FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. 13 (1998), 25-32

POLYNOMIALS RELATED TO GEGENBAUER POLYNOMIALS

Gospava B. Đorđević

This paper is dedicated to Professor D. S. Mitrinović

Abstract. In this paper we consider the polynomials $f_{n,m}^{\lambda,\nu}(z)$, which are the generalization of the Gegenbauer polynomials $C_n^{\nu}(z)$. Also, we find some relations for their coefficients $p_{n,k}^{\lambda,\nu}$ and we prove some differential-difference relations for the polynomials $f_{n,m}^{\lambda,\nu}(z)$.

1. Introduction

K. Dilcher [1] considered the polynomials $f_n^{\lambda,\nu}(z)$, which are given by

$$G^{\lambda,\nu}(z,t) = \left(1 - \left(1 + z + z^2\right)t + \lambda z^2 t^2\right)^{-\nu} = \sum_{n \ge 0} f_n^{\lambda,\nu}(z) t^n$$

where $\nu > 1/2$ and λ is a nonnegative real number. Comparing this with the Gegenbauer polynomials $C_n^{\nu}(z)$ (see [2], [3], [4]), he obtained

$$f_n^{\lambda,\nu}(z) = z^n \lambda^{n/2} C_n^{\nu} \left(\frac{1+z+z^2}{2\sqrt{\lambda}z} \right).$$

In this paper we are going to consider the polynomials $f_{n,m}^{\lambda,\nu}(z)$. Also, we are going to give some properties of these polynomials. In Section 2, we find a recurrence relation for their coefficients $p_{n,k}^{\lambda,\nu}$. In Section 3, we prove some results for $p_{n,k}^{\lambda,\nu}$. Finally, in Section 4, we give some differential-difference relations for the polynomials $f_{n,m}^{\lambda,\nu}(z)$.

This work was supported in part by the Serbian Scientific Foundation under grant 04M03.

Received February 27, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 33C45.

2. Polynomials $f_{n,m}^{\lambda,\nu}(z)$

At first, we are going to introduce the polynomials $f_{n,m}^{\lambda,\nu}(z)$.

Definition 2.1. The polynomials $f_{n,m}^{\lambda,\nu}(z)$ are given by the following generating function

(2.1)
$$F(z,t) = \left(1 - \left(1 + z + z^2\right)t + \lambda z^m t^m\right)^{-\nu} = \sum_{n \ge 0} f_{n,m}^{\lambda,\nu}(z) t^n,$$

where $\nu > 1/2$, λ is a nonnegative real number and m is a natural number.

Comparing (2.1) with the generating function for the generalized Gegenbauer polynomials $p_{n,m}^{\nu}(z)$ (see [2], [3]), we get

(2.2)
$$f_{n,m}^{\lambda,\nu}(z) = z^n \lambda^{n/m} p_{n,m}^{\nu} \left(\frac{1+z+z^2}{2\sqrt{\lambda}z}\right).$$

From the recurrence relation (see [2])

$$np_{n,m}^{\nu}(x) = 2x(\nu + n - 1)p_{n-1,m}^{\nu}(x) - (n + m(\nu - 1))p_{n-m,m}^{\nu}(x), \quad n \ge m,$$

with starting polynomials:

$$p_{n,m}^{\nu}(x) = \frac{(\nu)_n}{n!} (2x)^n, \qquad n = 0, 1, \dots, m-1,$$

and by (2.2), we get the following recurrence relation

(2.3)
$$f_{n,m}^{\lambda,\nu}(z) = \left(1 + \frac{\nu - 1}{n}\right) \left(1 + z + z^2\right) f_{n-1,m}^{\lambda,\nu}(z) - \left(1 + \frac{m(\nu - 1)}{n}\right) \lambda z^m f_{n-m,m}^{\lambda,\nu}(z),$$

with starting polynomials:

$$f_{n,m}^{\lambda,\nu}(z) = \frac{(\nu)_n}{n!} \left(1 + z + z^2\right)^n, \qquad 0 \le n \le m - 1.$$

Let us put 1/z instead z in (2.2). Then, it follows:

$$f_{n,m}^{\lambda,\nu}(z) = z^{2n} f_{n,m}^{\lambda,\nu}(1/z).$$

So, we get that the polynomials $f_{n,m}^{\lambda,\nu}(z)$ are self-inverse, or in other words, the coefficients are "centrally symmetric." Now, the polynomials $f_{n,m}^{\lambda,\nu}(z)$ have the following form

