POLYNOMIALS RELATED TO GEGENBAUER POLYNOMIALS

Gospava B. Đorđević

This paper is dedicated to Professor D. S. Mitrinović

Abstract

In this paper we consider the polynomials $f_{n, m}^{\lambda, \nu}(z)$, which are the generalization of the Gegenbauer polynomials $C_{n}^{\nu}(z)$. Also, we find some relations for their coefficients $p_{n, k}^{\lambda, \nu}$ and we prove some differential-difference relations for the polynomials $f_{n, m}^{\lambda, \nu}(z)$.

1. Introduction

K. Dilcher [1] considered the polynomials $f_{n}^{\lambda, \nu}(z)$, which are given by

$$
G^{\lambda, \nu}(z, t)=\left(1-\left(1+z+z^{2}\right) t+\lambda z^{2} t^{2}\right)^{-\nu}=\sum_{n \geq 0} f_{n}^{\lambda, \nu}(z) t^{n}
$$

where $\nu>1 / 2$ and λ is a nonnegative real number. Comparing this with the Gegenbauer polynomials $C_{n}^{\nu}(z)$ (see [2], [3], [4]), he obtained

$$
f_{n}^{\lambda, \nu}(z)=z^{n} \lambda^{n / 2} C_{n}^{\nu}\left(\frac{1+z+z^{2}}{2 \sqrt{\lambda} z}\right)
$$

In this paper we are going to consider the polynomials $f_{n, m}^{\lambda, \nu}(z)$. Also, we are going to give some properties of these polynomials. In Section 2, we find a recurrence relation for their coefficients $p_{n, k}^{\lambda, \nu}$. In Section 3, we prove some results for $p_{n, k}^{\lambda, \nu}$. Finally, in Section 4, we give some differential-difference relations for the polynomials $f_{n, m}^{\lambda, \nu}(z)$.

[^0]
2. Polynomials $\mathbf{f}_{\mathbf{n}, \mathbf{m}}^{\lambda, \nu}(\mathbf{z})$

At first, we are going to introduce the polynomials $f_{n, m}^{\lambda, \nu}(z)$.
Definition 2.1. The polynomials $f_{n, m}^{\lambda, \nu}(z)$ are given by the following generating function

$$
\begin{equation*}
F(z, t)=\left(1-\left(1+z+z^{2}\right) t+\lambda z^{m} t^{m}\right)^{-\nu}=\sum_{n \geq 0} f_{n, m}^{\lambda, \nu}(z) t^{n}, \tag{2.1}
\end{equation*}
$$

where $\nu>1 / 2, \lambda$ is a nonnegative real number and m is a natural number.
Comparing (2.1) with the generating function for the generalized Gegenbauer polynomials $p_{n, m}^{\nu}(z)$ (see [2], [3]), we get

$$
\begin{equation*}
f_{n, m}^{\lambda, \nu}(z)=z^{n} \lambda^{n / m} p_{n, m}^{\nu}\left(\frac{1+z+z^{2}}{2 \sqrt{\lambda} z}\right) \tag{2.2}
\end{equation*}
$$

From the recurrence relation (see [2])

$$
n p_{n, m}^{\nu}(x)=2 x(\nu+n-1) p_{n-1, m}^{\nu}(x)-(n+m(\nu-1)) p_{n-m, m}^{\nu}(x), \quad n \geq m
$$

with starting polynomials:

$$
p_{n, m}^{\nu}(x)=\frac{(\nu)_{n}}{n!}(2 x)^{n}, \quad n=0,1, \ldots, m-1,
$$

and by (2.2), we get the following recurrence relation

$$
\begin{align*}
f_{n, m}^{\lambda, \nu}(z)=\left(1+\frac{\nu-1}{n}\right) & \left(1+z+z^{2}\right) f_{n-1, m}^{\lambda, \nu}(z) \tag{2.3}\\
& -\left(1+\frac{m(\nu-1)}{n}\right) \lambda z^{m} f_{n-m, m}^{\lambda, \nu}(z),
\end{align*}
$$

with starting polynomials:

$$
f_{n, m}^{\lambda, \nu}(z)=\frac{(\nu)_{n}}{n!}\left(1+z+z^{2}\right)^{n}, \quad 0 \leq n \leq m-1 .
$$

