# A GENERALIZATION OF THE JOINT SPECTRAL RADIUS: THE GEOMETRICAL APPROACH 

Vladimir Yu. Protasov

This paper is dedicated to Professor D. S. Mitrinović


#### Abstract

The generalized joint spectral radius with exponent $p$ is investigated.


## 1. Basic Notions

Definition 1. The joint spectral radius of a given set $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\} \subset$ $\mathcal{L}\left(\mathbb{R}^{d}\right)$ of linear operators is

$$
\hat{\rho}\left(A_{1}, A_{2}, \ldots, A_{k}\right)=\lim _{m \rightarrow \infty} \max _{\sigma}\left\|A_{\sigma(1)} \cdots A_{\sigma(m)}\right\|^{1 / m}
$$

where $\sigma$ runs the set of all the substitutions $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, k\}$.
The notion of joint spectral radius have appeared birthly by G.C. Rota and G. Strang in 1960 [1]. In 1988-90 its close relation to the regularity exponent of Daubeshies wavelets in the space $C[a, b]$ was established by Collela, Heil, Daubeshies, Lagarias etc. [2], [3], [4], [5]. The wavelets of Daubeshies is a system of functions $\left\{\psi_{i j}\right\}_{i, j \in \mathbb{Z}}$

1) $\psi_{i j}=2^{-j / 2} \psi_{00}\left(2^{j} x-i\right)$,
2) $\left\{\psi_{i j}\right\}$ - ortonormal basis in $L_{2}(\mathbb{R})$,
3) $\operatorname{supp} \psi_{00} \subset[0, N], N \in \mathbb{N}$.

The function $\psi_{00}$ can be constructed by a scaling function $\phi$ by formula $\psi_{00}(x)=\sum_{k=0}^{N}(-1)^{k} C_{N-k} \phi(2 x-k)$. The scaling function $\phi$ is a solution of dilation equation or two-scale difference equation:

$$
\begin{equation*}
\phi=\sum_{k=0}^{N} C_{k} \phi(2 x-k), \tag{1}
\end{equation*}
$$

where $C_{k} \in \mathbb{C}, C_{k}=0$ if $k \neq\{0,1, \ldots, \mathbb{N}\}$ and

$$
\begin{equation*}
\sum C_{2 i+1}=\sum C_{2 i}=1, \quad \sum C_{k} \overline{C_{k+2 j}}=2 \delta_{0 j} \quad \text { for any } \quad j \in \mathbb{Z} . \tag{2}
\end{equation*}
$$

Any solution $\phi$ of the scaling equation such that $\operatorname{supp} \phi \subset[0, N]$ is a fixed solution multiplied by a constant.

Let $T_{0}, T_{1}$ be two $N \times N$ matrix $\left(T_{0}\right)_{i j}=C_{2 i-j-1},\left(T_{1}\right)_{i j}=C_{2 i-j}$. One can define the subspace $W \subset \mathbb{R}$ depending on $T_{0}$ and $T_{1}[3]$.

Dilation equation (1) with condition (2) has a continuous solution $\phi$, $\phi \in C(\mathbb{R}), \operatorname{supp} \phi \in[0, N]$, where $A=\left.T_{0}\right|_{W}, B=\left.T_{1}\right|_{W}$.

If $\hat{\rho}(A, B) \in(1 / 2,1)$, then $\alpha=-\log _{2} \hat{\rho}(A, B)$ is a Holder exponent of $\phi$, if $\hat{\rho}(A, B) \leq 1 / 2$ then $f$ is a Lipschitzian function (Collela, Heil, 1989) [3].

We investigate the two following problems:
$1^{\circ}$ To create an algorithm for the calculation of $\hat{\rho}\left(A_{1}, \ldots, A_{k}\right)$ interms of the matrix $A_{1}, \ldots, A_{k}$ coefficients up to a given accuracy rate;
$2^{\circ}$ To study properties of the function $\hat{\rho}:\left[\mathcal{L}\left(\mathbb{R}^{d}\right)\right]^{k} \rightarrow \mathbb{R}_{+}$, in particular, to estimate its smoothness.

## 2. Geometrical Approach

The geometrical approach to the problem under concideration is presented in details in [6]. Before the statement of the main result we introduce some notations.

