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Abstract. In this paper the convex families of summability methods defined by
sequence-to-sequence transformations are consired. The paper introduces and
extends the authors ideas on convexity of fammilies of summability methods
started in papers [9–16]. The necessery and sufficient conditions for convexity
are considered (section 3). A method for studying some families on convexity
arises from these conditions (section 4). The method mentioned is applied to
the family of generalized Nörlund methods (section 5). The results for Nörlund
methods include the convexity theorems known from papers [6], [8] and the
well-known convexity theorem for Cesàro methods. The convex families can be
applied to characterization of speed of summability (Section 1).

1. On Notion of Convex Family of Summability Methods

Let us consider sequences x = (ξn) with ξn ∈ K (K = C or K = R) for
n = 0, 1, 2, . . . . Let {Aα} be a family of summability methods Aα given by
sequence-to-sequence transformations of x ∈ ωAα into Aαx = (ηα

n), where
ηα

n ∈ K and α is a continuous parameter with values α > α0. We note that
the methods Aα can be, in particular, matrix methods Aα = (aα

nk).
We denote by ωAα the set of all sequences x where the transformation

Aα is applied, by mAα the boundedness domain of method Aα, by cAα the
convergence domain of Aα and by c0Aα the 0-convergence domain of Aα.
Thus we have:

mAα =
{
x ∈ ωAα | Aαx ∈ m

}
, cAα =

{
x ∈ ωAα | Aαx ∈ c

}
,

c0Aα =
{
x ∈ ωAα | Aαx ∈ c0

}
.
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Suppose λα=(λα
n) are monotonically increasing positive sequences, i.e.

0 < λα
n ↑. Further we need the following notations:

mλα =
{
x =

(
ξn

) ∈ c|(βα
n

)
=

(
λα

n

(
ξn − lim ξn

)) ∈ m
}
,

cλα =
{
x ∈ mλα |(βα

n

) ∈ c
}
, c∗λα =

{
x ∈ cλα |(βα

n

) ∈ c0
}
,

mλα
0 =

{
x ∈ mλα | lim ξn = 0

}
,

cλα
0 =

{
x ∈ cλα | lim ξn = 0

}
, c∗λα

0 =
{
x ∈ cλα

0 |(βα
n

) ∈ c0
}
.

The sequence x is said to be summable by method Aα with speed λα

(shortly Aλα
α - summable) if Aαx ∈ cλα . The sequence x is said to be Aλα

α -
bounded if Aαx ∈ mλα .

Definition. The family {Aα} is said to be convex if for every α < β and
for every α < γ < β the conditions

(1) mAα ⊂ mAβ , cAα ⊂ cAβ

and

(2) cAγ ⊃ mAα ∩ cAβ

hold.
The family {Aα} is said to be zero-convex (0-convex) if the conditions

(1)-(2) hold with c0 instead of c in them (see [10]).

We can give an idea for application of convex families.
Let {Aα} be a convex family and α and β (β > α) be two fixed values of

parameter. If the sequence x is bounded by the method Aα and summed by
the method Aβ, then x is summable by every method Aγ with γ > α. So the
method Aγ optimal in some sense can be chosen for summing the sequence
x (for example, the method Aγ which sums x with the optimal speed).

The applications of convex families to summability with speed are based
on the following theorem (which is a modification of Theorem 3 formulated
in [12]).

Theorem 1. Let us consider together with the methods Aα (α > α0) the
methods Bα where Bαx = (λα

nη
α
n) with (ηα

n) = Aαx, x ∈ ωAα and
0 < λα

n ↑ ∞.
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a) If the family {Bα} is 0-convex then the following implications are true:

(3) Aαx ∈ mλα
0 , α < β =⇒ Aβx ∈ mλβ

0 ,

(4) Aαx ∈ c∗λα
0 , α < β =⇒ Aβx ∈ c∗λβ

0

and

(5) Aαx ∈ mλα
0 , Aβx ∈ c∗λβ

0 , α < γ < β =⇒ Aγx ∈ c∗λγ

0 .

b) If the family {Bα} is convex then the implications (3)-(5) hold with c0
instead of c∗0.

If in addition the transformations Aα are linear and Aαe=aαe where
0 �= aα ∈ K and e = (1, 1, 1, . . . ) then the statements a) and b) hold with m
instead of m0 and with c∗ and c instead of c∗0 and c0, respectively.