Let us put $1 / z$ instead z in (2.2). Then, it follows:

$$
f_{n, m}^{\lambda, \nu}(z)=z^{2 n} f_{n, m}^{\lambda, \nu}(1 / z) .
$$

So, we get that the polynomials $f_{n, m}^{\lambda, \nu}(z)$ are self-inverse, or in other words, the coefficients are "centrally symmetric." Now, the polynomials $f_{n, m}^{\lambda, \nu}(z)$ have the following form
(2.4) $f_{n, m}^{\lambda, \nu}(z)=p_{n, n}^{\lambda, \nu}+p_{n, n-1}^{\lambda, \nu} z+\cdots+p_{n, 0}^{\lambda, \nu} z^{n}+p_{n, 1}^{\lambda, \nu} z^{n+1}+\cdots+p_{n, n}^{\lambda, \nu} z^{2 n}$.

Thus, we have the following triangle

$$
\begin{array}{ccccc}
& p_{0,0}^{\lambda, \nu} & & \tag{2.5}\\
& p_{1,1}^{\lambda, \nu} & p_{1, \nu}^{\lambda, \nu} & p_{1,1}^{\lambda, \nu} & \\
p_{2,2}^{\lambda, \nu} & p_{2,1}^{\lambda, 2} & p_{2,0}^{\lambda,} & p_{2,1}^{\lambda, \nu} & p_{2,2}^{\lambda, \nu}
\end{array}
$$

From (2.3) and (2.4), we get the following recurrence relation

$$
\begin{align*}
p_{n, k}^{\lambda, \nu}=\left(1+\frac{\nu-1}{n}\right) & \left(p_{n-1, k-1}^{\lambda, \nu}+p_{n-1, k}^{\lambda, \nu}+p_{n-1, k+1}^{\lambda, \nu}\right) \\
& -\left(1+m \frac{\nu-1}{n}\right) \lambda p_{n-m, k}^{\lambda, \nu}, \quad n \geq m \tag{2.6}
\end{align*}
$$

where $p_{n, k}^{\lambda, \nu}=p_{n,-k}^{\lambda, \nu}$

3. Coefficients $\mathbf{p}_{\mathbf{n}, \mathbf{k}}^{\lambda, \nu}$

The main purpose of this paper is to study the coefficients $p_{n, k}^{\lambda, \nu}$. We are going to derive the following explicit expressions.

Theorem 3.1. The coefficients $p_{n, k}^{\lambda, \nu}$ are given by

$$
\begin{align*}
p_{n, k}^{\lambda, \nu}=\frac{1}{\Gamma(\nu)} \sum_{s=0}^{[(n-k) / m]}(-\lambda)^{s} & \frac{\Gamma(\nu+n-(m-1) s)}{s!(n-m s)!} \times \tag{3.1}\\
& \times \sum_{j=0}^{[(n-k-m s) / 2]}\binom{n-m s}{2 j+k}\binom{2 j+k}{j} .
\end{align*}
$$

Proof. Using the explicit representation (see [2])

$$
p_{n, m}^{\nu}(x)=\sum_{k=0}^{[n / m]}(-1)^{k} \frac{(\nu)_{n-(m-1) k}}{k!(n-m k)!}(2 x)^{n-m k}
$$

and from (2.2), we get

$$
\begin{aligned}
f_{n, m}^{\lambda, \nu}(z) & =z^{n} \lambda^{n / m} p_{n, m}^{\nu}\left(\frac{1+z+z^{2}}{2 \lambda^{1 / m} z}\right) \\
& =\sum_{s=0}^{[n / m]}(-1)^{s} \frac{(\nu)_{n-(m-1) s}}{s!(n-m s)!}\left(1+z+z^{2}\right)^{n-m s} z^{m s} \lambda^{s}
\end{aligned}
$$