Let $X \subset \mathbb{R}^{d}$ be a convex compact body with a nonempty interior, $A_{1}, \ldots, A_{k}$ be given linear operators in $\mathbb{R}^{d}$. Let us define operator $\bar{A}$ in the space of convex bodies by the following formula:

$$
\bar{A}(X)=\operatorname{conv}\left(A_{1} X, \ldots, A_{k} X\right) .
$$

Say a set $\left\{A_{1}, \ldots, A_{k}\right\} \subset \mathcal{L}\left(\mathbb{R}^{d}\right)$ of $k$ operators is generic, if they do not have a nontrivial common invariant subspace.
Theorem 1. For a generic set of operators $A_{1}, \ldots, A_{k} \in \mathcal{L}\left(\mathbb{R}^{d}\right)$
a) there exist a compact $K(K \neq\{0\})$ and $a \lambda \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
K=\lambda \bigcup_{i=1}^{N} A_{i} K \tag{3}
\end{equation*}
$$

b) There exist a central-symmetric convex body $M$ and $a \lambda \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
\bar{A} M=\lambda M \tag{4}
\end{equation*}
$$

c) For any compact with property (3) and any body with property (4) the correspondent homothety coeffitient $\lambda$ is equal to the joint spectral radius $\hat{\rho}\left(A_{1}, \ldots, A_{k}\right)$.

Remark 1. If the joint spectral rsdius of operators $A_{1}, \ldots, A_{k}$ is equal to 1 then property (3) of the correspondent invariant compact $K$ almost coincides with the basic definition of self-similar sets (fractals by Hutchinson [8]): the difference is that the operators that define the fractal are affine and contractive, and the operators under consideration are linear and have the joint spectral radius equal to 1 .

However the properties of the unvariant compact and the analogous ones of fractal are quite different.

Remark 2. In [6] a geometrical approach for calculation of the joint spactral radius based on properties of the invariant bodies is presented. For $d=2$ the correspondent algorithm takes at most $C \varepsilon^{-3 / 2}$ arithmetic operations for the calculation of $\hat{\rho}\left(A_{1}, \ldots, A_{k}\right)$ with the relative error $\varepsilon$ where $C=C\left(A_{1}, \ldots, A_{k}\right)$ is a constant that depends on $A_{1}, \ldots, A_{k}$.

## 3. Generalization

For any $p \in[1,+\infty]$ we shall define $p$-joint spectral radius $\hat{\rho}_{p}$.
Definition 2. Let $p \in[1,+\infty]$. The $p$-joint spectral radius of a given set og operators $A_{1}, \ldots, A_{k} \in \mathcal{L}\left(\mathbb{R}^{d}\right)$ is

$$
\hat{\rho}_{p}=\lim _{m \rightarrow \infty}\left(\sum_{\sigma}\left\|A_{\sigma(1)} \cdots A_{\sigma(m)}\right\|^{p}\right)^{1 / p m}
$$

where the sum is taken through all the substitutions $\sigma:\{1, \ldots, m\} \rightarrow$ $\{1, \ldots, k\}$.

The notion of $p$-radius appeared in 1995. It was related to the smoothness problem for Daubeshies wavelets in the space $L_{p}[a, b]$.

One can define the subspace $W^{1} \subset \mathbb{R}^{N}$, depending on $T_{0}$ and $T_{1}$ [8]. Dilation equation (1) with condition (2) has a solution in $L_{p}[0, N]$ if and only if $2^{-1 / p} \hat{\rho}_{p}\left(A^{\prime}, B^{\prime}\right)<1, A^{\prime}=\left.T_{0}\right|_{W^{\prime}}, B^{\prime}=\left.T_{1}\right|_{B^{\prime}}$. If $2^{-1 / p} \hat{\rho}_{p}\left(A^{\prime}, B^{\prime}\right) \in(1 / 2,1)$,
then $\alpha_{p}=-\log _{2}\left(2^{-1 / p} \hat{\rho}_{p}\left(A^{\prime}, B^{\prime}\right)\right)$ is a Holder exponent of solution $\phi$ in the space $L_{p}[0, N]$ (cf. [7]).

Remark 3. The joint spectral radius is obviously a particular case of $p$-radius (with $p=\infty$ ).

To extend the geometrical approach to the p-radius, it is necessary to construct a new operation with convex bodies.