(2.4)
$$f_{n,m}^{\lambda,\nu}(z) = p_{n,n}^{\lambda,\nu} + p_{n,n-1}^{\lambda,\nu}z + \dots + p_{n,0}^{\lambda,\nu}z^n + p_{n,1}^{\lambda,\nu}z^{n+1} + \dots + p_{n,n}^{\lambda,\nu}z^{2n}.$$

Thus, we have the following triangle

From (2.3) and (2.4), we get the following recurrence relation

(2.6)
$$p_{n,k}^{\lambda,\nu} = \left(1 + \frac{\nu - 1}{n}\right) \left(p_{n-1,k-1}^{\lambda,\nu} + p_{n-1,k}^{\lambda,\nu} + p_{n-1,k+1}^{\lambda,\nu}\right) \\ - \left(1 + m\frac{\nu - 1}{n}\right) \lambda p_{n-m,k}^{\lambda,\nu}, \qquad n \ge m,$$

where $p_{n,k}^{\lambda,\nu} = p_{n,-k}^{\lambda,\nu}$

(2.5)

3. Coefficients $p_{n,k}^{\lambda,\nu}$

The main purpose of this paper is to study the coefficients $p_{n,k}^{\lambda,\nu}$. We are going to derive the following explicit expressions.

Theorem 3.1. The coefficients $p_{n,k}^{\lambda,\nu}$ are given by

(3.1)
$$p_{n,k}^{\lambda,\nu} = \frac{1}{\Gamma(\nu)} \sum_{s=0}^{[(n-k)/m]} (-\lambda)^s \frac{\Gamma(\nu+n-(m-1)s)}{s!(n-ms)!} \times \sum_{j=0}^{[(n-k-ms)/2]} {n-ms \choose 2j+k} {2j+k \choose j}.$$

Proof. Using the explicit representation (see [2])

$$p_{n,m}^{\nu}(x) = \sum_{k=0}^{\lfloor n/m \rfloor} (-1)^k \frac{(\nu)_{n-(m-1)k}}{k!(n-mk)!} (2x)^{n-mk},$$

and from (2.2), we get

$$f_{n,m}^{\lambda,\nu}(z) = z^n \lambda^{n/m} p_{n,m}^{\nu} \left(\frac{1+z+z^2}{2\lambda^{1/m}z}\right)$$
$$= \sum_{s=0}^{[n/m]} (-1)^s \frac{(\nu)_{n-(m-1)s}}{s!(n-ms)!} \left(1+z+z^2\right)^{n-ms} z^{ms} \lambda^s.$$

Now, from the last equalities and by formula (see [1])

$$(1+z+z^2)^r = \sum_{m=0}^{2r} z^m \sum_{j=0}^{[m/2]} {r \choose m-j} {m-j \choose m-2j},$$

where r is a positive integer, we get

$$f_{n,m}^{\lambda,\nu}(z) = \frac{1}{\Gamma(\nu)} \sum_{k=-n}^{n} z^{n-k} \sum_{s=0}^{[(n-k)/m]} (-\lambda)^s \frac{(\nu)_{n-(m-1)s}}{s!(n-ms)!} \times \sum_{j=0}^{[(n-k-ms)/2]} {\binom{n-ms}{2j+k}} {\binom{2j+k}{j}}.$$

The statement (3.1) follows immediately from the last equalities. \Box

The next two results are related to coefficients $p_{n,k}^{\lambda,\nu}$.

Theorem 3.2. The coefficients $p_{n,k}^{\lambda,\nu}$ have the following representation (3.2)

$$p_{n,k}^{\lambda,\nu} = \sum_{s=0}^{\lfloor (n-k)/m \rfloor} (-\lambda)^s \binom{n-k-(m-1)s}{s} \frac{(\nu)_{n-(m-1)s}}{k!(n-k-(m-1)s)!} B_k^{(n-k-ms)},$$

where

(3.3)
$$B_{k}^{(r)} = \sum_{j=0}^{[r/2]} {\binom{2j}{j} \binom{r}{2j} \binom{k+j}{j}}^{-1}$$

Polynomials Related to Gegenbauer Polynomials

Theorem 3.3. The coefficients $p_{n,k}^{\lambda,\nu}$ can be expressed as

$$p_{n,k}^{\lambda,\nu} = \frac{1}{k+1} \sum_{j=0}^{\left[(n-k)/m\right]} \frac{(-\lambda)^s}{s!(k!)^2(n-k-ms)!} \sum_{j=0}^{\left[r/2\right]} \frac{\left(-\frac{r}{2}\right)_j \left(\frac{1-r}{2}\right)_j}{j!} \frac{2^{2j}}{\Gamma(k+j)},$$

where r = n - k - ms.