Now, from the last equalities and by formula (see [1])

$$
\left(1+z+z^{2}\right)^{r}=\sum_{m=0}^{2 r} z^{m} \sum_{j=0}^{[m / 2]}\binom{r}{m-j}\binom{m-j}{m-2 j}
$$

where r is a positive integer, we get

$$
\begin{aligned}
f_{n, m}^{\lambda, \nu}(z)=\frac{1}{\Gamma(\nu)} \sum_{k=-n}^{n} z^{n-k} & \sum_{s=0}^{[(n-k) / m]}(-\lambda)^{s} \frac{(\nu)_{n-(m-1) s}}{s!(n-m s)!} \times \\
& \times \sum_{j=0}^{[(n-k-m s) / 2]}\binom{n-m s}{2 j+k}\binom{2 j+k}{j} .
\end{aligned}
$$

The statement (3.1) follows immediately from the last equalities.
The next two results are related to coefficients $p_{n, k}^{\lambda, \nu}$.
Theorem 3.2. The coefficients $p_{n, k}^{\lambda, \nu}$ have the following representation
$p_{n, k}^{\lambda, \nu}=\sum_{s=0}^{[(n-k) / m]}(-\lambda)^{s}\binom{n-k-(m-1) s}{s} \frac{(\nu)_{n-(m-1) s}}{k!(n-k-(m-1) s)!} B_{k}^{(n-k-m s)}$,
where

$$
\begin{equation*}
B_{k}^{(r)}=\sum_{j=0}^{[r / 2]}\binom{2 j}{j}\binom{r}{2 j}\left(\binom{k+j}{j}\right)^{-1} \tag{3.3}
\end{equation*}
$$

Theorem 3.3. The coefficients $p_{n, k}^{\lambda, \nu}$ can be expressed as

$$
p_{n, k}^{\lambda, \nu}=\frac{1}{k+1} \sum_{j=0}^{[(n-k) / m]} \frac{(-\lambda)^{s}}{s!(k!)^{2}(n-k-m s)!} \sum_{j=0}^{[r / 2]} \frac{\left(-\frac{r}{2}\right)_{j}\left(\frac{1-r}{2}\right)_{j}}{j!} \frac{2^{2 j}}{\Gamma(k+j)},
$$

where $r=n-k-m s$.
We mention now some special cases:
1° For $m=2$, we get the polynomials $f_{n}^{\lambda, \nu}(z)$ (see [1]). Then (3.1) becomes

$$
p_{n, k}^{\lambda, \nu}=\frac{1}{\Gamma(\nu)} \sum_{s=0}^{[(n-k) / 2]}(-\lambda)^{s} \frac{\Gamma(\nu+n-s)}{s!(n-2 s)!} \sum_{j=0}^{[(n-k-2 s) / 2]}\binom{n-2 s}{2 j+k}\binom{2 j+k}{j} .
$$

Hence

$$
f_{n}^{\lambda, \nu}(1)=\sum_{k=-n}^{n} p_{n, k}^{\lambda, \nu}=\lambda^{n / 2} p_{n}^{\nu}\left(\frac{3}{2 \sqrt{\lambda}}\right) .
$$

2° If $m=2$ and $\nu=1$, we obtain

$$
f_{n}^{\lambda, 1}(1)=\lambda^{n / 2} U_{n}\left(\frac{3}{2 \sqrt{\lambda}}\right),
$$

where

$$
p_{n, k}^{\lambda, 1}=\sum_{s=0}^{[(n-k) / 2]}(-\lambda)^{s} \frac{(n-s)!}{s!(n-2 s)!} \sum_{j=0}^{[(n-k-2 s) / 2]}\binom{n-2 s}{2 j+k}\binom{2 j+k}{j},
$$

and $U_{n}(x)$ is the Chebyshev polynomials of the second kind.
3° With $z=1$, from (2.2) and (2.4), we get

$$
f_{n, m}^{\lambda, \nu}(1)=\sum_{k=-n}^{n} p_{n, k}^{\lambda, \nu}=\lambda^{n / m} p_{n, m}^{\nu}\left(\frac{3}{2 \sqrt[m]{\lambda}}\right) .
$$

This is the sum of the coefficients of the n-th row in the triangle (2.5).