Definition 3. Let $M$ be a convex body, and its interior contains 0 . The support function $\phi_{M}$ correspondng to $M$ is the function on the unit sphere defined by

$$
\phi_{M}(x)=\sup _{y \in M}\langle x, y\rangle \quad(\|x\|=1)
$$

Lemma 1. For any convex bodies $M_{1}, M_{2}$ as in Definition 3 and any $p \in$ $[1,+\infty]$ there exists a body $M_{3}=M_{1} \stackrel{p}{\oplus} M_{2}$ defined by the following relation:

$$
(\forall x)\|x\|=1: \quad\left[\phi_{M_{3}}(x)\right]^{p}=\left[\phi_{M_{1}}(x)\right]^{p}+\left[\phi_{M_{2}}(x)\right]^{p} .
$$

We have defined $p$-addition of convex bodies by using Lemma 1. For $p=1$ it coincides with Minkovsky addition of convex bodies: for $p=\infty$ it is the operation of taking the convex hull

$$
M_{1} \stackrel{1}{\oplus} M_{2}=M_{1}+M_{2}, \quad M_{1} \stackrel{\infty}{\oplus} M_{2}=\operatorname{conv}\left(M_{1}, M_{2}\right)
$$

Example 1. For $p=2$ the sum $M_{1} \stackrel{2}{\oplus} M_{2}$ of the segments

$$
M_{1}=[(-1,0),(1,0)], \quad M_{2}=[(0,-1),(0,1)]
$$

is the unit circle.
Now, we are able to state an analogue of Theorem 1 for arbitrary $p$.
Theorem 2. For any generic set of operators $A_{1}, \ldots, A_{k}$ and arbitrary $p \in[1,+\infty]$
a) there exists a central-symmetric body $M$ such that

$$
\begin{equation*}
\bar{A} M=\lambda M \tag{5}
\end{equation*}
$$

where $\bar{A} M=A_{1} M \stackrel{p}{\oplus} A_{2} M \stackrel{p}{\oplus} \cdots \stackrel{p}{\oplus} A_{k} M$.
b) For any body with property (5) the homothety coefficient $\lambda$ is equal to the p-radius.

The case $p=\infty$ is analysed in [6]. Let us consider one more case,i.e. the case $p=2$. In this case for any operators there exists an invariant ellipsoid. Namely, the following statement holds.

Statement. For any generic set $A_{\underline{1}}, \ldots, A_{k}$ of operators there exists a nondegenerated ellipsoid $M$ such that $A M=\lambda M$,

$$
\lambda=\widehat{\rho}_{2}\left(A_{1}, \ldots, A_{k}\right), \quad \bar{A} M=A_{1} M \stackrel{2}{\oplus} A_{2} M \stackrel{2}{\oplus} \cdots \stackrel{2}{\oplus} A_{k} M
$$

The number $\lambda$ and the matrix $B$ of the quadratic form corresponding to $M$ can be determined by the equation

$$
\sum_{i=1}^{k} A_{i}^{*} B A_{i}=\lambda^{2} B
$$

Therefore, in the case when $p=2$ the $p$-radius can be calculated explicitly.

## REFERENCES

1. G. C. Rota and G. Strang: A note on the joint spectral radius. Indag. Math. 22 (1960), 379-381.
2. I. Daubeshies and J. Lagarias: Two-sacle difference equations: Global regularity of solutions. SIAM J. Math. Anal. (1991).
3. D. Collela and C. Heil: Characterizations of scaling functions. Continuous solutions. Preprint.
4. D. Collela and C. Heil: Distributional and functional solutions. Preprint.
5. C. Heil: Methods of solving dilation equations. presented at Proc. of the 1991 NATO ASI on Prob. and Stoch. Methods in Anal. with Appl. (to appear).
6. V. Yu. Protasov: The joint spectral radius and invariant sets. Fund. Prikl. Mat. (to appear).
7. Ka-Sing Lau and J. Wang: Characterization of $L^{p}$ solutions for two-scale dilation equations. SIAM J. Math. Anal. (to appear)
8. J. E. Hutchinson: Fractals and self similarity. Indiana Univ. J. Math. 30 (1981), 713-747.

Department of Mechanics and Mathematics Moscow State University
117234 Moscow
RUSSIA