In general case the statements a) and b) of Theorem 1 follow directly from
0-convexity and convexity of family {Bα}, respectively. To prove these state-
ments in additional restrictions on Aα it is sufficient to notice that the equiv-
alences

Aαx ∈ c∗λα ⇔ x− (
lim
n
ηα

n�aα

)
e ∈ c0Bα, Aαx ∈ mλα

⇔ x− (
lim
n
ηα

n�aα

)
e ∈ mBα

are true and the last equivalence is true also with c instead of m in it.

2. Short Review of Results on Convex Families
of Summability Methods

First were known the convexity theorems1 for some special matrix meth-
ods.

1) The convexity of the family of Cesàro methods Aα = (C,α) was first
proved by G.H. Hardy and J.E. Littlewood in 1912. Afterwards the convexity
of this family was proved in different ways by several authors. The references
to these proofs can be found in [4].

2) The sufficient conditions for convexity of the family of Nörlund methods
Aα = (N, pα

n) were proved by F.P. Cass in [6].

1We mean under convexity theorems the theorems which state the convexity of a family
{Aα}(α > α0).
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3) The sufficient conditions for convexity of the family of more general
Nörlund methods Aα = (N, pα

n, qn) were found by R. Sinha in [8].

4) Some convexity theorems for certain semi-continuous summability
methods and methods of strong summability have been published also. For
example, the convexity theorems for Nörlund methods of strong summability
and Riesz means are known. We don’t refer to these results here because
the methods of such type do not belong to the subject of this paper. The
references to these publications and also to Tauberian theorems connected
with convexity theorems can be found in [5,9,10,11,14].

5) The convexity of the family of Euler-Knopp methods Aα = (E,α) was
proved by J. Boos and H. Tietz in [5] recently.

The proofs of above mentioned convexity theorems base on matrices
Aα = (aα

nk).

The author has proved the convexity theorems in papers [9-16]. In those
papers the convex familes of summability methods are considered from the
general point of view. The techniques of proofs in papers [9-16] base on the
connection matrices Dα,β−α (not on methods Aα) between methods Aα and
Aβ (β > α), i.e. on the relations

Aβx = Dα,β−α(Aαx) (x ∈ ωAα).

We note that different families {Aα} may have the same connection ma-
trices Dα,β−α.

Let us characterize briefly the contents of papers [9-16].

1) The necessary and sufficient conditions for convexity of a family of
normal matrix methods are proved [15,16].

2) The sufficient convexity conditions for certain linearly connected fam-
ilies of summability methods are proved (including strong summability). A
method for studying the families on convexity and for constructing new
convex families arises from the proved convexity theorems. The new con-
vex families are found [9,10,11,14,15]. The convexity theorems for Nörlund
methods (including Cesàro methods) and Riesz means published by other
authors (and known to the author) can be inferred from proved theorems as
immediate corollaries.

3) The convexity theorems proved for summability of number sequences
are generalized to summability in locally convex spaces [12,13,14,16] and
applied to the summability with speed and to Tauberian theorems [10,12,14].
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3. Some General Convexity Theorems

Suppose at first that Aα = (aα
nk) (where α > α0) are normal matrix

methods, i.e. aα
nk = 0 for all k > n and aα

nn �= 0 (n = 0, 1, 2, . . . ). Then
there exists the inverse matrix A−1

α for every Aα. Let us denote by Dαδ the
product of matrices Aα+δ (δ > 0) and A−1

α , i.e.

Dαδ = Aα+δA
−1
α .

Due to normality of methods Aα the conditions (1) and (2) are equivalent
to the reqularity of methods Dα,β−α and to the inclusion cDαγ ⊃ m∩ cDαβ ,
respectively. Thus the following theorem holds (see [15], Theorem 1.3).

Theorem 2. Let Aα = (aα
nk) be normal matrix methods for all α > α0.

Then the family {Aα} is convex and the methods Aα are pairwise consistent
if and only if the following conditions hold for every α > α0 and 0 < δ < 1.

1) The matrix method Dαδ is regular.
2) cDαδ ⊃ m ∩ cDα1 (with consistency).

The restrictions on methods Aα can be weakened so that the conditions
1) and 2) of Theorem 2 remain sufficient for the convexity of family {Aα}.
The methods Aα need not be normal, even not matrix methods (see [15],
Theorem 1.4).