We mention now some special cases:

1° For m=2, we get the polynomials $f_n^{\lambda,\nu}(z)$ (see [1]). Then (3.1) becomes

$$p_{n,k}^{\lambda,\nu} = \frac{1}{\Gamma(\nu)} \sum_{s=0}^{\left[(n-k)/2\right]} (-\lambda)^s \frac{\Gamma(\nu+n-s)}{s!(n-2s)!} \sum_{j=0}^{\left[(n-k-2s)/2\right]} \binom{n-2s}{2j+k} \binom{2j+k}{j}.$$

Hence

$$f_n^{\lambda,\nu}(1) = \sum_{k=-n}^n p_{n,k}^{\lambda,\nu} = \lambda^{n/2} p_n^{\nu} \left(\frac{3}{2\sqrt{\lambda}}\right).$$

 2° If m = 2 and $\nu = 1$, we obtain

$$f_n^{\lambda,1}(1) = \lambda^{n/2} U_n\left(\frac{3}{2\sqrt{\lambda}}\right),$$

where

$$p_{n,k}^{\lambda,1} = \sum_{s=0}^{\left[(n-k)/2\right]} (-\lambda)^s \frac{(n-s)!}{s!(n-2s)!} \sum_{j=0}^{\left[(n-k-2s)/2\right]} \binom{n-2s}{2j+k} \binom{2j+k}{j},$$

and $U_n(x)$ is the Chebyshev polynomials of the second kind.

3° With z = 1, from (2.2) and (2.4), we get

$$f_{n,m}^{\lambda,\nu}(1) = \sum_{k=-n}^{n} p_{n,k}^{\lambda,\nu} = \lambda^{n/m} p_{n,m}^{\nu} \left(\frac{3}{2\sqrt[m]{\lambda}}\right).$$

This is the sum of the coefficients of the n-th row in the triangle (2.5).

4. Differential-difference relations

Firstly, we are going to prove the following theorem.

Theorem 4.1. The polynomials $f_{n,m}^{\lambda,\nu}(z)$ satisfy the following relations:

(4.1)
$$Df_{n,m}^{\lambda,\nu}(z) = \frac{n}{z} f_{n,m}^{\lambda,\nu}(z);$$

(4.2)
$$D^{k} f_{n,m}^{\lambda,\nu}(z) = z^{-k} \frac{n!}{(n-k)!} f_{n,m}^{\lambda,\nu}(z);$$

(4.3)
$$(n+m\nu)f_{n,m}^{\lambda,\nu}(z) = m\nu f_{n,m}^{\lambda,\nu+1}(z) - \nu(m-1)\frac{1+z+z^2}{z\sqrt[m]{\lambda}}f_{n-1,m}^{\lambda,\nu+1}(z);$$

(4.4)
$$z^{2k} f_{n-k,m}^{\lambda,k+1/2}(z) = \frac{(-1)^k n!}{(2k-1)!!} \lambda^{-k/m} \sum_{i=0}^k (-1)^i \binom{k}{i} \frac{(n)_{k-i}}{(n-i)!} f_{n,m}^{\lambda,1/2}(z);$$

(4.5)
$$z^2 D^2 f_{n,m}^{\lambda,\nu}(z) - nz D f_{n,m}^{\lambda,\nu}(z) + n f_{n,m}^{\lambda,\nu}(z) = 0.$$

Proof. Differentiating (2.2), with respect to z, we get

$$Df_{n,m}^{\lambda,\nu}(z) = \frac{n}{z} f_{n,m}^{\lambda,\nu}(z) - \frac{n\lambda^{-1/m} (z^2 - 1)}{2z^3} f_{n,m}^{\lambda,\nu}(z) + \frac{z^{-2}}{2} \lambda^{-1/m} (z^2 - 1) Df_{n,m}^{\lambda,\nu}(z)$$

So, we obtain

$$\left(1 - \frac{z^2 - 1}{2z^2 \sqrt[m]{\lambda}}\right) Df_{n,m}^{\lambda,\nu}(z) = \left(\frac{n}{z} - \frac{n\left(z^2 - 1\right)}{2z^3 \sqrt[m]{\lambda}}\right) f_{n,m}^{\lambda,\nu}(z).$$

Now, from the last equalities, we get (4.1).

By differentiating (4.1), with respect to z, and using induction on n, we get (4.2).

Polynomials Related to Gegenbauer Polynomials

Now, from (2.2) and by the following relation (see [2])

$$(n+m\nu)p_{n,m}^{\nu}(x) = m\nu p_{n,m}^{\nu+1}(x) - 2(m-1)\nu x p_{n-1,m}^{\nu+1}(x),$$

we have the wanted relation (4.3).

