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POLYNOMIALS RELATED TO
GEGENBAUER POLYNOMIALS

Gospava B. Dordevié

This paper is dedicated to Professor D. S. Mitrinovié

Abstract. In this paper we consider the polynomials f,i‘,’ﬁz(z), which are the
generalization of the Gegenbauer polynomials Cy, (z). Also, we find some rela-

tions for their coefficients pz’z and we prove some differential-difference relations

for the polynomials f,i‘,’zl(z).

1. Introduction

K. Dilcher [1] considered the polynomials f”(z), which are given by

GM(zt) = (L= (14+2+2°) t+A2%) 7 =) frr(2)th,
n>0

where ¥ > 1/2 and X is a nonnegative real number. Comparing this with
the Gegenbauer polynomials CY (z) (see [2], [3], [4]), he obtained

1+2z+2°
Av P :Zn>\n/2CV< >
724(2) r (P

In this paper we are going to consider the polynomials ,i‘fn(z) Also, we
are going to give some properties of these polynomials. In Section 2, we find
. . . A,V :
a recurrence relation for their coefficients Py ke In Section 3, we prove some
results for p;\LZ Finally, in Section 4, we give some differential-difference
relations for the polynomials f;% (2).
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2. Polynomials f}% (z)

At first, we are going to introduce the polynomials ,i‘fn(z)

Definition 2.1. The polynomials fri‘”r’;(z) are given by the following gener-
ating function

(2.1) Flz,t)=(1— (142422 t+X"t") " =D fam(2)t",
n>0
where v > 1/2, X\ is a nonnegative real number and m is a natural number.

Comparing (2.1) with the generating function for the generalized Gegen-
bauer polynomials pj, ., (2) (see [2], [3]), we get

2
(2.2 2o =iy, (FEEE2)

2V \z

From the recurrence relation (see [2])

(%) =22 +n—1)p)_ . (2) = (n+mv = 1))p; (@), n=>m,

with starting polynomials:

Mm@ = ey, =01 mo1,
’ n.

and by (2.2), we get the following recurrence relation

v—1

szuw=ﬁ+ )u+z+fymﬂm@>

(2.3) . (1 N @) AN (2),

with starting polynomials:

)"”(z):(y)n(1+z+z2)n, 0<n<m-1

n,m n!
Let us put 1/z instead z in (2.2). Then, it follows:

() = 22 A (12).

n,m ,m
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So, we get that the polynomials ,i‘ﬁ%(z) are self-inverse, or in other words,
the coefficients are “centrally symmetric.” Now, the polynomials ,i‘;fn(z)
have the following form

(24) o (2) = a1z o e T
Thus, we have the following triangle
(2.5)
A, v
Po,o
A,V A,v A, v
P11 Pio P1a
A,V A,V A, v A,V A, v
P22 P21 P20 P21 P22
From (2.3) and (2.4), we get the following recurrence relation
A, v—1 A, A, A,
pn,Z = (1 + n > (pnfl,k—l +pnfl,k +pni’1,k+1>
(2.6) )
V —
_ (1 + mT> )\pi‘b’fwk, n>m,

h L 2 W
where pr7p = pp7
. A, v
3. Coefficients p;’,

The main purpose of this paper is to study the coefficients pzz We are
going to derive the following explicit expressions.

Theorem 3.1. The coefficients pi‘b’,; are given by

w1 [("‘k’/m](_/\)s D(v+n— (m—1)s)
Prge = L(v) — sl(n —ms)!
(3.1) . L
TR (n = ms) (2j + k)
2j + k i)

J=0
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Proof. Using the explicit representation (see [2])

[n/m] (I/) B B
@) = 3 (—1)F I g yn—mk

— El(n — mk)!

and from (2.2), we get

1 2
AV (2) = 2"\ (74_ itz )

n,m n,m 2)\1/mz

[n/m] (l/) ( 1
_ _qys Wn=(m=vs 2\n8 sy
g( ) s!(n—ms)!( T2t ?

Now, from the last equalities and by formula (see [1])

2r [in/2] .
. 2\ _ m T m—j
(s =3 3 (m_j> (m_2j ,
m=0 7=0
where r is a positive integer, we get

[((n—Fk)/m]

k=—n s=0
. [‘""“i"”)/ 7 <n - ms> <2j + k)
= 25+ k i )

The statement (3.1) follows immediately from the last equalities. O

The next two results are related to coefficients pzz
Theorem 3.2. The coefficients p;\LZZ have the following representation

(3.2)
[(n—Fk)/m]

A n—k— (m — ].)S (V)n—(m—l)s (n—k—ms)
o —)° B
n,k perd (=) ( s El(n —k —(m —1)s)! %

w06
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Theorem 3.3. The coefficients p;\LZ can be expressed as

e 1 e (=\)° [’"f (=3), (}55); 2%
Puk = 511 S SlE) =k —ms)! = 5! L(k+j)

where r =n — k —ms.