Theorem 3. Let the summability methods Aα and Aα+δ for every α > α0

and 0 < δ < 1 be connected by the row finite matrix Dαδ so that Aα+δx =
Dαδ(Aαx) for each x ∈ ωAα. If the matrix Dαδ satisfies for every α > α0

and 0 < δ < 1 the conditions 1) and 2) of Theorem 2, then the family {Aα}
is convex and the methods Aα are pairwise consistent.

We notice that the conditions 1) and 2) of Theorem 2 put restrictions
only on connection matrices, not on methods Aα. As we have said already,
the different families {Aα} may have the same connection matrices Dαδ.

In order to give to the condition 2) in last two theorems more constructive
form we need the Quotient Theorems of H. Baumann ([1], Theorem 1) and
J. Boos ([2], Theorem 4 and [3], Theorem) for matrix methods A = (ank)
and B = (bnk). The elements of matrices belong to K everywhere2.

2Lemmas 1 and 2 and Theorems 2-4 as well are generalized for summability in locally
convex spaces [16].
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Lemma 1. ([1], Theorem 1.) Let A and B be regular matrix methods. Then
the following statements are equivalent.

1) cB ⊃ m ∩ cA.
2) For every ε > 0 there exists a row finite and column finite regular

matrix method Qε = (qε
nk) and a matrix Rε = (rεnk) satisfying

(6) B = QεA+Rε

and

(7) lim sup
n

∑
k

|rεnk| < ε.

Lemma 2. ([2], Theorem 4 and [3], Theorem.) Let A and B be regular
matrix methods and let A be normal. Then the following statements are
equivalent.

1) cB ⊃ m ∩ cA.
2) For every ε > 0 there exist matrices Qε and Rε satisfying (6),

sup
n

∑
k

|qε
nk| <∞ and

(8) sup
n

∑
k

|rεnk| < ε.

3) Statement 2) from Lemma 1 is fulfilled with (8) instead of (7).
4) For every ε > 0 there exists δ > 0 satisfying

sup
n

∣∣∣∑
k

bnkξk

∣∣∣ ≤ ε ·
(
1
δ
· sup

n

∣∣∣∑
k

ankξk

∣∣∣ + sup
n

| ξn |
)

for each finite sequence x = (ξn).

We give now some additional remarks to Theorems 2 and 3.
Remarks. Let the condition 1) be fulfilled for every α > α0 and 0 < δ < 1.

Applying Lemmas 1 and 2 to regular matrix methods A = Dα1 and B = Dαδ

we get the following statements (each of what is) equivalent to 2) (see also [15],
Theorems 1.5-1.7 and [16], Theorem 4).

2a) cDαδ ⊃ m ∩ cDα1.
2b) For every ε > 0 there exists a row finite and column finite regular matrix

Qαδε = (qαδε
nk ) and a matrix Rαδε = (rαδε

nk ) satisfying

(9) Dαδ = QαδεDα1 + Rαδε
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and

(10) lim sup
n

∑
k

|rαδε
nk | < ε.

2c) For every ε > 0 there exists a row finite c0 → c0 matrix Qαδε and a matrix
Rαδε satisfying (9) and (10).

2d) For every ε > 0 there exists a c0 → c0 matrix Qαδε and a matrix Rαδε

satisfying (10) and

∣∣∣∑
k

dαδ
nkξk

∣∣∣ ≤ ∣∣∣∑
k

qαδε
nk

∑
ν

dα1
kν ξν

∣∣∣ +
∣∣∣∑

k

rαδε
nk ξk

∣∣∣
for each n = 0, 1, 2, . . . and x ∈ m ∩ c0Dα1.

2e) c0Dαδ ⊃ m ∩ c0Dα1.
If in addition the matrices Dαδ (α > α0, 0 < δ < 1) are normal (as it already

is in Theorem 2) then we have further statements being equivalent to 2).
2f) For every ε > 0 there exist matrices Qαδε and Rαδε satisfying the conditions

(9), sup
n

∑
k
|qαδε

nk | < ∞ and

(11) sup
n

∑
k

|rαδε
nk | < ε.

2g) Statement 2b) is fulfilled with (11) instead of (10).
2h) Statement 2c) is fulfilled with (11) instead of (10).
2i) Statement 2d) is fulfilled with (11) instead of (10).
2j) For every ε > 0 there exists δ > 0 satisfying

sup
n

∣∣∣∑
k

dαδ
nkξk

∣∣∣ ≤ ε ·
(

1

δ
· sup

n

∣∣∣∑
k

dα1
nkξk

∣∣∣ + sup
n

| ξn |
)

for each finite sequence x = (ξn).

