x) identically, for x ∈ [0, 1] if and only if

(20)




Q0 = P0 ,

Qk+1 = n−k
n+1Pk+1 + k+1

n+1Pk , k = 0, . . . , n− 1 ,

Qn+1 = Pn .

Proof. The analogy of the difference formula (5) is

Bn(P ;x) −Bn+1(Q;x) =

nx(1 − x)
n−1∑
k=0

pn−1,k(x)
(
Pk+1

k + 1
− (n + 1)Qk+1

(k + 1)(n− k)
+

Pk

n− k

)
.

Therefore from Bn(P ;x) = Bn+1(Q;x), it follows that Pk+1
k+1 − (n+1)Qk+1

(k+1)(n−k) +
Pk

n−k = 0, (k = 0, . . . , n − 1). Besides, for x = 0, Bn(P ; 0) = P0 and
Bn+1(Q; 0) = Q0; for x = 1, Bn(P ; 1) = Pn and Bn+1(Q; 1) = Qn+1, i.e.
(20) is valid.

Suppose that (20) is true. Then there exists a function f ∈ πn, such
that Pk = f(k/n) and Qk = f

(
k/(n + 1)

)
, and therefore Bn(P ;x) =

Bn+1(Q;x). �
One generalization of the algorithm (20) is given in [14].
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