We mention now some special cases:

1° For m = 2, we get the polynomials f)"(z) (see [1]). Then (3.1)
becomes

aw L [(n_zk:)/2](_>\)s L(v+n-—s) [(n_kz_:zs)/zl n—2s\(2j+k
P = (v) ~ sl(n — 2s)! = 2]+ k J '

n

3
Av(1) = Ay )\n/2 v < > .

k=—n

2° If m = 2 and v = 1, we obtain

Al — \n/2 i
SN = A Un(m),

where
N [(n—l’f)/2](_)\)S (n — s)! [(n—kz—:%)/?] n—2s\ (2j +k
Prge = sl(n — 2s)! = 2j+k j )

and U, (z) is the Chebyshev polynomials of the second kind.
3° With z = 1, from (2.2) and (2.4), we get

- 3
Av(1) = Ay )\n/m v < > )
n,m( ) pn,k pn7m ) "\L/X

k=—n

This is the sum of the coefficients of the n-th row in the triangle (2.5).
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4. Differential-difference relations
Firstly, we are going to prove the following theorem.

Theorem 4.1. The polynomials ;},”n(z) satisfy the following relations:

(4.1) DM(2) = S0 (2);
v — n' v
(4.2) DHYe) = = e
A1 1+2+22 541

AV () = my z)—vim—1)———— 2);
(43) (n+ml/) n,m( ) n,m ( ) ( 1) ZT{I/X fn—l,m( )a

— kn. b ; n)g—q 1/2
(1) PRI = e S () e

(45) 2D (2) = nzD () + nf(2) = 0.
Proof. Differentiating (2.2), with respect to z, we get

pA—L/m (z2 — 1)

v n v v
D T)L\,’m(z) = ; T)L\,’m(z) 2,3 s,’m(z)
+ ZT)\_l/m (z2 — 1) D T)L‘”T’;(z).

So, we obtain

2*—1 v _ E_n(zz_l) Av o
<1 9,2 T{L/X> Diiim(#) = (Z 223 /A ) i (2)

Now, from the last equalities, we get (4.1).

By differentiating (4.1), with respect to z, and using induction on n, we
get (4.2).
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Now, from (2.2) and by the following relation (see [2])

(n+ mw)py, (@) = mvpy (@) = 20m — Dvap) Ty (2),

we have the wanted relation (4.3).

To prove (4.4), we are going to use the relation (see [2])

k+1/2 _ 1 k,1/2

and from (2.2) and (4.2), we get

fr/}f:’:;z/2(z) = n(;k)‘(_nlk')'/m Z( > _n =0 sz)\ 1/2( )
=0
=2k \—k/m) k ; k ( )k ; /
- (2k — 1) g(_l)k (z)(n—z) ’?’%%2()

The statement (4.4) follows immediately, from the last equalities.

Finally, differentiating (4.1), with respect to z, we obtain
A LS oA
D2 n,,sq,(z) = _; n:run(z) + ;D n,,sq,(z)'

Multiplying the both sides of the last equality by 22, we obtain (4.5). O

Finally, we prove the following theorem.

Theorem 4.2. For the polynomials f),(z) holds

-1

wg ) = Lo+ 2277 DlaY) D7 — D)y
+22D*{g}g™" +22°D{g}D{g™ P {gfam ()},

where g(z) is a differentiable function not identically zero.

Proof. From (4.5),we have

n ,i‘,’,'j%(z) = (nzD — 22D?) f" (2).

n,m
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Now, multiplying the both sides of the last equality by g, we get
gnfum(z) = g (nzD — 22D?) {3 (2)}
= ((nz —22°D{g}g™") D — 2°D* — nzg ' D{g} + z°9~ ' D*{g}
+22°D{g} D{g™ N {gfaim(2)}-
Hence

—1
v g _ _
,i‘m(z) =2 ((nz —22°D{g}g 1)D — 2°D? —nzg~'D{g}

n
+2%97 D} {g} +22° D{g} D{g ™ }){gfamm (=)}
This is the wanted equality (4.6). O
Example. If g(z) = ¢*, then ¢g71(2) = e™% and we get

—Zz

AV (z) = en ((nz +22°) D — 2°D? — nz — 2°) {¢” Ti‘fn(z)}

n,m
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