To prove (4.4), we are going to use the relation (see [2])

$$p_{n-k,m}^{k+1/2}(x) = \frac{1}{(2k-1)!!} D^k p_{n,m}^{1/2}(x),$$

and from (2.2) and (4.2), we get

$$f_{n-k,m}^{\lambda,k+1/2}(z) = \frac{z^{n-k}\lambda^{(n-k)/m}}{(2k-1)!!}\lambda^{-n/m}\sum_{i=0}^{k} \binom{k}{i} (z^{-n})^{(k-i)} D^{i}f_{n,m}^{\lambda,1/2}(z)$$
$$= \frac{z^{-2k}\lambda^{-k/m}n!}{(2k-1)!!}\sum_{i=0}^{k} (-1)^{k-i}\binom{k}{i}\frac{(n)_{k-i}}{(n-i)!}f_{n,m}^{\lambda,1/2}(z).$$

The statement (4.4) follows immediately, from the last equalities. Finally, differentiating (4.1), with respect to z, we obtain

$$D^2 f_{n,m}^{\lambda,\nu}(z) = -\frac{n}{z} f_{n,m}^{\lambda,\nu}(z) + \frac{n}{z} D f_{n,m}^{\lambda,\nu}(z).$$

Multiplying the both sides of the last equality by z^2 , we obtain (4.5). \Box

Finally, we prove the following theorem.

Theorem 4.2. For the polynomials $f_{n,m}^{\lambda,\nu}(z)$ holds

(4.6)
$$f_{n,m}^{\lambda,\nu}(z) = \frac{g^{-1}}{n} \left(\left(nz + 2z^2 g^{-1} D\{g\} \right) - z^2 D^2 - nz D\{g\} g^{-1} + z^2 D^2 \{g\} g^{-1} + 2z^2 D\{g\} D\{g^{-1}\} \right) \{gf_{n,m}^{\lambda,\nu}(z)\},$$

where g(z) is a differentiable function not identically zero.

Proof. From (4.5), we have

$$nf_{n,m}^{\lambda,\nu}(z) = \left(nzD - z^2D^2\right)f_{n,m}^{\lambda,\nu}(z).$$

Now, multiplying the both sides of the last equality by g, we get

$$gnf_{n,m}^{\lambda,\nu}(z) = g \left(nzD - z^2D^2\right) \{f_{n,m}^{\lambda,\nu}(z)\}$$

= $\left(\left(nz - 2z^2D\{g\}g^{-1}\right)D - z^2D^2 - nzg^{-1}D\{g\} + z^2g^{-1}D^2\{g\}$
+ $2z^2D\{g\}D\{g^{-1}\}\right) \{gf_{n,m}^{\lambda,\nu}(z)\}.$

Hence

$$f_{n,m}^{\lambda,\nu}(z) = \frac{g^{-1}}{n} \left(\left(nz - 2z^2 D\{g\}g^{-1} \right) D - z^2 D^2 - nzg^{-1} D\{g\} + z^2 g^{-1} D^2\{g\} + 2z^2 D\{g\}D\{g^{-1}\} \right) \{gf_{n,m}^{\lambda,\nu}(z)\}.$$

This is the wanted equality (4.6). \Box Example. If $g(z) = e^z$, then $g^{-1}(z) = e^{-z}$ and we get

$$f_{n,m}^{\lambda,\nu}(z) = \frac{e^{-z}}{n} \left(\left(nz + 2z^2 \right) D - z^2 D^2 - nz - z^2 \right) \{ e^z f_{n,m}^{\lambda,\nu}(z) \}.$$

REFERENCES

- 1. K. DILCHER: Polynomials related to expansions of certain rational functions in to variables. SIAM J. Math. Anal. **19** (1988), 473-483.
- 2. G. B. DORDEVIĆ: Contributions to the theory of polynomials defined by recurrence relations. Ph.D. Thesis, University of Niš, Niš, 1989 (in Serbian).
- 3. G. V. MILOVANOVIĆ and G. B. ĐORĐEVIĆ: On some properties of Humbert's polynomials. Fibonacci Quart. 25 (1987), 356-360.
- 4. E. D. RAINVILLE: Special Functions. MacMilan, New York, 1960.
- 5. G. SZEGŐ: Orthogonal Polynomials. 4th ed., American Mathematical Society, Providence, RI, 1939.

University of Niš Faculty of Technology 16000 Leskovac Yugoslavia