The analogues of Theorems 2 and 3 hold for 0-convexity. Let us formulate
the analogue of Theorem 3 (see [16], Theorem 5).

Theorem 4. Let the summability methods Aα and Aα+δ for every α > α0

and 0 < δ < 1 be connected by the row finite matrix Dαδ. If Dαδ is a c0 → c0
matrix and satisfies the condition 2) of Theorem 2 with c0 instead of c for
every α > α0 and 0 < δ < 1, then the family {Aα} is 0-convex.

Remark. The condition 2) is satisfied if the statement 2d) from Additional
Remark to Theorems 2 and 3 is fulfilled.
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4. A Method for Studying Certain Families on Convexity

Let every two methods Aα and Aα+δ (α > α0, δ > 0) from a family {Aα}
be connected with the relation

Aα+δx = Dαδ(Aαx) (x ∈ ωAα)

where Dαδ = (dαδ
nk) is the matrix with

(12) dαδ
nk = bαk c

αδ
nk�bα+δ

n ,

cαδ
nk ∈ K, cαδ

nk = 0 for k > n, cα1
nk = cαn �= 0 for k ≤ n and 0 �= bαn ∈ K

(n = 0, 1, 2, . . . ).
Further we will construct for every matrix Dαδ with α > α0 and 0 < δ < 1

the quotient representation

(13) Dαδ = QαδκDα1 +Rαδκ

where κ is any number from interval
(

1
2 , 1

)
and Qαδκ and Rαδκ are certain

matrices (depending on α, δ and κ). We need the representation (13) to get
effective sufficient conditions for the convexity of family {Aα} with the help
of general convexity theorems 2-4.

Let us fix any α > α0, 0 < δ < 1 and sequence y = (ηn) in K and denote
Dαδy by (µαδ

n ). Let us fix also 1
2 < κ < 1 and denote by N = [κn] the

integer part of κn. Now we have

µαδ
n =

1
bα+δ
n

N∑
k=0

cαδ
nkb

α
kηk +

1
bα+δ
n

n∑
k=N+1

cαδ
nkb

α
kηk.

Transforming the first sum by the Abelian transformation we get for the
sequence Dαδy = (µαδ

n ) the representation3

µαδ
n =

N−1∑
k=0

∆kc
αδ
nkb

α+1
k µα1

k �cαk b
α+δ
n + cαδ

nNb
α+1
N µα1

N �cαNb
α+δ
n(14)

+
n∑

k=N+1

cαδ
nkb

α
kηk�bα+δ

n (n = 0, 1, 2, . . . ).

3∆kcαδ
nk = cαδ

nk − cαδ
n,k+1.
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Denoting by Qαδκ = (qαδκ
nk ) and Rαδκ = (rαδκ

nk ) the matrices defined by

(15) qαδκ
nk =



∆kc

αδ
nkb

α+1
k �cαk b

α+δ
n if k < N,

cαδ
nNb

α+1
N �cαNb

α+δ
n if k = N,

0 if k > N

and

(16) rαδκ
nk =

{
0 if k ≤ N,

cαδ
nkb

α
k �bα+δ

n if k > N,

we can present the equality (14) in the following form:

Dαδy = Qαδκ(Dα1y) +Rαδκy.

Thus we have constructed for the matrix Dαδ the quotient representa-
tion (13) where the matrices Qαδκ and Rαδκ are defined by (15) and (16),
respectively. The next theorem follows now immediately from Theorems 4
and 3 with the help of statement 2c) from additional remark to them (see
[15], Theorems 2.1 and 2.2).

Theorem 5. Let the methods Aα and Aα+δ be connected by the relation
Aα+δx = Dαδ(Aαx) for each α > α0 and 0 < δ < 1 and x ∈ ωAα where the
matrix Dαδ is defined by (12).

Suppose the following conditions hold for every α > α0, 0 < δ < 1 and
1
2 < κ < 1.
1) The matrix Dαδ is a c0 → c0 matrix.
2) The matrix Qαδκ = (qαδκ

nk ) defined by (15) is a c0 → c0 matrix.
3) The matrix Rαδκ = (rαδκ

nk ) defined by (16) satisfies the condition
n∑

k=N+1

|rαδκ
nk | ≤ ϕαδ(κ)

where N = [κn] and lim
k→1−

ϕαδ(κ) = 0.