4. Differential-difference relations

Firstly, we are going to prove the following theorem.
Theorem 4.1. The polynomials $f_{n, m}^{\lambda, \nu}(z)$ satisfy the following relations:

$$
\begin{gather*}
D f_{n, m}^{\lambda, \nu}(z)=\frac{n}{z} f_{n, m}^{\lambda, \nu}(z) \tag{4.1}\\
D^{k} f_{n, m}^{\lambda, \nu}(z)=z^{-k} \frac{n!}{(n-k)!} f_{n, m}^{\lambda, \nu}(z) \tag{4.2}
\end{gather*}
$$

$$
\begin{equation*}
(n+m \nu) f_{n, m}^{\lambda, \nu}(z)=m \nu f_{n, m}^{\lambda, \nu+1}(z)-\nu(m-1) \frac{1+z+z^{2}}{z \sqrt[m]{\lambda}} f_{n-1, m}^{\lambda, \nu+1}(z) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
z^{2 k} f_{n-k, m}^{\lambda, k+1 / 2}(z)=\frac{(-1)^{k} n!}{(2 k-1)!!} \lambda^{-k / m} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} \frac{(n)_{k-i}}{(n-i)!} f_{n, m}^{\lambda, 1 / 2}(z) \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
z^{2} D^{2} f_{n, m}^{\lambda, \nu}(z)-n z D f_{n, m}^{\lambda, \nu}(z)+n f_{n, m}^{\lambda, \nu}(z)=0 \tag{4.5}
\end{equation*}
$$

Proof. Differentiating (2.2), with respect to z, we get

$$
\begin{aligned}
D f_{n, m}^{\lambda, \nu}(z)=\frac{n}{z} f_{n, m}^{\lambda, \nu}(z) & -\frac{n \lambda^{-1 / m}\left(z^{2}-1\right)}{2 z^{3}} f_{n, m}^{\lambda, \nu}(z) \\
& +\frac{z^{-2}}{2} \lambda^{-1 / m}\left(z^{2}-1\right) D f_{n, m}^{\lambda, \nu}(z)
\end{aligned}
$$

So, we obtain

$$
\left(1-\frac{z^{2}-1}{2 z^{2} \sqrt[m]{\lambda}}\right) D f_{n, m}^{\lambda, \nu}(z)=\left(\frac{n}{z}-\frac{n\left(z^{2}-1\right)}{2 z^{3} \sqrt[m]{\lambda}}\right) f_{n, m}^{\lambda, \nu}(z)
$$

Now, from the last equalities, we get (4.1).
By differentiating (4.1), with respect to z , and using induction on n, we get (4.2).

Now, from (2.2) and by the following relation (see [2])

$$
(n+m \nu) p_{n, m}^{\nu}(x)=m \nu p_{n, m}^{\nu+1}(x)-2(m-1) \nu x p_{n-1, m}^{\nu+1}(x),
$$

we have the wanted relation (4.3).
To prove (4.4), we are going to use the relation (see [2])

$$
p_{n-k, m}^{k+1 / 2}(x)=\frac{1}{(2 k-1)!!} D^{k} p_{n, m}^{1 / 2}(x),
$$

and from (2.2) and (4.2), we get

$$
\begin{aligned}
f_{n-k, m}^{\lambda, k+1 / 2}(z) & =\frac{z^{n-k} \lambda^{(n-k) / m}}{(2 k-1)!!} \lambda^{-n / m} \sum_{i=0}^{k}\binom{k}{i}\left(z^{-n}\right)^{(k-i)} D^{i} f_{n, m}^{\lambda, 1 / 2}(z) \\
& =\frac{z^{-2 k} \lambda^{-k / m} n!}{(2 k-1)!!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} \frac{(n)_{k-i}}{(n-i)!} f_{n, m}^{\lambda, 1 / 2}(z) .
\end{aligned}
$$