Then the family {Aα} is 0-convex.
If in addition the method Dαδ (α > α0, 0 < δ < 1) is regular then the

family {Aα} is convex and the methods Aα are pairwise consistent.

Remark. In particular if cαδ
nk = Aδ−1

n−k (k ≤ n) are the Cesàro numbers in

(12) and the sequences (bα
n) and (bα+δ

n ) satisfy for each α > α0, 0 < δ < 1 the
conditions

(17) |bα
n�bα

n+k| ≤ Nα (n, k = 0, 1, 2, . . . )
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and

(18) Kαδnδ ≤ |bα+δ
n �bα

n| ≤ Lαδnδ (n = 1, 2, . . . )

then the conditions 1)-3) are fulfilled for every α > α0, 0 < δ < 1 and 1
2 < κ < 1.

(Nα, Kαδ and Lαδ are real constants depending only on α or only on α and δ. See
[14], Theorem 2.A and also [10], Theorem 4.)

The idea of the method described above for constructing the quotient
representation (13) and studying the families on convexity was used by the
author first in [9] and further also in papers [10,11,14,15]. We note that
this method can be extended to the summability methods connected with
the integral analogue of the transformation (12) (see [9,10]) and to certain
methods of strong summability [11,13,14].

5. Convex Families of Generalized Nörlund Methods

We state that the sequence (Aαβ
n ) is formally defined by the power series

fαβ(χ) = (1− χ)−(α+1)

(
log

e

1− χ
)β

=
∞∑

n=0

Aαβ
n χn,

where α, β, χ ∈ R and e is the base of Naperian logarithm. In particular, if
β = 0 then Aα,0

n = Aα
n are the Cesàro numbers.

Let us consider the generalized Nörlund summability methods (see [14])
Aα = (N, pαβ0

n , qn) = (aα
nk) where

aα
nk =

{
pαβ0

n−kqk�Rαβ0
n if k ≤ n,

0 if k > n,

Rαβ0
n =

n∑
k=0

pαβ0
n−kqk, p

αβ0
n =

n∑
k=0

Aα−1,β0
n−k pk, β0 ∈ R, pn, qn ∈ K and Rαβ0

n �= 0

(n = 0, 1, 2, . . . ).

Remark. We notice, in particular, if β0 = 0 then the methods (N, pαβ0
n , qn)

become the generalized Nörlund methods (N, pα
n, qn) (see [8,14]). If besides the

condition β0 = 0 there is qn = 1 (n = 0, 1, 2, . . . ) then we get the Nörlund meth-
ods (N, pα

n) (see [6,14]). In particular, if qn = Aγ0σ0
n (γ0 and σ0 are fixed real

numbers) and pn = A−1,0
n = A−1

n then the methods (N, pαβ0
n , qn) become the

quasi-Cesàro methods (C, α, β0, γ0, σ0) (see [7]). If β0 = σ0 = 0 then the methods
(C, α, β0, γ0, σ0) become the generalized Cesàro methods (C, α, γ0, ); if we add to



On Convex Families of Summability Methods 55

the previous conditions the presumption γ0 = 0 then we get the Cesàro methods
(C, α).

The methods Aα+δ = (N, pα+δ,β0
n , qn) and Aα = (N, pαβ0

n , qn) for every
α > α0 and δ > 0 are connected by the relation Aα+δx = Dαδ(Aαx) where
Dαδ = (dαδ

nk) are matrices with

(19) dαδ
nk =

{
Aδ−1

n−kR
αβ0
k �Rα+δ,β0

n if k ≤ n,
0 if k > n

(see [14]). The matrix Dαδ defined by (19) satisfies the relation (12) with
cαδ
nk = Aδ−1

n−k (k ≤ n) and bαn = Rαβ0
n . Thus the next result can be obtained

as a direct application of Theorem 5 (see [15], Theorem 3.2).

Theorem 6. Suppose the following conditions hold.

1) |Rαβ0
n �Rαβ0

n+k| ≤ Nα (n, k = 0, 1, 2, . . . ) for every α > α0 + 1.

2) Kαδn
δ ≤ |Rα+δ,β0

n �Rαβ0
n | ≤ Lαδn

δ (n=1, 2, . . . ) for every α > α0 and
0 < δ < 1.

3) The matrix method Dαδ defined by (19) is regular for every α > α0

and 0 < δ < 1.