The statement (4.4) follows immediately, from the last equalities.
Finally, differentiating (4.1), with respect to z , we obtain

$$
D^{2} f_{n, m}^{\lambda, \nu}(z)=-\frac{n}{z} f_{n, m}^{\lambda, \nu}(z)+\frac{n}{z} D f_{n, m}^{\lambda, \nu}(z) .
$$

Multiplying the both sides of the last equality by z^{2}, we obtain (4.5).
Finally, we prove the following theorem.
Theorem 4.2. For the polynomials $f_{n, m}^{\lambda, \nu}(z)$ holds

$$
\begin{align*}
f_{n, m}^{\lambda, \nu}(z)=\frac{g^{-1}}{n} & \left(\left(n z+2 z^{2} g^{-1} D\{g\}\right)-z^{2} D^{2}-n z D\{g\} g^{-1}\right. \tag{4.6}\\
& \left.+z^{2} D^{2}\{g\} g^{-1}+2 z^{2} D\{g\} D\left\{g^{-1}\right\}\right)\left\{g f_{n, m}^{\lambda, \nu}(z)\right\},
\end{align*}
$$

where $g(z)$ is a differentiable function not identically zero.
Proof. From (4.5),we have

$$
n f_{n, m}^{\lambda, \nu}(z)=\left(n z D-z^{2} D^{2}\right) f_{n, m}^{\lambda, \nu}(z) .
$$

Now, multiplying the both sides of the last equality by g, we get

$$
\begin{aligned}
g n f_{n, m}^{\lambda, \nu}(z)= & g\left(n z D-z^{2} D^{2}\right)\left\{f_{n, m}^{\lambda, \nu}(z)\right\} \\
= & \left(\left(n z-2 z^{2} D\{g\} g^{-1}\right) D-z^{2} D^{2}-n z g^{-1} D\{g\}+z^{2} g^{-1} D^{2}\{g\}\right. \\
& \left.\quad+2 z^{2} D\{g\} D\left\{g^{-1}\right\}\right)\left\{g f_{n, m}^{\lambda, \nu}(z)\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& f_{n, m}^{\lambda, \nu}(z)=\frac{g^{-1}}{n}\left(\left(n z-2 z^{2} D\{g\} g^{-1}\right) D-z^{2} D^{2}-n z g^{-1} D\{g\}\right. \\
&\left.+z^{2} g^{-1} D^{2}\{g\}+2 z^{2} D\{g\} D\left\{g^{-1}\right\}\right)\left\{g f_{n, m}^{\lambda, \nu}(z)\right\} .
\end{aligned}
$$

This is the wanted equality (4.6).
Example. If $g(z)=e^{z}$, then $g^{-1}(z)=e^{-z}$ and we get

$$
f_{n, m}^{\lambda, \nu}(z)=\frac{e^{-z}}{n}\left(\left(n z+2 z^{2}\right) D-z^{2} D^{2}-n z-z^{2}\right)\left\{e^{z} f_{n, m}^{\lambda, \nu}(z)\right\} .
$$

REFERENCES

1. K. Dilcher: Polynomials related to expansions of certain rational functions in to variables. SIAM J. Math. Anal. 19 (1988), 473-483.
2. G. B. Đor円 Ević: Contributions to the theory of polynomials defined by recurrence relations. Ph.D. Thesis, University of Niš, Niš, 1989 (in Serbian).
3. G. V. Milovanović and G. B. Đor刀 ević: On some properties of Humbert's polynomials. Fibonacci Quart. 25 (1987), 356-360.
4. E. D. Rainville: Special Functions. MacMilan, New York, 1960.
5. G. SzeGő: Orthogonal Polynomials. 4th ed., American Mathematical Society, Providence, RI, 1939.

University of Niš
Faculty of Technology
16000 Leskovac
Yugoslavia

[^0]: Received February 27, 1997.
 1991 Mathematics Subject Classification. Primary 33C45.
 This work was supported in part by the Serbian Scientific Foundation under grant 04M03.