Then the family Aα = (N, pαβ0
n , qn) is convex for α > α0 and the methods

Aα are pairwise consistent. (Nα,Kαδ and Lαδ are real constants depending
only on α or only on α and δ.

Remark. If in addition the condition 1) is fulfilled for every α > α0 (instead
of α > α0 + 1), then the right inequality in condition 2) and the condition 3) are
satisfied (see [14], Theorem 2.1).

Corollary. ([15], Corollary 3.2.)
a) If p0 > 0, pn ≥ 0, qn > 0 for every n = 0, 1, 2, . . . and the con-

dition 2) of Theorem 6 holds for β0 = 0 and α0 = 0 then the family
Aα = (N, pαβ0

n , qn) = (N, pα
n, qn) is convex for α > 0 (see [8]).

b) If p0 > 0, pn ≥ 0, qn = 1 for every n = 0, 1, 2, . . . and the condition
2) of Theorem 6 holds for β0 = 0 and α0 = −1 then the family Aα = (N, pα

n)
is convex for α > −1 (see [6]).

c) The family Aα = (C,α, β0, γ0, σ0) is convex for α > −γ0 − 1 (see [14]).
In particular, the family Aα = (C,α, γ0) is convex for α > −γ0 − 1 and the
family Aα = (C,α) is convex for α > −1.
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Theorem 7. Let Aα = (N, pαβ0
n , qn) (α > α0), (b′αn) be the sequences

satisfying for every α > α0, 0 < δ < 1 the conditions (17), (18) and
λα

n = |Rαβ0
n �b′αn| ↑ ∞. Then the implications (3)-(5) hold with m and c∗

instead of m0 and c∗0, respectively.

The last theorem is a modification of Theorem 2.3 from [14]. To infer
this result from Theorem 1 as a conclusion it is sufficient to see that the
family {Bα} defined in it is 0-convex here. Indeed, {Bα} has the connection
matrices (12) with cαδ

nk = Aδ−1
n−k (k ≤ n) and bαn = Rαβ0

n |b′αn�Rαβ0
n | which

satisfy (17) and (18). Thus {Bα} is 0-convex by Theorem 5. We note that
(17) and (18) involve the comparative estimates for speeds λα.
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Cesàro means. Arch. Math. 51 (1988), 532-538.

5. J. Boos and H. Tietz: Convexity theorems for circle methods of summabil-
ity. J. Comput. Appl. Math. 40 (1992), 151-155.

6. F.P. Cass: Convexity theorems for Nörlund and strong Nörlund summabil-
ity. Math. Z. 112 (1969), 5, 357-363.

7. G. Das, K. Panda and S. Sahoo: On two new methods of summability.
Indian J. Pure Appl. Math. 15 (1984) (12), 1340-1351.

8. R. Sinha: Convexity theorem for (N, p, q) summability. Kyungpook Math.
J. (1973), 37-40.

9. A. Tali: The constructing convex families of summability methods. Acta et
Comment. Univ. Tartuensis 448 (1978), 55-65 (in Russian).

10. A. Tali: On zero-convex families of summability methods. Acta et Com-
ment. Univ. Tartuensis 504 (1981), 48-57 (in Russian).

11. A. Tali: Some examples on convex and zero-convex families of summabil-
ity methods. Acta et Comment. Univ. Tartuensis 596 (1982), 90-104 (in
Russian).

12. A. Tali: Convex families of summability methods of generalized sequences
in locally convex spaces. Reports of conference ”Methods of algebra and
analysis” in Tartu (1983), 61-63 (in Russian).



On Convex Families of Summability Methods 57

13. A. Tali: Convex families of strong summability methods in locally convex
families. Proc. of All Soviet Union conference ”Theory of functions and
approximations” in Saratov 3 (1988), 63-65 (in Russian).

14. A. Tali: A new family of generalized Nörlund summability methods. Acta
et Comment. Univ. Tartuensis 846 (1989), 87-98 (in Russian).

15. A. Tali: Convexity conditions for families of summability methods. Acta et
Comment. Univ. Tartuensis 960 (1993), 117-138.

16. A. Tali: Some equivalent forms for convexity conditions for a family of
normal matrix methods. Acta et Comment. Univ. Tartuensis 970 (1994),
107-116.

Tallinn Pedagogical University
Department of Mathematics and Computer Science
EE0001 Tallinn
Estonia


